Math 530: Graph Theory, Spring 2025: Homework 7 due 2025-05-23 at 11:59 PM Please solve 3 of the 6 problems!

Darij Grinberg

May 6, 2025

1 Exercise 1

1.1 Problem

Let G be a multigraph with an even number of vertices. Assume that each vertex of G has an even degree. Prove that G has an even number of spanning trees.

1.2 Hint

First show a lemma: Let $n \in \mathbb{N}$ be odd. Let B be an $n \times n$ -matrix with integer entries. Assume that B is symmetric (i.e., satisfies $B^T = B$), and that all diagonal entries of B are even. Then, det B is even.

1.3 SOLUTION

• • •

2 Exercise 2

2.1 Problem

Let n be a positive integer. Let $N = \{1, 2, ..., n\}$. A map $f: N \to N$ is said to be n-potent if each $i \in N$ satisfies $f^{n-1}(i) = n$. (As usual, f^k denotes the k-fold composition $f \circ f \circ \cdots \circ f$.)

Prove that the # of n-potent maps $f: N \to N$ is n^{n-2} .

2.2 Solution

...

3 Exercise 3

3.1 Problem

Let n = 2m + 1 > 2 be an odd integer. Let e be an edge of the (undirected) complete graph K_n . Prove that the # of Eulerian circuits of K_n that start with e is a multiple of $(m-1)!^n$.

3.2 HINT

Argue that each Eulerian circuit of K_n is a Eulerian circuit of a unique balanced tournament. Here, a "balanced tournament" means a balanced digraph obtained from K_n by orienting each edge.

3.3 SOLUTION

...

4 Exercise 4

4.1 Problem

Let $G = (V, E, \varphi)$ be a multigraph. Let L be the Laplacian of the digraph G^{bidir} . Prove that L is positive semidefinite.

4.2 HINT

Write L as N^TN , where N or N^T is some matrix you have seen before. Note that the statement is not true if we replace G^{bidir} by an arbitrary digraph D.

4.3 SOLUTION

...

5 EXERCISE 5

5.1 Problem

Let n be a positive integer. Let Q_n be the n-hypercube graph (as defined in Definition 2.14.7). Recall that its vertex set is the set $V := \{0,1\}^n$ of length-n bitstrings, and that two vertices are adjacent if and only if they differ in exactly one bit. Our goal is to compute the # of spanning trees of Q_n .

Let D be the digraph Q_n^{bidir} . Let L be the Laplacian of D. We regard L as a $V \times V$ -matrix (i.e., as a $2^n \times 2^n$ -matrix whose rows and columns are indexed by bitstrings in V).

We shall use the notation a_i for the *i*-th entry of a bitstring a. Thus, each bitstring $a \in V$ has the form $a = (a_1, a_2, \ldots, a_n)$. (We shall avoid the shorthand notation $a_1 a_2 \cdots a_n$ here, as it could be mistaken for an actual product.)

For any two bitstrings $a, b \in V$, we define the number $\langle a, b \rangle$ to be the integer $a_1b_1 + a_2b_2 + \cdots + a_nb_n$.

(a) Prove that every bitstring $a \in V$ satisfies

$$\sum_{b \in V} (-1)^{\langle a, b \rangle} = \begin{cases} 2^n, & \text{if } a = \mathbf{0}; \\ 0, & \text{otherwise.} \end{cases}$$

Here, **0** denotes the bitstring $(0,0,\ldots,0) \in V$.

Now, define a further $V \times V$ -matrix G by requiring that its (a, b)-th entry is

$$G_{a,b} = (-1)^{\langle a,b \rangle}$$
 for any $a,b \in V$.

Furthermore, define a diagonal $V \times V$ -matrix D by requiring that its (a, a)-th entry is

$$D_{a,a} = 2 \cdot (\# \text{ of } i \in \{1, 2, \dots, n\} \text{ such that } a_i = 1)$$

= $2 \cdot (\text{the number of 1s in } a)$ for any $a \in V$

(and its off-diagonal entries are 0).

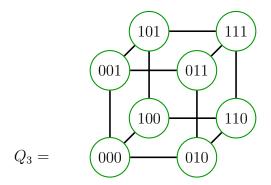
Prove the following:

- (b) We have $G^2 = 2^n \cdot I$, where I is the identity $V \times V$ -matrix.
- (c) We have $GLG^{-1} = D$.
- (d) The eigenvalues of L are 2k for all $k \in \{0, 1, ..., n\}$, and each eigenvalue 2k appears with multiplicity $\binom{n}{k}$.
- (e) The # of spanning trees of Q_n is

$$\frac{1}{2^n} \prod_{k=1}^n \left(2k\right)^{\binom{n}{k}}.$$

5.2 Remark

As an example, here is the case n=3. In this case, the graph Q_n looks as follows:



The matrices L, G and D are

where the rows and the columns are ordered by listing the eight bitstrings $a \in V$ in the order 000, 001, 010, 011, 100, 101, 110, 111.

5.3 SOLUTION

• • •

6 Exercise 6

6.1 Problem

Let T be a tree. Let w be any vertex of T. Prove that T has at least $\deg w$ many leaves.

6.2 SOLUTION

...