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0. Preface

Discrete mathematics is the mathematics of finite, discrete objects: integers,
finite sets, graphs (not in this course), polynomials (not in this course) and
various further things. Integer sequences, while technically infinite, are still
counted as discrete mathematics because you usually only care about specific
entries.

Discrete mathematics stands in contrast to continuous mathematics, which
studies real numbers, continuous functions, infinite sets etc..

Specifically, what we will see in this course are

e mathematical induction and recursion;
¢ elementary number theory (divisibility, prime numbers, coprimality);

* basic enumerative combinatorics (counting, binomial coefficients — see
Math 222 for more);

* basic combinatorial game theory (2-player games with no randomness).

See the textbook for some further references.
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1. Induction and recursion

1.1. The Tower of Hanoi

Let me start with a puzzle called the Tower of Hanoi.

You have 3 pegs (or rods). The first peg has n disks stacked on it. The other
two pegs are empty. The n disks have n different sizes, and are stacked in the
order of decreasing size (biggest disk on the bottom).

You can make a certain kind of moves (“Hanoi moves”): You can take the
topmost disk from one peg and move it on top of another peg. However, you
are only allowed to do this if this disk is smaller than the other disk currently
on the latter peg; in other words, you must never stack a larger disk atop a
smaller disk.

The goal is to move all n disks onto the third peg.

This game can actually be played online (e.g. at https://codepen.io/eliortabeka/pen/yOrrxG
).

Let us analyze the n = 3 case. In this case, one strategy for winning the game
(i.e., achieving the goal) is as follows:

1. Move the smallest disk from peg 1 onto peg 3.
2. Move the middle disk from peg 1 onto peg 2.
3. Move the smallest disk from peg 3 onto peg 2.
Move the largest disk from peg 1 onto peg 3.
Move the smallest disk from peg 2 onto peg 1.

Move the middle disk from peg 2 onto peg 3.

N A e

Move the smallest disk from peg 1 onto peg 3.
So we can win in 7 moves for n = 3.
What about other values of n ? Here are the questions to consider:

Question 1.1.1. (a) Can we always win the game?
(b) If so, then what is the smallest # of moves we need to make?

Let us record the answers for small values of n:

e For n = 0, we win in 0 moves (since all the disks —i.e., all 0 of them — are
already on peg 3). This is optimal.

¢ For n =1, we win in 1 move. This is optimal.
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¢ For n = 2, we win in 3 moves. This is optimal.

* For n = 3, we win in 7 moves, as explained above. But do we need 7
moves, or can we win faster?

What about n = 4 ? Solving our questions by brute force gets harder the
bigger n gets. But we can try to analyze our strategy for n = 3 and see if we
can spot some generalizable patterns.

We spot one pattern: The largest disk moves only once. So our strategy for
n = 3 can be summarized as follows:

1.-3. Move the two smaller disks from peg 1 onto peg 2 (so that the largest disk
becomes liberated).

4. Move the largest disk from peg 1 onto peg 3.

5.-7. Move the two smaller disks from peg 2 onto peg 3.

Moreover, the moves 1-3 in this strategy are essentially a Tower of Hanoi
game played only with the two smaller disks, except that the goal is not to
move them to peg 3 but to move them to peg 2 (but this is clearly equivalent).
The largest disk stays at the bottom of peg 1 all the time and does not prevent
any of the moves (since all other disks are smaller than it).

Move 4 moves the newly liberated largest disk from peg 1 to peg 3.

Moves 5-7 are another little Tower of Hanoi game for the two smaller disks,
except that we now must move them from peg 2 to peg 3. Again, the largest
disk does not interfere with the process.

This clarifies the logic behind our strategy.

Does this help us solve the n = 4 case? Yes:

1.-7. Move the three smaller disks from peg 1 onto peg 2. (This is a little Tower
of Hanoi game for 3 disks.)

8. Move the largest disk to peg 3.

9.-15. Move the three smaller disks from peg 2 onto peg 3. (This is another little
Tower of Hanoi game for 3 disks.)

Thus, we don’t just have a strategy for n = 3 and one for n = 4, but actually
a “meta-strategy” that lets us win the game for n disks if we know how to win
it for n — 1 disks. In a nutshell, it says “first move the n — 1 smaller disks onto
peg 2; then move the largest disk onto peg 3; then move the n — 1 smaller disks
onto peg 3”. We will call this “meta-strategy” just a strategy.

Let us summarize what we gain from this strategy.
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Definition 1.1.2. For any integer n > 0, let m,, denote the # of moves needed
to win the game with n disks. If the game acnnot be won with 7 disks, then
we set m,, = oo.

Thus, both of our questions (a) and (b) boil down to computing m,,.
Here is a table of small values of m, found using our strategy:

n||0[1(2|3]4|5|6]|7
m, |0|1|3|7 15|31 |63 |127

Note that these values are easily computed using our strategy, because in order
to win the game for a given n, we have to win it for n — 1, then make one extra
move, then win it for n — 1 again. Sowe getm,, = m,_1+1+m,_1 =2m,_1+1
(for all n > 1).

Right?

Not so fast! We have defined m,, as the smallest # of moves needed to win
the n-disks game. But we have only computed the # of moves needed to win
the n-disks game using our strategy. Maybe our strategy is not the fastest one,
and so the true m, is smaller than the number we have found? Couldn’t we
perhaps solve the 3-disk game with 6 moves rather than 7 ?

So what we have really proved is the following:

Proposition 1.1.3. Let n be a positive integer. If m,_; is an integer (i.e., not
o), then m,, < 2m,_1 + 1.

Proof. Assume that m,,_; is an integer. Thus, we can win the game for n — 1
disks in m,_1 moves. Let S be the strategy (i.e., the sequence of moves) needed
to do this. So the strategy S moves n — 1 disks from peg 1 onto peg 3 in m,,_1
moves.

Let Sp3 be the same strategy as S, but with the roles of pegs 2 and 3 swapped.
Thus, Sp3 moves n — 1 disks from peg 1 onto peg 2 in m,_; moves.

Let S1p be the same strategy as S, but with the roles of pegs 1 and 2 swapped.
Thus, Sy, moves n — 1 disks from peg 2 onto peg 3 in m,_1; moves.

Now, we proceed as follows to win the n-disk game:

A. We apply strategy Sy3 to move the n — 1 smaller disks from peg 1 onto
peg 2. (This is allowed because the largest disk rests at the bottom of peg
1 and does not interfere with the movement of smaller disks.)

B. We move the largest disk from peg 1 onto peg 3. (This is allowed since
this disk is free (i.e., there are no disks on top of it) and since peg 3 is
empty (because all other disks are on peg 2).)
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C. We apply strategy Si» to move the n — 1 smaller disks from peg 2 onto
peg 3. (This is allowed since the largest disk rests at the bottom of peg 3
and does not interfere.)

This strategy wins the n-disk game in
Mpy—1+1+my_1 =2m,_1+1

moves. So the n-disk game can be won in 2m,_; + 1 many moves. In other
words, m, < 2m,_1 + 1. Qed. O

Now, I claim that the inequality m, < 2m,_1 + 1 is actually an equality —i.e.,
our strategy is optimal.

Proposition 1.1.4. Let n be a positive integer. If m,_; is an integer (i.e., not
00), then m,, = 2m,,_1 + 1.

Proof. Again, assume that m,,_; is an integer.

We need to show that m, = 2m,_; + 1. Since we have already proved that
my < 2my_1 + 1, it remains to prove that m, > 2m,_1 + 1. In other words, it
suffices to show that any winning strategy for n disks has at least 2m,,_1 + 1
many moves.

