Math 221 Winter 2024 (Darij Grinberg): homework set 5

due date: Sunday 2024-03-10 at 11:59PM on gradescope (https://www.gradescope.com/courses/684379).

Please solve only 3 of the 7 exercises.

Recall that $\mathbb{N} = \{0, 1, 2, ...\}.$

The first three exercises are about functions and their properties:

Exercise 1. For each of the following functions, determine whether it is injective, surjective and/or bijective:

(Proofs are not required in this exercise!)

(a) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$

 $x \mapsto x^2.$

(b) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$

 $x \mapsto x^3.$

(c) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z},$$

 $(x,y) \mapsto x^2 + y^2.$

(d) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$

 $x \mapsto 3 - x.$

(e) The function

$$f: \mathbb{Z} \to \mathbb{Z},$$

 $x \mapsto 3 - 2x.$

(f) The function

$$f: \mathbb{N} \to \mathbb{N},$$

 $x \mapsto x!.$

(Keep in mind that $0 \in \mathbb{N}$.)

(g) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$

 $(x,y) \mapsto (x+y, x-y).$

(h) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$

 $(x,y) \mapsto (x-y, y-x).$

(i) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$

 $(x,y) \mapsto (x+2y, x+y).$

(j) The function

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z},$$

 $(x,y) \mapsto (x+2y, 2x+y).$

Exercise 2. Let A, B, C, D be four sets. Let $f: A \to C$ and $g: B \to D$ be two maps. Define a new map $f * g: A \times B \to C \times D$ by setting

$$(f * g)(a,b) = (f(a), g(b))$$
 for every pair $(a,b) \in A \times B$.

Prove the following:

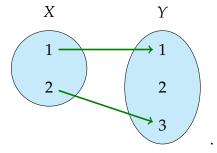
- (a) If f and g are injective, then f * g is injective.
- **(b)** If f and g are surjective, then f * g is surjective.

Exercise 3. Let *X* and *Y* be two sets. Let $f: X \to Y$ be a map.

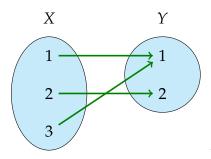
A **left inverse** of f means a map $g: Y \to X$ that satisfies $g \circ f = id_X$ (but not necessarily $f \circ g = id_Y$).

A **right inverse** of f means a map $g: Y \to X$ that satisfies $f \circ g = id_Y$ (but not necessarily $g \circ f = id_X$).

- **(a)** Prove that *f* has a right inverse if and only if *f* is surjective.
- **(b)** Assume that $X \neq \emptyset$. Prove that f has a left inverse if and only if f is injective.
 - (c) Find two distinct left inverses of the map



(d) Find two distinct right inverses of the map



Some exercises on counting will follow now. Recall that [n] denotes the set $\{1, 2, ..., n\}$ whenever $n \in \mathbb{N}$.

Exercise 4. Let $n \in \mathbb{N}$. Compute the # of 4-tuples $(a, b, c, d) \in [n]^4$ that satisfy $a \le b < c \le d$. (Not a typo: the second sign is a <, not a \le .)

(Recall that $[n]^4 = [n] \times [n] \times [n] \times [n]$, so that a 4-tuple $(a, b, c, d) \in [n]^4$ means a 4-tuple of integers $a, b, c, d \in \{1, 2, ..., n\}$.)

Exercise 5. Let $n \in \mathbb{N}$. Compute the # of pairs (A, B) of subsets of [n] that satisfy $A \cap B = \emptyset$.

(For example, if n = 2, then this # is 9, since there are 9 such pairs:

$$(\varnothing, \varnothing), (\varnothing, \{1\}), (\varnothing, \{2\}), (\varnothing, \{1,2\}), (\{1\}, \varnothing), (\{1\}, \{2\}), (\{2\}, \varnothing), (\{2\}, \{1\}), (\{1,2\}, \varnothing).$$

Exercise 6. A set *S* of integers will be called **pseudolacunar** if it has the property that no two elements s, t of *S* satisfy |s - t| = 2. For instance, the set $\{2, 5, 6\}$ is pseudolacunar, but the set $\{2, 5, 7\}$ is not (since |5 - 7| = 2).

For each $n \in \mathbb{N}$, let p_n be the # of pseudolacunar subsets of [n]. Prove that

$$p_n = p_{n-1} + p_{n-3} + p_{n-4}$$
 for each $n \ge 4$.

[Hint: To each pseudolacunar subset, assign one of three colors.]

Exercise 7. A set *S* of integers shall be called **self-starting** if its size |S| is also its smallest element. (For example, $\{3,5,6\}$ is self-starting, while $\{2,3,4\}$ and $\{3\}$ are not.)

Let $n \in \mathbb{N}$.

- (a) For any $k \in [n]$, find the number of self-starting subsets of [n] having size k.
 - **(b)** Find the number of all self-starting subsets of [n].