Math 530: Graph Theory, Spring 2025: Homework 5 due 2025-05-09 at 11:59 PM Please solve 3 of the 6 problems!

Darij Grinberg

May 6, 2025

1 Exercise 1

1.1 Problem

Let $D = (V, A, \psi)$ be a multidigraph.

For two vertices u and v of D, we shall write $u \stackrel{*}{\to} v$ if there exists a path from u to v.

A root of D means a vertex $u \in V$ such that each vertex $v \in V$ satisfies $u \stackrel{*}{\to} v$.

A common ancestor of two vertices u and v means a vertex $w \in V$ such that $w \stackrel{*}{\to} u$ and $w \stackrel{*}{\to} v$.

Assume that D has at least one vertex. Prove that D has a root if and only if every two vertices in D have a common ancestor.

1.2 SOLUTION

. . .

2 Exercise 2

2.1 Problem

Let G be a multigraph that has no loops. Assume that there exists a vertex u of G such that

for each vertex v of G, there is a **unique** path from u to v in G.

Prove that G is a tree.

2.2 Remark

Notice the quantifiers used here: $\exists u \forall v$. This differs from the $\forall u \forall v$ in Statement T2 of the tree equivalence theorem (Theorem 5.2.4).

2.3 SOLUTION

...

3 Exercise 3

3.1 Problem

Let F be any field¹.

Let $G = (V, E, \varphi)$ be a multigraph, where $V = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

For each edge $e \in E$, we construct a column vector $\chi_e \in F^n$ (that is, a column vector with n entries) as follows:

- If e is a loop, then we let χ_e be the zero vector.
- Otherwise, we let u and v be the two endpoints of e, and we let χ_e be the column vector that has a 1 in its u-th position, a -1 in its v-th position, and 0s in all other positions. (This depends on which endpoint we call u and which endpoint we call v, but we just make some choice and stick with it. The result will be true no matter how we choose.)

Let M be the $n \times |E|$ -matrix over F whose columns are the column vectors χ_e for all $e \in E$ (we order them in some way; the exact order doesn't matter). Prove that

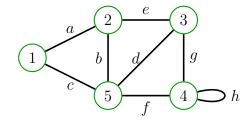
$$\operatorname{rank} M = |V| - \operatorname{conn} G.$$

(Recall that conn G denotes the number of components of G.)

¹If you find it more convenient, you can assume that $F = \mathbb{R}$ or $F = \mathbb{C}$.

3.2 Remark

Here is an example: Let G be the multigraph



(so that n=5). Then, if we choose the endpoints of b to be 2 and 5 in this order, then we

have
$$\chi_b = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$
. (Choosing them to be 5 and 2 instead, we would obtain $\chi_b = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.)

If we do the same for all edges of G (that is, we choose the smaller endpoint as u and the larger endpoint as v), and if we order the columns so that they correspond to the edges a, b, c, d, e, f, g, h from left to right, then the matrix M comes out as follows:

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 & 0 & -1 & 0 & 0 \end{pmatrix}.$$

It is easy to see that rank M = 4, which is precisely $|V| - \operatorname{conn} G$.

Another way of putting the claim of the exercise is that the span of the vectors χ_e for all $e \in E$ has dimension $|V| - \operatorname{conn} G$.

Topologists will recognize the matrix M as (a matrix that represents) the boundary operator $\partial: C_1(G) \to C_0(G)$, where G is viewed as a CW-complex.

3.3 SOLUTION

. . .

4 Exercise 4

4.1 Problem

Let $G = (V, E, \varphi)$ be a connected multigraph such that $|E| \ge |V|$. Show that there exists an injective map $f: V \to E$ such that for each vertex $v \in V$, the edge f(v) contains v.

(In other words, show that we can assign to each vertex an edge that contains this vertex in such a way that no edge is assigned twice.)

4.2 SOLUTION

• • •

5 Exercise 5

5.1 Problem

Let G be a connected multigraph. Let T_1 and T_2 be two spanning trees of G. Prove the following:

- (a) For any $e \in E(T_1) \setminus E(T_2)$, there exists an $f \in E(T_2) \setminus E(T_1)$ with the property that replacing e by f in T_1 (that is, removing the edge e from T_1 and adding the edge f) results in a spanning tree of G.
- (b) For any $f \in E(T_2) \setminus E(T_1)$, there exists an $e \in E(T_1) \setminus E(T_2)$, with the property that replacing e by f in T_1 (that is, removing the edge e from T_1 and adding the edge f) results in a spanning tree of G.

5.2 Remark

The two parts look very similar, but (to my knowledge) their proofs are not.

5.3 SOLUTION

. . .

6 Exercise 6

6.1 Problem

Let G be a multigraph. Assume that G has exactly two vertices of odd degree. Prove that these two vertices are path-connected.

6.2 SOLUTION

...

4