So let us consider a winning strategy T for n disks. Somewhere during this
strategy, the largest disk must be moved (since it must go from peg 1 to peg
3). Let us refer to these moves (i.e., those that move the largest disk) as special
moves. So T must have at least one special move. (Maybe more than one.)

Before the first special move can happen, the smallest n — 1 disks must be
moved away from peg 1 (to free the largest disk), and must all be gathered
on the same peg (otherwise, the largest disk would be prevented from finding
a place). This means that before the first special move can happen, we must
have already solved the Tower of Hanoi game for n — 1 disks (perhaps with
a different destination peg). By definition, this requires at least m,_; moves.
Hence, before the first special move can happen, we already need to have made
at least m,_1 moves.

Now, consider what happens after the last special move. This last special
move necessarily moves the largest disk to peg 3. In order for this move to be
possible, all the n — 1 smallest disks must be on the same peg (which is not
peg 3), since otherwise the largest disk would either be prevented from getting
moved or prevented from finding place on peg 3. Hence, after the last special
move, we still need to move the n — 1 smallest disks onto peg 3. This is a little
of Tower of Hanoi game for these n — 1 smallest disks. As we know, it requires
at least m,_1 moves.

So, in total, our strategy T needs to have

1. at least m,_; moves before the first special move,
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2. at least one special move,

3. at least m,,_; moves after the last special move.

Hence, it needs to have at least m,,_1 + 1+ m,,_1 = 2m,_1 + 1 moves in total.
This proves m,, > 2m,_1 + 1. H

This proposition confirms our table

n (0123, 4|56 7 | 8] 9|10
m, |0|137|15|31 |63 |127 | 255|511 | 1023

The equation m, = 2m,_; + 1 is what is called a recursive formula for the
numbers m;,. This means a formula that allows you to compute m, using the
previous values mg, my,...,m,_1. (In the case of our formula, we only need the
direct predecessor m,,_1.)

Still, can we perhaps do even better? Can we find an explicit formula - i.e,,
one that gives m,, directly? Based on our above table, we suspect that

m, = 2" —1.

Can we prove this? Not directly, since our strategy is stated only in terms of
the (n — 1)-disk game.

Our last proposition says that m, = 2m, 1 + 1 for each n > 1. Thus, if
my_1 =2""1 —1, then

mn:2mn,1+1:2(2”_1—1>+1:2-2”_1—2—|—1:2”—2+1:2”—1.
—on

In other words, if our suspected formula m, Lon_1 holds for n — 1, then it

also holds for n. For example, if it holds for n = 3, then it holds for n = 4. Now
we can argue as follows:

e The formula m, 22" 1 holds for n = 0 (since mg = 0 and 2° — 1 = 0).

e Hence, the formula m,, Lon_q holds for n = 1 (because if it holds for 0,
then it holds for 1).

¢ Hence, the formula m,, Lon_q holds for n = 2 (because if it holds for 1,
then it holds for 2).

¢ Hence, the formula m,, z 2" — 1 holds for n = 3 (because if it holds for 2,
then it holds for 3).
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e Hence, the formula m, ~ 2" — 1 holds for n = 2024 (because if it holds
for 2023, then it holds for 2024).

Common sense dictates that this should be a proof of m;, Z 2" —1 for all
n > 0. Rigorously, this is not per-se a proof, because a proof must contain
a fixed number of steps. So in order to make this mathematically precise, we
need to introduce a principle (an axiom) that gives legitimacy to this argument.
This is the Principle of Mathematical Induction:

Theorem 1.1.5 (Principle of Mathematical Induction). Let P (1) be a mathe-
matical statement defined for each integer n > 0.

(For example, P (1) can be “n+1 > n” or “n is even” or “n is prime” or
“there exists a prime number larger than n”. Note that not every statement
needs to be true. So P (n) is a statement that depends on #; in logic, such a
statement is called a predicate.)

Assume the following;:

1. The statement P (0) holds (i.e., P (n) holds for n = 0).

2. For each integer n > 0, the implication P (n) = P (n+ 1) holds (i.e.,
if P (n) holds, then P (n 4 1) holds as well).

Then, the statement P () holds for every integer n > 0.

Let me remind you of the meaning of =—:

A B A=—B

true true true
true false false
false true true

false false true

For example, (0 = 1) = (16 is odd).

1.2. The Principle of Mathematical Induction

The principle we stated last time (and are now going to use to prove our
my = 2" —1 formula) is so important that it is worth repeating. We repeat
it generalized to b instead of 0:
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Theorem 1.2.1 (Principle of Mathematical Induction). Let b be an integer.
Let P (n) be a statement defined for each integer n > b.
Assume the following;:

1. The statement P (b) holds (i.e., P (n) holds for n = b).

2. For each integer n > b, the implication P (n) = P (n+ 1) holds (i.e.,
if P (n) holds, then P (n 4 1) holds as well).

Then, the statement P (n) holds for each integer n > b.

Before we discuss the real significance and meaning of this principle, let me
show how to use it to prove our m, = 2" — 1 conjecture. Let me repeat it as a
theorem:

Theorem 1.2.2 (explicit answer to Tower of Hanoi). For each integer n > 0,
we let m;, denote the # of moves needed to win the Tower of Hanoi game
with n disks (or oo if it cannot be won). Then,

m, =2" -1 for each integer n > 0.

Proof. We denote the statement “m, = 2" —1” by P (n). So we must prove that
P (n) holds for each integer n > 0.

According to the Principle of Mathematical Induction (applied to b = 0), it
suffices to show that

1. the statement P (0) holds;
2. for each integer n > 0, the implication P (1) = P (n + 1) holds.

Proving these two claims will be our two goals; we call them Goal 1 and Goal
2. Let’s try to achieve them.

Goal 1 is easy: The statement P (0) is saying that my = 2° — 1, which is true
because both sides are 0. So P (0) holds.

We now start working towards Goal 2. Let n > 0 be an integer. We must
prove the implication P (n) = P (n +1). So we assume that P (1) holds, and
we set out to prove that P (n + 1) holds.

Our assumption says that P (n) holds, i.e., that m, = 2" — 1. In particular, m,
is an integer, i.e., the Hanoi game for n disks is winnable.

We need to prove that P (n + 1) holds, i.e., that m1,,;4 Zon+l

Our last proposition says that m,, = 2m,_; +1if n > 1. But this is not very
helpful, since we want m,,; 1, which is not part of this equality.

But we can also apply our last proposition to n 4 1 instead of n (since n was
just an arbitrary positive integer in that proposition; it is not bound to be our
current n). This gives us

My = 2my, + 1.
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Thus,

Mmyy1=2 my, +1=212"-1)4+1=2-2"-2+41
=211
:2.2”_1:2n+1_1.
S~
—on+l

But this is precisely the statement P (n + 1). So we have shown that P (n + 1)
holds.

More precisely, we have shown that P (n 4 1) holds under the assumption
that P (n) holds. In other words, we have proved the implication P (n) =
P (n+1). This achieves Goal 2.

Now that we have achieved both goals, the Principle of Mathematical Induc-
tion ensures that P (1) holds for each integer n > 0. In other words, m,, = 2" —1
holds for each integer n > 0. This proves the theorem. O

What have we really done here? How did this proof work? What is the logic
behind the Principle of Mathematical Induction?

Let us take a look at the structure of the above proof.

Our goal was to show that P (n) holds for each n > 0.

In other words, our goal was to prove the infinite chain of statements

P(0), P(1), P(2), P(3), ...

