Math 530: Graph Theory, Spring 2025: Homework 3 due 2025-04-25 at 11:59 PM Please solve 3 of the 6 problems!

Darij Grinberg

May 6, 2025

1 EXERCISE 1

1.1 PROBLEM

Which of the exercises 1, 2, 3, 4 (a), 5 from homework set #1 remain true if "simple graph" is replaced by "multigraph"?

(For each exercise that becomes false, provide a counterexample. For each exercise that remains true, either provide a new solution that works for multigraphs, or argue that the solution we have seen applies verbatim to multigraphs, or derive the multigraph case from the simple graph case. For Exercise 4 (a), "remains true" means that the descriptions of the graphs G are still the same, i.e., no other possibilities appear for G up to isomorphism.)

1.2 Solution

•••

$2 \ \text{Exercise} \ 2$

2.1 Problem

Let G be a multigraph with at least one vertex. Let d > 2 be an integer. Assume that $\deg v > 2$ for each vertex v of G. Prove that G has a cycle whose length is not divisible by d.

2.2 Solution

•••

3 Exercise 3

3.1 Problem

Let G be a loopless multigraph. Recall that a *trail* means a walk whose edges are distinct (but whose vertices are not necessarily distinct). Let u and v be two vertices of G. As usual, "trail from u to v" means "trail that starts at u and ends at v".

Prove that

(the number of trails from u to v in G) \equiv (the number of paths from u to v in G) mod 2.

3.2 Hint

Try to pair up the non-path trails into pairs. Make sure to prove that this pairing is welldefined (i.e., each non-path trail \mathbf{t} has exactly one partner, which is not itself, and that \mathbf{t} is the designated partner of its partner!).

3.3 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Let n and k be two integers such that n > k > 0. Define the simple graph $Q_{n,k}$ as follows: Its vertices are the bitstrings $(a_1, a_2, \ldots, a_n) \in \{0, 1\}^n$; two such bitstrings are adjacent if and only if they differ in exactly k bits¹. (Thus, $Q_{n,1}$ is the n-hypercube graph Q_n .)

¹In other words: Two vertices (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are adjacent if and only if the number of $i \in \{1, 2, \ldots, n\}$ satisfying $a_i \neq b_i$ equals k.

- (a) Does $Q_{n,k}$ have a hamc² when k is even?
- (b) Does $Q_{n,k}$ have a hamc when k is odd?

4.2 Remark

One way to approach part (b) is by identifying the set $\{0, 1\}$ with the field \mathbb{F}_2 with two elements. The bitstrings $(a_1, a_2, \ldots, a_n) \in \{0, 1\}^n$ thus become the size-*n* row vectors in the \mathbb{F}_2 -vector space \mathbb{F}_2^n . Let e_1, e_2, \ldots, e_n be the standard basis vectors of \mathbb{F}_2^n (so that e_i has a 1 in its *i*-th position and zeroes everywhere else). Then, two vectors are adjacent in the *n*-hypercube graph Q_n (resp. in the graph $Q_{n,k}$) if and only if their difference is one of the standard basis vectors (resp., a sum of k distinct standard basis vectors). Try to use this to find a graph isomorphism from Q_n to a subgraph of $Q_{n,k}$.

4.3 SOLUTION

...

5 EXERCISE 5

5.1 Problem

Let $k \in \mathbb{N}$. Let S be a finite set. The Kneser graph $K_{S,k}$ is the simple graph whose vertices are the k-element subsets of S, and whose edges are the unordered pairs $\{A, B\}$ consisting of two such subsets A and B that satisfy $A \cap B = \emptyset$.

Prove that this Kneser graph $K_{S,k}$ is connected if $|S| \ge 2k + 1$.

5.2 Remark

Can the "if" here be replaced by an "if and only if"? Not quite, because the graph $K_{S,k}$ is also connected if |S| = 2 and k = 1 (in which case it has two vertices and one edge), or if |S| = k (in which case it has only one vertex). There might be more such "exceptions".

5.3 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

Let $n \ge 1$. Let Q_n be the *n*-hypercube graph, as in Definition 2.14.7.

²Recall that "hamc" is short for "Hamiltonian cycle".

At what vertices can a hamp³ of Q_n end if it starts at the vertex $00 \cdots 0$? (Find all possibilities, and prove that they are possible and all other vertices are impossible.)

6.2 Solution

•••

³Recall that "hamp" is short for "Hamiltonian path".