Math 221 Winter 2025 (Darij Grinberg): homework set 6 due date: Saturday 2025-03-08 at 11:59PM on gradescope (https://www.gradescope.com/courses/930212). Please solve only 3 of the 7 exercises.

Recall that $\mathbb{N} = \{0, 1, 2, ...\}$. The first three exercises are about functions and their properties:

Exercise 1. For each of the following functions, determine whether it is injective, surjective and/or bijective:

(Proofs are not required in this exercise!)

(a) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$
$$x \mapsto x^2.$$

(b) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$
$$x \mapsto x^3.$$

(c) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z},$$
$$(x, y) \mapsto x^2 + y^2.$$

(d) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$
$$x \mapsto 3 - x$$

(e) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$
$$x \mapsto 3 - 2x$$

(f) The function

$$f: \mathbb{N} \to \mathbb{N},$$
$$x \mapsto x!.$$

(Keep in mind that $0 \in \mathbb{N}$.)

(g) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$
$$(x, y) \mapsto (x + y, \ x - y).$$

(h) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$
$$(x, y) \mapsto (x - y, y - x).$$

(i) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$
$$(x, y) \mapsto (x + 2y, \ x + y).$$

(j) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$
$$(x, y) \mapsto (x + 2y, 2x + y).$$

Exercise 2. Let A, B, C, D be four sets. Let $f : A \to C$ and $g : B \to D$ be two maps. Define a new map $f * g : A \times B \to C \times D$ by setting

$$(f * g) (a, b) = (f (a), g (b))$$
 for every pair $(a, b) \in A \times B$.

Prove the following:

(a) If f and g are injective, then f * g is injective.

(b) If f and g are surjective, then f * g is surjective.

Exercise 3. Let *X* and *Y* be two sets. Let $f : X \to Y$ be a map.

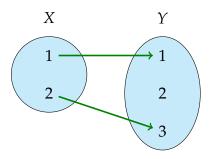
A **left inverse** of *f* means a map $g : Y \to X$ that satisfies $g \circ f = id_X$ (but not necessarily $f \circ g = id_Y$).

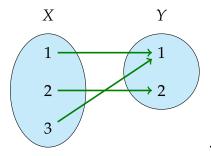
A **right inverse** of *f* means a map $g : Y \to X$ that satisfies $f \circ g = id_Y$ (but not necessarily $g \circ f = id_X$).

(a) Prove that *f* has a right inverse if and only if *f* is surjective.

(b) Assume that $X \neq \emptyset$. Prove that *f* has a left inverse if and only if *f* is injective.

(c) Find two distinct left inverses of the map





Some exercises on counting will follow now. Recall that [n] denotes the set $\{1, 2, ..., n\}$ whenever $n \in \mathbb{N}$.

Exercise 4. Let $n \in \mathbb{N}$. Compute the # of 4-tuples $(a, b, c, d) \in [n]^4$ that satisfy $a \le b < c \le d$. (Not a typo: the second sign is a <, not a \le .)

(Recall that $[n]^4 = [n] \times [n] \times [n] \times [n]$, so that a 4-tuple $(a, b, c, d) \in [n]^4$ means a 4-tuple of integers $a, b, c, d \in \{1, 2, ..., n\}$.)

Exercise 5. Let $n \in \mathbb{N}$. Compute the # of pairs (*A*, *B*) of subsets of [*n*] that satisfy $A \cap B = \emptyset$.

(For example, if n = 2, then this # is 9, since there are 9 such pairs:

 $\begin{array}{ll} (\varnothing, \varnothing), & (\varnothing, \{1\}), & (\varnothing, \{2\}), & (\varnothing, \{1,2\}), \\ (\{1\}, \varnothing), & (\{1\}, \{2\}), & (\{2\}, \varnothing), & (\{2\}, \{1\}), & (\{1,2\}, \varnothing). \end{array}$

Exercise 6. A set *S* of integers will be called **pseudolacunar** if it has the property that no two elements *s*, *t* of *S* satisfy |s - t| = 2. For instance, the set $\{2, 5, 6\}$ is pseudolacunar, but the set $\{2, 5, 7\}$ is not (since |5 - 7| = 2).

For each $n \in \mathbb{N}$, let p_n be the # of pseudolacunar subsets of [n]. Prove that

 $p_n = p_{n-1} + p_{n-3} + p_{n-4}$ for each $n \ge 4$.

[Hint: To each pseudolacunar subset, assign one of three colors.]

Exercise 7. A set *S* of integers shall be called **self-starting** if its size |S| is also its smallest element. (For example, $\{3, 5, 6\}$ is self-starting, while $\{2, 3, 4\}$ and $\{3\}$ are not.)

Let $n \in \mathbb{N}$.

)

(a) For any $k \in [n]$, find the number of self-starting subsets of [n] having size k.

(b) Find the number of all self-starting subsets of [*n*].