We have proved directly that P (0) holds; this was Goal 1.

We have then proved that P (n) = P (n + 1) for each n. In other words, we
have proved that each statement in our chain implies the next. In particular,
P(0)= P(1)and P(1) = P(2) and P (2) = P (3) and so on.

Combining P (0) with P (0) = P (1), we get P (1).

Combining P (1) with P (1) = P (2), we get P (2).

Combining P (2) with P (2) = P (3), we get P (3).

And so on. Clearly, by continuing this reasoning, you can get to any state-
ment in this chain. So, for each n > 0, you conclude that P (n) holds by doing
n steps of this argument.

Strictly speaking, this does not follow, because a proof can only have a given
fixed number of steps. But it is convincing if you have common sense. The
Principle of Mathematical Induction formalizes this common-sense argument:
It says that if each statement implies the next, and if the first statement P (0) is
true, then each statement in the chain is true.

Common metaphors for the Principle of Mathematical Induction:

* You can think of the statements P (0), P (1), P(2), ... as infinitely many
lamps arranged in a row, daisy-chained so that if you turn on P (1) then
P(n+1) also goes on. Thus, turning on P (0) will trigger each lamp
eventually.
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* You can think of the statements P (0), P(1), P(2), ... as dominos ar-
ranged in a row, sufficiently close to one another that tipping over any of
them will tip over the next. Thus, after you tip over the first domino P (0),
all the other dominos will eventually fall down.

I called the Principle of Mathematical Induction a theorem, but it really is an
axiom. Any text that proves it necessarily uses some other axiom that formal-
izes the same idea.

1.3. Some more proofs by induction

A proof that uses the Principle of Mathematical Induction is called a proof
by induction (or an induction proof, or an inductive proof). So our proof of
my, = 2" — 1 was a proof by induction.

Let us see some more such proofs.

1.3.1. The sum of the first n positive integers
Theorem 1.3.1 (“Little Gauss formula”). For every integer n > 0, we have

1

The LHS (= left hand side) of this equation is understood to be the sum of the
first n positive integers. For n = 0, this sum is an empty sum (i.e., a sum with
no addends), so its value is 0 by definition.

First proof of the Little Gauss formula. We set
Sy =14+2+---+n for each n > 0.

1
M for each n > 0.

nn+1)
2

Thus, we must prove that s, =

Let us denote this statement “s,, =

that P (n) holds for each n > 0.
According to the Principle of Mathematical Induction, it suffices to show that

” by P (n). So we need to prove

1. the statement P (0) holds;

2. for each n > 0, the implication P (n) = P (n + 1) holds.
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M, which
is true because both sides are 0 (indeed, s) = 142+ --- 4 0 is an empty sum
and thus equals 0 by definition).

Now to Goal 2. We let n > 0 be an integer. We must prove the implication
P(n) = P(n+1). So we assume that P (n) holds, and we set out to prove
P(n+1).

By assumption, P (1) holds, so that we have

~ n(n+1)
Sn=
We must prove P (n + 1). In other words, we must prove that

2 n+1)((n+1)+1)
Sn+1 = > .

For Goal 1, we observe that the statement P (0) just says so =

To do so, we observe that

Spr1=14+2+---+(n+1)=14+2+---+n)+(n+1)

. /
-

_ n(n+1)
R

:n(n2+1)+(n+1): n(n+1)—2|—2(n+1) _ (n+2)2(n+1)
_ (1) (n+2) (n+1)((n+1)+1)
2 2 '

In other words, P (n + 1) holds. Thus, we have proved the implication P (n) =
P(n+1).

We have now achieved both goals, so the Principle of Mathematical Induction
yields that P (n) holds for each n > 0. This proves the theorem. O

Supposedly, Little Gauss did not prove the theorem this way; instead he used
a trick:

Second proof of the Little Gauss formula. We have
2-(1+2+---+n)

(T+2+-+n)+ (1424 +n)

(1+2+ - +n)+n+m-1)+ - +1)

(14+n)+Q24+n—-1))+B+nm—=2))+---+(n+1)

N——

~ —~ / N s N s’
=n-+1 =n+1 =n+1 =n+1
=m+)+m+)+n+1)+--+(n+1)=n-(n+1).

nt?r%es

Dividing by 2, we obtain

qed. O
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1.3.2. The sum of the squares of the first n positive integers

Theorem 1.3.2. For each integer n > 0, we have

12+22+---+n2:"(”+1)6(2”+1).

Proof. This will be an almost-verbatim copy of the first proof of the Little Gauss
formula. We just change what we need to change.
We set
5,1::124—22—1—---—1—112 for each n > 0.

n(n+1)(@n+1) foreachn >0
3 > 0.
(

nn+1)(2n+1)
6

Thus, we must prove that s, =

Let us denote this statement “s;,, =

to prove that P (n) holds for each n > 0.
According to the Principle of Mathematical Induction, it suffices to show that

” by P (n). So we need

1. the statement P (0) holds;

2. for each n > 0, the implication P (n) = P (n + 1) holds.

0(0+1)(2-0+41)

6 /
which is true because both sides are 0 (indeed, s) = 12+ 22+ --- +0? is an
empty sum and thus equals 0 by definition).

Now to Goal 2. We let n > 0 be an integer. We must prove the implication
P(n) = P(n+1). So we assume that P (n) holds, and we set out to prove
P(n+1).

By assumption, P (1) holds, so that we have

For Goal 1, we observe that the statement P (0) just says sg =

nn+1)(2n+1)

Sn— 6

We must prove P (n + 1). In other words, we must prove that

2 n+1)(n+1)+1)(2(n+1)+1)
Sn+1 = 6 .
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To do so, we observe that

S = P24 (1) = (24224 ) 4 (1)

[\

n(n+1)(2n+1)
6

=s;,=

_n(n+1)(2n+1)
= c +(Tl+1)2

= (n+1)- (@jt(n—l—l))

1
= n—g (n(2n+1)+6(n+1))
:2n2:7n+1
—(n+2)(3n-+3)
=((n+1)+1)(2(n+1)+1)

=T (D) @41 +1)
m+1)(n+1)+1)2(n+1)+1)

c .

In other words, P (n + 1) holds. Thus, we have proved the implication P (n) =
P(n+1).

We have now achieved both goals, so the Principle of Mathematical Induction
yields that P (n) holds for each n > 0. This proves the theorem. O

Exercise 1.3.1. Prove that

1))’

13+23+-~-+n3:( 5

for each nonnegative integer 7.

1.4. Notations for an induction proof

We will be using the Principle of Mathematical Induction a lot. Here is some
standard terminology commonly used in proofs that use this principle. Let us
say that you are proving a statement of the form P (n) for every integer n > b
(where b is some fixed integer).

* The n is called the induction variable; you say that you induct on n. It
does not have to be called n. Your statement might as well be “for every
integer a > 0, we have [...]”, in which case you can prove it by inducting
on 4.
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e The proof of P (b) (this was Goal 1 in our above proofs) is called the
induction base or the base case. In our above examples, b was 0, but it
can be any integer. For instance, if you are proving the statement “every
integer n > 4 satisfies 2" > n2”, then b will have to be 4, so your induction
base consists in proving that 2¢ > 42.

 The proof of the “P (n) = P (n + 1) for every n > b” claim (that is, Goal
2 in our above proofs) is called the induction step. For example, in our
last proof, this was the part where we assumed that

_n(n+1)(2n+1)
Sp = e

and proved that

o 2 DD A D@41 +1)
n+1 = 6 .

