Math 221 Winter 2024 (Darij Grinberg): midterm 3 due date: Wednesday 2024-03-20 at 11:59PM on gradescope (https://www.gradescope.com/courses/684379). Please solve only 3 of the 8 exercises. NO collaboration allowed – this is a midterm! (But you can still ask me questions.)

Recall that $\mathbb{N} = \{0, 1, 2, ...\}$. Recall also that [n] denotes the set $\{1, 2, ..., n\}$ whenever $n \in \mathbb{N}$.

Exercise 1. For each of the following functions, determine whether it is injective, surjective and/or bijective:

(Proofs are not required in this exercise!)

(a) The function

$$f: \mathbb{Q} \to \mathbb{Q},$$
$$x \mapsto \frac{x}{1+x^2}.$$

(b) The function

$$f: \mathbb{Z} \to \mathbb{Q},$$
$$x \mapsto \frac{x}{1+x^2}$$

(c) The function

 $f: \{ \text{finite nonempty subsets of } \mathbb{Z} \} \to \mathbb{Z},$ $S \mapsto \min S$

(which sends each set to its smallest element).

(d) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z},$$
$$(x, y) \mapsto 2x + 3y.$$

(e) The function

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N},$$
$$(x, y) \mapsto 2x + 3y.$$

Exercise 2. Let $n \in \mathbb{N}$. Consider the set $[2n] = \{1, 2, \dots, 2n\}$.

A set of integers will be called **parity-ambivalent** if it contains at least one even element and at least one odd element. (For instance, $\{2,4,5\}$ is parity-ambivalent, but $\{2,4,10\}$ is not.)

Compute the # of all parity-ambivalent subsets of [2n].

[Hint: One way to solve it is by negation: How many subsets of [2n] contain **no** even element? How many contain **no** odd element? How many contain neither?]

Exercise 3. (a) How many 7-digit numbers are there? (A "*k*-digit number" means a nonnegative integer that has *k* digits when written in the decimal system (without leading zeroes). For example, 3902 is a 4-digit number, not a 5-digit number.)

(b) How many 7-digit numbers are there that have no two equal digits?

(c) How many 7-digit numbers have an even sum of digits?

(d) How many 7-digit numbers are palindromes? (A "**palindrome**" is a number such that reading its digits from right to left yields the same number. For example, 5 and 1331 and 49094 are palindromes.)

[If your answer is a product or power, you do not need to simplify it to a number.]

Recall the notion of a "left inverse" of a map (as defined in Exercise 3 on home-work set #5).

Exercise 4. Let $n, m \in \mathbb{N}$. Let *X* be an *n*-element set. Let *Y* be an *m*-element set. Let $f : X \to Y$ be an injective map. Prove that *f* has exactly n^{m-n} many left inverses.

If *S* is any set, and *n* is any nonnegative integer, then the Cartesian product $S \times S \times \cdots \times S$ is denoted by S^n . For example, $S^3 = S \times S \times S$.

n times

Recall that a *k*-tuple $(i_1, i_2, ..., i_k)$ is called **injective** if its *k* entries $i_1, i_2, ..., i_k$ are all distinct (i.e., if $i_a \neq i_b$ for all $a \neq b$).

Exercise 5. Let $n \in \mathbb{N}$. How many injective (2n)-tuples $(i_1, i_2, \ldots, i_{2n}) \in [2n]^{2n}$ are there such that all of the first *n* entries i_1, i_2, \ldots, i_n are even?

(For instance, for *n* = 2, there are 4 such tuples: (2, 4, 1, 3), (2, 4, 3, 1), (4, 2, 1, 3) and (4, 2, 3, 1).)

Exercise 6. Let $n \ge 2$ be an integer.

(a) How many injective *n*-tuples $(i_1, i_2, ..., i_n) \in [n]^n$ begin with the entry 2 ?

(b) How many injective *n*-tuples $(i_1, i_2, ..., i_n) \in [n]^n$ contain the entry 1 before the entry 2 ? ("Before" means "somewhere to the left of", not necessarily "immediately before". For instance, for n = 4, the 4-tuple (1, 3, 2, 4) qualifies, but the 4-tuple (2, 3, 1, 4) does not.)

(c) How many injective *n*-tuples $(i_1, i_2, ..., i_n) \in [n]^n$ contain the entry 1 immediately preceding the entry 2 ? (Here, (1, 3, 2, 4) no longer qualifies, but (4, 1, 2, 3) does.)

If $h : S \to S$ is any map from a set to itself, then a **fixed point** of *h* means an element $s \in S$ satisfying h(s) = s. The set of all fixed points of *h* will be called Fix *h*.

Exercise 7. Let *X* and *Y* be two finite sets (not necessarily of the same size). Let $f : X \to Y$ and $g : Y \to X$ be two maps. Prove that

$$\operatorname{Fix}\left(f\circ g\right)| = \left|\operatorname{Fix}\left(g\circ f\right)\right|.$$

[**Hint:** Show that $f(x) \in \text{Fix}(f \circ g)$ for each $x \in \text{Fix}(g \circ f)$. Thus, there is a map

$$f': \operatorname{Fix} (g \circ f) \to \operatorname{Fix} (f \circ g),$$
$$x \mapsto f(x).$$

Construct a similar map g' in the opposite direction. Prove that these two maps f' and g' are inverse to each other.]

Now, recall Exercise 6 on homework set #5. In that exercise, we decided to call a set *S* of integers **pseudolacunar** if no two elements *s*, *t* of *S* satisfy |s - t| = 2. We denoted the # of pseudolacunar subsets of [n] (for a given $n \in \mathbb{N}$) by p_n .

Recall also the Fibonacci sequence $(f_0, f_1, f_2, ...)$ that we introduced in §1.5. It is defined recursively by $f_0 = 0$ and $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for each $n \ge 2$. Finally, recall the floor notation (see Definition 3.3.13).

Exercise 8. Prove that

$$p_n = f_{|(n+1)/2|+2} \cdot f_{|n/2|+2}$$
 for each $n \ge 2$

[**Hint:** What does the pseudolacunarity of a set *S* mean for the even elements of *S* ? What does it mean for the odd elements of *S* ?]