In the induction step, the assumption that P (1) holds is called the in-
duction hypothesis or the induction assumption, whereas the claim that
P(n+1) holds (i.e., the claim you are trying to prove) is called the in-
duction goal. The induction step is complete when the induction goal is
reached (i.e., proved).

As an example, let us rewrite our above proof of the Tower of Hanoi answer
(m, = 2" — 1) using this language:

Proof of the Tower of Hanoi theorem, rewritten. We induct on n.

Base case: For n = 0, the theorem holds, since both sides equal 0.

Induction step: Let n > 0 be an integer. We assume that the theorem holds for
n (this is what we previously called P (n)). We must now prove that it holds
for n + 1 as well (this is what we called P (n +1)).

We have assumed that the theorem holds for n. In other words, m,, = 2" — 1.
This is our induction hypothesis.

We must prove that the theorem holds for n + 1. In other words, we must

prove that m, 1, Lontl 1,
To prove this, we apply the last proposition to 7 + 1 instead of n and obtain

Mysq =2 My, +1=2-(2"-1)+1

=2n_1
(by the induction hypothesis)

—2.2" 24 1=2.2"_1 =211 _ 1

Thus, the induction goal is reached, and the induction is complete. The theorem
is proved. O
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1.5. The Fibonacci numbers
1.5.1. Definition

Our next applications of induction will be some properties of the Fibonacci
sequence:

Definition 1.5.1. The Fibonacci sequence is the sequence (fo, f1, f2,...) of
nonnegative integers defined recursively by setting

fo=0, =1, and
fn= fu-1+ fuo for each n > 2.

In other words, the Fibonacci sequence starts with the two entries 0 and 1,
and then each next entry is the sum of the previous two entries. This is a
recursive definition, meaning that it does not directly define each entry, but
rather defines it in terms of the entries before it.

The entries of the Fibonacci sequence are called the Fibonacci numbers. Here
are the first few:

n|0[1{2/3]4|5|/6|7 8|9 (1011 12 | 13
fulO]1|{1]{2|3|5[8|13|21|34|55|89]|144 |233

As we see, a recursive definition is a perfectly valid way to define (e.g.) a
sequence of numbers. It lets you compute (for example) fi3 by first computing
fo, f1,- - ., f12 in this order.

1.5.2. The sum of the first n positive Fibonacci numbers

The Fibonacci sequence is famous for its many properties; here is maybe the
simplest one:

Theorem 1.5.2. For any integer n > 0, we have

A+ttt fu=faura— 1

For example, for n = §, this is saying that
1+14+2+3+5+8+13+21=55—-1.

Proof. We induct on n.

Base case: For n = 0, the theorem claims that f1 + fo +---+ fo = fo42 — 1,
which is true since the LHS (= left hand side) is an empty sum (and thus 0 by
definition), whereas the RHS is fop1p —1=f,—-1=1-1=0.
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Induction step: Let n > 0 be an integer. Assume that the theorem holds for .
We must prove that it holds for n 41 as well.
So we assumed that

htfat-tfu= for2 =1

We must prove that

fit ot fust = frugaysn — 1

We have

hth+ At fonn= (ith+ - +fu) +fn

=fut2—1
(by the induction hypothesis)

= (fn+2_1)+fn+1 = fn+2 +fn+1 -1
———

=fn+3
(by the definition
of the Fibonacci
sequence)

= fot3 = 1= flup1)2 — 1.

This is precisely what we wanted to prove —i.e., the induction goal is achieved.
This completes the induction step. Thus, the theorem is proved. O

1.6. Some more examples of induction

Here is another example of a proof by induction, and incidentally a useful
formula:

Theorem 1.6.1. For any integer n > 0, we have

2042l ool —on g

Proof. We induct on n.
Base case: For n = 0, the equality 20 421 + - 2771 = 2" — 1 is true, since
the LHS is an empty sum and thus equals 0, whereas the RHS is 2° — 1 = 0.
Induction step: Let n be an integer > 0. Assume that the theorem holds for #,
i.e., that we have
2042042t =2" -1,

We must prove that the theorem holds for n 41 as well, i.e., that we have

20 +21 4. +2(n—|—1)—1 — 2n+1 —1.




Math 221 Winter 2024, version March 14, 2024 page 18

However,
20+21_{_..'+2(1’1+1)—1:20_|_21+...+21’l
= <2°+21+---+2”—1> +2"

(. 4

:2\”,7 1
(by the induction hypothesis)

= (2" —1)42"=2.2" —1 =21 1,
This achieves the induction goal, and thus the induction proof is complete. [

This theorem can be generalized:

Theorem 1.6.2. Let x and y be any two numbers. Then, for any integer n > 0,
we have

(x _ y) <xn71 + xany 4 xn73y2 4 nyn73 4+ xyan 4+ ynfl) — X" — yn.

Here, the big sum in the parentheses is the sum of all products x'y/ where i
and j are nonnegative integers with i +j =n — 1.

Before we prove this, let us give some examples for what this theorem says:

¢ For n = 2, the theorem says that
(x—y) (x+y) =" =y~
¢ For n = 3, the theorem says that
(x—y) (P +xy+y?) ==y,
¢ For n = 4, the theorem says that
(x—y) <x3 + X%y + xy? + y3) =t -yt

* For x =2 and y = 1, the theorem says that

(2-1) (2”—1 s N L R & L RS Lt 1”—1> —on 1",

Since any power of 1 is 1, and since 2 — 1 = 1, this can be simplified to

btz pnd 4224241 =2"— 1,
This is just another way to write

2042t 4ol =,

So we are generalizing the preceding theorem.
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Proof. We induct on n.
Base case: For n = 0, the claim

(x _ ]/) (xnfl + xnfzy 4 xnfSyZ 4 xzynfS + xyn72 _‘_yn71> — X" — yn
is true, since the RHS is x° — y® = 1 — 1 = 0, whereas the LHS is also 0 since
the huge sum is empty.

Induction step: Let n > 0 be an integer. Assume that the theorem is true for n.
That is, assume that

(x _ y) <xn71 + xany + xn73y2 4 nyn73 + xyn72 + ynfl) — x" = yn.

We must prove that the theorem is also true for n + 1. That is, we must prove
that

(x—y) <xn + X"y TR Yy y") — gl
We begin by extracting the y" addend from the long sum. We thus obtain
(x—y) <x” T ER RS y”>

=(x—y) <x" + X"y 2 xRy xy”_l) +(x—y)y"

(. J/

:(xn71+x1172y+xn73y2+..._’_xyrIfZ_’_ynfl)x

— (x_y) <xn—1+xn—2y+xn—3y2+_”_|_xyn—2_|_yn—1)x+(x_y)yn

[\

Ly

(by the induction hypothesis)
_ n n n _ ,n+l n n n+1
=@ =y x+ (x—y)y" =" -yt ay -y
\— -

~—
cancel

n+1 n+1
_x+_y+’

which is exactly what we need to prove. So the induction step is complete, and
the theorem proved. O

Corollary 1.6.3. Let g be a number distinct from 1. Let n > 0 be an integer.

Then,
n
1
APt = qq—1'

Proof. Apply the above theorem to x = g and y = 1. This gives

(q _ 1) <qn71 =+ qnle + qn7312 4t q21n73 +q- 1n72 + 1n71> — qn —1".
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Simplifying this, we find
@@= (7" + P P g 1) =g -

Dividing this by g — 1, we find
q" -1

q"_l+q”_2+q”_3+---+q2+q+1: q_l_

But the LHS here is just the sum q° + g + g% + - - - + g"" !, written in reverse.
So the corollary is proved. O

1.7. How to not use induction

Induction proofs can be slippery:

Theorem 1.7.1 (Fake theorem). In any set of n > 1 horses, all the horses have
the same color.

Proof. We induct on n:

Base case: This is clearly true for n = 1, since a single horse has just one color.

Induction step: Let n > 1 be an integer. Assume that the theorem holds for 7,
i.e., that any n horses have the same color.

We must prove that the theorem holds for n + 1, i.e., that any n + 1 horses
have the same color.

Let Hy,Hy,...,H, 11 be n+ 1 horses.

By the induction hypothesis, the first n horses Hy, Hy, ..., H, have the same
color.

Also by the induction hypothesis, the last n horses Hy, H3, . .., H,+1 have the
same color.

Now, consider the first horse H; and the last horse H,, 1. These two horses
have the same color as the “middle horses” Hj, H3, ..., H, (by the previous two
paragraphs). Thus, all n 4+ 1 horses have the same color. This completes the
induction step, and thus the theorem is proved.

But the theorem is clearly false. One way to debug a proof of a false theorem
is by looking at an example where the theorem is false, and tracking down
the error on this example. The simplest example where the above theorem is
false is the case of 2 horses of different color. So there must be an error in the
induction step for n = 1 (since this step takes us from the true fact that any 1
horse has the same color to the false fact that any 2 horses have the same color).

Let us see how the induction step argues for n = 1. Here the n + 1 horses
Hy,Hy,...,H, 1 are just the two horses H; and H,. Our induction step argues
that the first horse H; and the last horse H,,; 1 = Hj have the same color as the
“middle horses” Hj, Hs, ..., H;. There are no middle horses! It makes no sense
to say that a horse has the same color as a non-existing horse. So the argument
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breaks down. The underlying logical misconception is not a problem with
induction; it is rather the fact that transitivity of equality holds for single objects
(a = b and c = b imply a = c) but not for empty lists (2 = by = by = --- = by,
and c = by = by = --- = b, imply a = c only when n > 0). O

Note how one litte mistake has brought down the entire proof! For an in-
duction proof to work, the induction step needs to work for all n; that is, we
need the implication P (1) = P (n+1) to hold for each n. If even one of
these implications breaks down, the whole chain gets disconnected, and all the
statements P (n) after this point are no longer guaranteed to hold. For exam-
ple, if we have a statement P (n) for each n > 0, and we can prove P (0) and
P(n) = P (n+1) for all n # 3, then we obtain P (0), P (1), P(2), P (3), but
not any of P (4), P(5), P(6), ...

1.8. More on the Fibonacci numbers

Recall the Fibonacci sequence:
The Fibonacci sequence is the sequence (fo, f1, f2,...) of nonnegative inte-
gers defined recursively by setting

fo=0, f1=1, and
fn=fn-1+ fno for each n > 2.

n(|0]1|2|3|4|5|6|7  8]9|10/11| 12 | 13
fulO]1]1]{2|3|5[8|13|21|34|55/|89]|144 |233

Let us prove some more of its properties.

1.8.1. The addition theorem

Theorem 1.8.1 (addition theorem for Fibonacci numbers). We have

fotm+1 = fufm + fut1fm+1 for all integers n,m > 0.

Proof. Can you induct on two variables at the same time? Yes, but it’s somewhat
of a mess (you have to “nest” an induction inside another). Fortunately, we
don’t need to do this here. It suffices to induct on one variable.

Let us induct on n. To this purpose, for every integer n > 0, we define the
statement P (1) to be

“for all integers m > 0, we have f,,+1 = fufm + fns1fm+1”

(Note that P (n) is not a single equality fy,1m+1 = fufm + fu+1fm+1 for a single
number m. Rather, it is a whole sequence of such equalities, one for each
m > 0.)
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Base case: We must prove P (0). This is saying that

“for all integers m > 0, we have fo,+1 = fofm + fo+1fmt1”

And this is true, since

fo fm=+ for1 fmr1 =O0fm + 1fmi1 = fmr1 = form+1.
~~ ~~
=0 =f=1
So the base case is complete.
Induction step: Let n > 0 be an integer. We assume that P (1) holds. We must

prove that P (n 4 1) holds.
We have assumed that P (n) holds. In other words,

“for all integers m > 0, we have f, 1,41 = fufm + fos1fm+1”

We must prove that P (n + 1) holds. In other words, we must prove that

“for all integers m > 0, we have f,111m+1 = fot1fm + for1+1fme1”

To prove this, let m > 0 be an integer. Then,

frns1fm + frtri41 fm+1
—

:fn+2

=fn+1+fn
(by the definition of
the Fibonacci sequence)

= fn+1fm + (fn+1 +fn)fm+1 = fn+1fm +fn+1fm+1 +fnfm+l
= fur1 (fm+fme1)  Ffafmer = fasifmr2 + fufmer = fafme1r + fus1fmgo-

\—

= fm+2
(by the definition of

the Fibonacci sequence)

But the induction hypothesis P (n) (applied to m + 1 instead of m) yields

frormi1+1 = fufme1 + far1 i1

(and we can indeed apply P (n) to m + 1 instead of m, because the m in P (n)
is not our current integer m but rather an arbitrary integer > 0). Comparing
these two equalities, we obtain

fos1fm + forr41fme1r = fopmi141 = far14m1-
So we have proved that f,11+m+1 = fu+1fm + fu+1+1fm+1 for every integer
m > 0. In other words, P (n + 1) holds. This completes the induction step. [J
1.8.2. Divisibility of Fibonacci numbers

Divisibility of integers is a basic notion in number theory, which we will elab-
orate upon in Chapter 3. Let us already give its definition:
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Definition 1.8.2. Let a and b be two integers. We say that a divides b (and
we write a | b) if there exists an integer c such that b = ac. Equivalently, we

say that b is divisible by a (and we write b : a) in this case.

For example, 2 |4 and 3 | 12 and 0 | 0 and 5 | 0. But we don’t have 2 | 3 or
0]5.

| Theorem 1.8.3. If a,b > 0 are two integers such that a | b, then f, | f;.

For example, 4 | 8 entails f4 | fs, which is saying 3 | 21.

Proof of the theorem. We want to use induction. Should we induct on a ? This
is fairly hopeless, since the induction step will get stuck (the condition a | b in
the induction hypothesis has nothing to do with the condition a +1 | b in the
induction goal). Inducting on b is also hopeless for a similar reason (a | b has
nothing to do with a | b+ 1).

Let us thus get more creative and introduce a new variable to induct on. The
trick is to observe that the divisibility a | b means that b = ac for some integer c
(and moreover, we can pick ¢ > 0 since a,b > 0). So we can restate our theorem
as follows:

Restated theorem: For any integers a,c > 0, we have f; | fac.

Now, let us prove this restated theorem by induction on c. In other words,
for each c > 0, we shall prove the statement

P (c) := (“for any integer a > 0, we have f, | fac”).
Base case: We must prove P (0). In other words, we must prove that
(“for any integer a > 0, we have f, | fo.0”) .

But this is true, since f;.0 = fo = 0 is divisible by everything. So the base case
is complete.
Induction step: Let ¢ > 0 be an integer. Assume that P (c) holds, i.e., that

“for any integer a > 0, we have f; | fa.” holds.
We must prove that P (¢ + 1) holds, i.e., that
“for any integer a > 0, we have f; | f;(c41)” holds.

Let a > 0 be any integer. Then, the induction hypothesis (i.e., our assumption
that P (c) holds) yields that f; | fsc. In other words, fs,c = f, - p for some integer
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p. Consider this p. Now, we must prove that f, | f,(11) holds. We have

fa(c+1) = facta = fac+(a—1)+1
( by the addition theorem, >

= fac ,fﬂ—l + fact1 f(”’*l)*i appliedton =acand m =a —1

=fap =fa
- fu : pfa—l +fac+1fa = Ja 'Spfa—l +fac+12;

an integer

which is clearly divisible by f,. So we have shown that f, | f;11), and thus
P(c+1) is proved. This completes the induction step, and thus the theorem
follows.

... almost. There is a little flaw in the above proof.

We have applied the addition theorem to n = ac and m = a — 1. But the
addition theorem requires n,m > 0. So we need to ensure that ac and a — 1 are
> 0. For ac, this is clear. For a — 1, however, this is false if 2 = 0 (but fortunately
only in this case). So the induction step doesn’t work for a = 0. So let us patch
this gap by just proving the a = 0 case by hand:

We need to prove that f; | fy(c4+1) for a = 0. In other words, we need to prove
that fo | fo(c41)- But this is true, since fy(..1) = fo.

So here is how the induction step we did above looks like once this gap is
patched:

Induction step (correct): Let ¢ > 0 be an integer. Assume that P (c¢) holds, i.e.,
that

“for any integer a > 0, we have f; | fa.” holds.

We must prove that P (¢ + 1) holds, i.e., that
“for any integer a > 0, we have f; | f;(41)” holds.

Let a > 0 be any integer. Then, the induction hypothesis (i.e., our assumption
that P (c) holds) yields that f; | fsc. In other words, fac = f, - p for some integer
p. Consider this p. Now, we must prove that f; | fy(c+1) holds.

We are in one of the following two cases:

Case 1: We have a = 0.

Case 2: We have a # 0.

Consider Case 1. In this case, a = 0. Thus, f; | fy(c41) holds since both a and
a(c+1)are0.

Now, consider Case 2. In this case, a # 0. Hence, a > 1 (since a is a




Math 221 Winter 2024, version March 14, 2024 page 25

nonnegative integer). Thus, a —1 > 0. Also, ac > 0. Now,

fu(c+1) = facta = fac+(a—1)+1

by the addition theorem,
appliedton =acand m =a—1

= fac fa1+ fact1 fla-1)+1
S~~~ ——
=fa'p =fa

= fa : Pfu—l "‘fac—i—lfa = fa : (Pfa—l +fuc+1)41

an integer

which is clearly divisible by f,. So we have shown that f; | fs(c41)-
Thus, in both cases, we have proved that f; | fyc41)- Hence, P(c+1) is
proved. This completes the induction step, and thus the theorem follows. [

1.8.3. Binet’s formula

If we want to compute fi oo 0o, We must first compute fo, f1, f2,- .., f999 999,
because we only have a recursive formula for the Fibonacci numbers. Can we
do better? Can we find an explicit formula for the Fibonacci numbers, i.e., a
formula for f, that does not rely on earlier values?

Yes, the so-called Binet’s formula:

Theorem 1.8.4 (Binet’s formula). Let

1+2\/5z1.618... and ¢:1_\/5z—0.618....

Then,
n__ .
L4 4 for each n > 0.

fn: \/g

Some remarks:

¢ The number ¢ is called the golden ratio; the number ¥ is known as its
conjugate. The two numbers ¢ and i are the roots of the quadratic equa-
tion x2 = x + 1.

* The numbers f, are integers, and yet Binet’s formula expresses them
through the irrational numbers ¢ and . Beware of computing f, nu-
merically using this formula.

* As n grows large, " approaches 0, whereas ¢" grows exponentially. So
fn also grows exponentially, and with growth rate ¢ ~ 1.618.. ..

* Where does this formula come from? One answer is “linear algebra”,
specifically “eigenvalues of a 2 x 2-matrix”. Alas, this is not the course
for this.
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Attempt at a proof of Binet’s formula. We induct on n:
Base case: For n = 0, we must prove that

9" —y°
fo——\/5 .

But this is true because both sides are 0.

Induction step: Let n > 0 be an integer.

Assume (as the induction hypothesis) that Binet’s formula holds for n. We
must prove that it holds for n + 1 as well.

So we must prove that

f . an—H o lpn—l—l.
n—+ \/g

If n = 0, then this is easy. For n > 1, the recurrent equation for the Fibonacci
numbers yields

fn+1 = fn ‘f’fnfl
_ 9=y
V5

We are stuck: The induction hypothesis only tells us about f,, not about f,_;.
Metaphorically, the n-th domino does not kick over the (n + 1)-st one, so the
cascade doesn’t happen.

Thus, the principle of induction (in the form we are applying it) is not strong
enough to complete this proof.

Next time, we will see a stronger version of it (“strong induction”). O

+ fu_1 (by the induction hypothesis) .

1.9. Strong induction
1.9.1. Reminder on regular induction

Recall the (original) principle of mathematical induction:

Theorem 1.9.1 (Principle of Induction). Let b be an integer. Let P (n) be a
statement defined for each n > b. Assume that:

1. “Base case”: The statement P (b) holds.

2. “Induction step”: For each integer n > b, the implication P (n) =
P (n+1) holds.

Then, the statement P () holds for every integer n > b.
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We can restate this theorem a bit by renaming the 7 in the induction step as
n—1:

Theorem 1.9.2 (Principle of Induction, restated). Let b be an integer. Let P (n)
be a statement defined for each n > b. Assume that:

1. “Base case”: The statement P (b) holds.

2. “Induction step”: For each integer n > b, the implication P (n — 1) =
P (n) holds.

Then, the statement P () holds for every integer n > b.

The idea behind the principle (in either form) is that the base case gives us
P (b) whereas the induction step gives us the implications
P(b+1)=P(b+2),
P(b+2)= P (b+3),

We can climb up this latter to reach any P (n). In the domino metaphor, the
base case tips over the first domino, while the induction step ensures that each
domino falls from the impact of the previous domino’s falling.

1.9.2. Strong induction

Now, assume that the b + 2-domino (i.e., P (b +2)) falls not from the impact
of P(b+1), but rather from the combined force of the dominos P (b) and
P(b+1). This would still suffice. In other words, instead of the implication
P(b+1) = P (b+2), we could just as well prove the implication

(P(b) ANDP(b+1)) = P (b+2).
Likewise, we could replace the implication P (b +2) = P (b + 3) by the im-
plication
(P(b) ANDP(b+1) AND P (b+2)) = P (b+3).

More generally, for each n > b, instead of proving the implication P (n — 1) =
P (n), we can get by proving only the weaker implication

(P(b) ANDP(b+1) AND P (b+2) AND --- AND P (n—1)) = P (n)

(so that the domino P (n) is tipped over by the combined force of all previous
dominos, not just the one directly on its left).

This induction principle is called strong induction. Explicitly, it says the
following:
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Theorem 1.9.3 (Principle of Strong Induction). Let b be an integer. Let P (n)
be a statement defined for each n > b. Assume that:

1. “Base case”: The statement P (b) holds.
2. “Induction step”: For each integer n > b, the implication
(P(b) ANDP(b+1) ANDP(b+2) AND --- ANDP(n—1)) = P (n)

holds.

Then, the statement P () holds for every integer n > b.

Proofs using this principle are called proofs by strong induction (or strong
induction proofs). They differ from regular induction proofs in that their in-
duction step has a stronger induction hypothesis: Instead of only assuming
P (n—1), it now assumes P (b) AND P (b+1) AND P (b+2) AND --- AND
P (n —1). Thus, you can use not only P (n — 1) but also all the previous P’s. In
a sense, strong induction is “induction with a long memory”.

Befoer we see an example of a strong induction proof, let me explain how
strong induction works. Let’s say you have proved a statement P (1) for all
n > 0 by strong induction. Thus,

* you have proved P (0) (this is the base case);

* you have proved the implication P (0) == P (1) (this is the induction step
for n = 1), and thus you conclude that P (1) holds (since P (0) holds);

e you have proved the implication (P (0) AND P (1)) = P (2) (this is the
induction step for n = 2), and thus you conclude that P (2) holds (since
P (0) and P (1) hold);

* you have proved the implication (P (0) AND P (1) AND P (2)) = P (3)
(this is the induction step for n = 3), and thus you conclude that P (3)
holds (since P (0) and P (1) and P (2) hold);

e and so on.

1.9.3. Example: Proof of Binet's formula

Let us prove Binet’s formula using strong induction.
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Proof of Binet's formula. We strongly induct on n (i.e., we use strong induction
on n).

Base case: As above, we check that the formula holds for n = 0.

Induction step: Let n > 0 be an integer.

We assume that Binet’s formula holds for 0, for 1, for 2, and so on, all the

k_ .k
way up to n — 1. (In other words, we assume that f;, = i holds for all

V5

ke{0,1,...,n—1}.)

We have to prove that Binet’s formula also holds for n. In other words, we

§0n _ lpi’l
have to prove that f, = ———.
P f n \/S

We assumed that Binet’s formula holds for n — 1. In other words, f,_1 =
q)nfl o ‘bnfl

We assumed that Binet’s formula holds for n — 2. In other words, f,_» =
(Pn72 _ ¢n72

V5
The recursive definition of the Fibonacci numbers yields

qp”_l o lpn—l q)n—Z o lpn—Z
=f, 14 f, o= +
fn fn 1 fn 2 \/5 \/5

_ 1 n—1 n—2 1 n—1 n—2

— =2 1 "

(i (Pn_(gP qj; ) (similfarly)
:q)"
(since p+1=¢?)

_ 1 n_ 1lpn_q)n_lpn
vl Vs T
In other words, Binet’s formula holds for n. Right?
There is a problem: The formula f, = f,_1 + f,—2 holds only for n > 2 (at
least the way we defined the Fibonacci numbers). So the above argument does
not work for n = 1. Moreover, our use of the induction hypothesis for n — 2

g011—2 . wn—Z
(giving us f,_» = ——=——) also does not work for n = 1, because n — 2 is

not one of the numbers 0,1,...,n — 1 in this case. Actually, f,_» doesn’t even
makes for n = 1, unless we define f_;.

So we need to treat the case n = 1 separately. (All the remaining cases n =
2,3,4,... work as claimed, since n — 1 and n — 2 belong to the list 0,1,...,n—1
in those cases.)

Let’s do it. We just need to check that Binet’s formula holds for n = 1. In

1_ 1
other words, we need to check that f; = u This is direct verification:

V5
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fl =1and

1+v5 1-5
o' -9 _o—¢_ " 2 _V5_
V5 V5 V5 V5
So Binet’s formula holds for n = 1. Now the induction step is really complete,
and Binet’s formula is proved. O

Let us summarize: We have used strong induction in our above proof, be-
cause the “extra memory” in the induction step allowed us to express not just

fn—1 but also f,_».

Note that we have had to handle the two cases n = 0 and n = 1 by hand. The
n = 0 case was our base case. The n = 1 case was part of the induction step,
but still had to be singled out because we could not go two steps back from it.
So it is a “second base case”, although de-jure part of the induction step.
1.9.4. Baseless strong induction

You can actually reformulate the Principle of Strong Induction in a way that
does not require a de-jure base case at all:

Theorem 1.9.4 (Principle of Strong Induction, restated). Let b be an integer.
Let P (n) be a statement defined for each n > b. Assume that:

1. “Induction step”: For each integer n > b, the implication
(P(b) ANDP(b+1) ANDP(b+2) AND --- ANDP(n—1)) = P(n)

holds.

Then, the statement P (n) holds for every integer n > b.

How does this restated principle work without a base case? Easy: We have
just repackaged the base case into the induction step. Indeed, the induction
step now allows for n = b (since it says “n > b” instead of “n > b”). Forn = b,
the implication

(P(b) ANDP(b+1) ANDP(b+2) AND --- ANDP(n—1)) = P (n)
becomes

(P(b) ANDP (b+1) AND P(b+2) AND --- AND P (b—1)) = P (b),
a conjunction?)rf 0 statements,
i.e., a statement that is automatically true

so to prove this implication means to prove P (b) unconditionally, and that’s
exactly what the base case would do. So we have not magically removed the
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need for proving P (b); we just have folded it into the induction step. So the
baseless form of strong induction is equivalent to the usual form, just stated a
little bit more cleanly.

1.9.5. Example: Prime factorization exist

Here is another example of a strong induction proof, coming from number
theory. We need two definitions:

I Definition 1.9.5. Let b be an integer. A divisor of b means an integer a that
divides b.

For example, the divisors of 2 are 1,2, —1, —2.

Definition 1.9.6. A prime (or prime number) means an integer p > 1 whose
only positive divisors are 1 and p.

So the primes (in increasing order) are
2, 3,5 7, 11, 13, 17, 19, 23, 29, ....
There are infinitely many primes, as you will show later.
| Theorem 1.9.7. Every positive integer is a product of finitely many primes.

Here and in the following, I understand an empty product (i.e., a product of
no numbers whatsoever) to be 1. Thus, the theorem holds for 1 (since 1 is a
product of no primes).

Here are some more interesting examples:

® 2023 =7-17-17 is a product of three primes.
® 2024 =2-2-2-11-23 is a product of five primes.
* 2 =2is a product of one prime (2 itself).

How do we prove the theorem in general?

Proof of the theorem. We must prove the statement
P (n) = (“n is a product of finitely many primes”)

for each integer n > 1.

We shall prove this by strong induction on n. (We use the original variant,
with a base case.)

Base case: P (1) is true, since 1 is a product of finitely many primes (namely,
0 primes).
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Induction step: Let n > 1. We must prove the implication
(P(1) AND P (2) AND P (3) AND --- AND P (n—1)) = P (n).

So we assume that P (1) AND P(2) AND P(3) AND --- AND P(n—1)
holds. We must prove that P (n) holds.

In other words, we must prove that n is a product of finitely many primes.

We are in one of the following two cases:

Case 1: The only positive divisors of n are 1 and n.

Case 2: There is a positive divisor of n that is neither 1 nor n.

Consider Case 1 first. In this case, n is prime. Thus, 7 is a product of finitely
many primes (just one). Thus, P (n) holds in Case 1.

Now, consider Case 2. In this case, there is a positive divisor 4 of n that is
neither 1 nor n. Consider this d.

Since d is a positive divisor of n, we have 1 < d < n (strictly speaking,
this needs proof; see later). Since d is neither 1 nor n, we can improve this to
1 < d < n. In particular, this yields that d is one of the numbers 1,2,...,n — 1.
Hence, P (d) holds (since we assumed that P (1) AND P (2) AND P (3) AND
-+ AND P (n — 1) holds). In other words, d is a product of primes. That is, we
can write d as

d=pip2--- pk for some primes py, p2,. .., Pk

Consider these p1, p2, ..., Pk
n . n. .y
Since d is a divisor of n, the ratio ¥l is an integer. This integer 718 positive
(since n and d are positive) and is < n (since 4 > 1). Hence, it is one of the

numbers 1,2,...,n — 1. Therefore, P (g) holds (since we assumed that P (1)

AND P (2) AND P (3) AND --- AND P (n — 1) holds). In other words, g is a

. ., n
product of primes. That is, we can write 7 as

n .
7= q1q2 - - q¢ for some primes q1,q2,...,q¢-

Consider these 1,42, ..., 4.
Now,

n
n:dE :plpzpkqlqzqg
This shows that 7 is a product of primes. In other words, P (1) holds.
Thus we have proved P (1) in both Case 1 and Case 2. This completes the
induction step, and the theorem is proved. O

1.9.6. Example: Paying with 3-cent and 5-cent coins

Another example for strong induction:
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Exercise 1.9.1. Assume that you have 3-cent coins and 5-cent coins (each in
infinite supply). What denominations can you pay with these coins?

Let’s make a table:

0 cents yes

1 cent no

2 cents no

3 cents yes: 3
4 cents no

5 cents yes: 5

6 cents yes: 3+ 3
7 cents no

8 cents yes: 3+5

9 cents yes: 3+3+3
10 cents yes: 5+5

11 cents yes:3+3+5
12 cents yes: 3+3+3+3
13 cents  yes:3+5+5

Experimentally, we seem to observe that any denomination > 8 cents can be
paid. Why?

It suffices to show that 8 cents, 9 cents and 10 cents can be paid, because then
(by adding a 3-cent coin) we can also pay 11 cents, 12 cents and 13 cents, and
therefore (by adding another 3-cent coin) we can also pay 14 cents, 15 cents and
16 cents, and so on.

Let us formalize this argument as an induction proof.

We define IN to be the set of all nonnegative integers:

N = {0,1,2,...}.

Proposition 1.9.8. For any integer n > 8, we can pay n cents with 3-cent and
5-cent coins. In other words, any integer n > 8 can be written as n = 3a + 5b
with a,b € IN.

Proof. We proceed by strong induction on n:

Base case: For n = 8, the claim is true, since 8 =3-1+5-1.

Induction step: Fix an integer n > 8. Assume that the proposition is already
proved for all the integers 8,9, ...,n — 1. We must prove that it also holds for n.
In other words, we must prove that we can pay n cents with 3-cent and 5-cent
coins.

We are in one of the following three cases (since n > 8):

Case 1: We have n = 9.

Case 2: We have n = 10.
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Case 3: We have n > 11.

In Case 1, we are done, sincen =9 =3-3+5-0.

In Case 2, we are done, sincen =10=3-0+5-2.

Let us now consider Case 3. In this case, we have n > 11. Hence, n — 3 > 8.
This shows that n — 3 is one of the numbers 8,9,...,n — 1. Thus, we can apply
the induction hypothesis to n — 3. This shows that n — 3 cents can be paid with
3-cent and 5-cent coins. In other words,

n—3=23c+5d for some ¢,d € IN.

Using these c, d, we thus have

n =23+ 3c+5d
=3(c+1)+5d.
This shows that n cents can be paid with 3-cent and 5-cent coins. Thus, the
proposition is true for n, and the induction step is complete. ]

Note that the above proof had one “de-jure base case” (the case n = 8) and
two “de-facto base cases” (the cases n = 9 and n = 10, which were formally
part of the induction step but had to be treated separately because n — 3 would
be too small). If we had used baseless strong induction, all three of them would
become “de-facto base cases”.

2. Sums and products

2.1. Finite sums
Previously, we have seen sums such as
xnfl 4+ xany 4+ xn73y2 4t x2yn73 4+ xyan 4+ ynfl.

Such sums can be tricky to decipher: It requires spotting the pattern and ex-
tending it. Now let me introduce a notation for such sums that makes them
both easier to decipher and unambiguous:

Definition 2.1.1. Let u and v be two integers. Let a,,4,+1,...,4, be some
numbers. Then,
(Y
Y
k=u

is defined to be the sum

[1u+ﬂu+1—|—"'—|—ﬂv.

It is called the sum of the numbers a; where k ranges from u to v. When
v < u, this sum is called empty and is defined to be 0.
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Examples:

11
Y k=6+7+8+9+10+11 =51;

k=6
i1_1+1+1+1+1+1_
Ek 67 8 9 10 11
11

Y KF=6°+77 +8% 497 + 10" + 111,
:

k

Z k=6;
k=6
4
Y k=0 (an empty sum);
k=6
5
Y k=0 (an empty sum);

6
(where g is any number and n € IN);

k:
ok 0, 1 1

Y =0 +q ++q"

k=0

n—1

Z xkyn—l—k — xOyn—l + xlyn—Z + xzyn—?) 44 xn—3y2 + xn—Zyl + xn—lyO
k=0

— xnfl + xany + xn73y2 4.4 x2yn73 + xyan + ynfl

for any numbers x,y and any n € IN) .
y Y y

Thus our theorem from a while ago can be rewritten in the following cleaner

and simpler form:
Theorem 2.1.2. Let x and y be any two numbers. Then, for any integer n > 0,

we have .
n—
(x . ]/) (Z xkyn—l—k> — " yn.
k=0

The variable k is not set in stone. You can just as well use any other letter or

[4

symbol that is not otherwise occupied. For example, you can rewrite ) a; as
k=u

(4 0 (4 v
ay oras ), ag, butplease do not write ) ay.
— Uu=u

Y. ajoras )
h=u

iI=u X=U
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A couple more examples: For any n € IN, we have

n
Zk:1+2+3+---+n:@ (by Little Gauss) ;
k=1
ik2:12+22+32+,”+n2:”(”+1)(2”+1).
6 4
k=
n
Y 1=1+ +l=n-1=mn;
k=1 n times
n
Y 2k-1)=(2-1-1)+@2-2-1)+(2-3-1)+---+(2-n-1)

=1+3+5+ -+ (2n—1)
= (sum of the first n odd positive integers) .

Let us compute this last sum. We will use the following “laws of summation”:
* We have

0
Y (g —by) = Zak_zbk
k=u

for any integers u,v and any numbers a, by. Indeed, without using finite
sum notation, this can be rewritten as

(ay —by) + (ays1 — byg1) +- -+ (ap — by)
:(au+au+l+"'+av)_(bu+bu+1+"'+bv)-

¢ We have ) )
2 Aak =A 2 aj
k=u k=u
for any integers u,v and any numbers A, ai. Indeed, this is saying that

Aay+Aay i+ -+ Ay =Aay+ayq+ - +ap).

Rules like these are dime a dozen, and you should be able to come up with
them as needed. (See the references in the notes for a list.)
Now we compute our sum:

iZk—l ZZk—Zl_Z ik 21

~—— \\,./

\,_/
2%k n(n+1) 7"
k=1 - 2
1
zz.w_n:n(n+1)—n:n2_

2
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As another illustration of our “finite sum calculus”, we can rewrite Gauss’s
proof of the Little Gauss formula

nn+1)

n

k=1

using the finite sum notation. We will need three new rules this time:

e We have

v
Z (ap +by) = lek—i—Zbk

k=u
for any integers u, v and any numbers ay, by.

e We have
v v
Z g = Z Autv—k
k=u k=u

for any integers u,v and any numbers a;. Rewritten without finite sum
notation, this is saying that

Ay +ayp1+ -+ =y + a1+ +ay.

The two sums in this equation have the same addends in opposite order.
So our rule is just saying that any sum can be reversed (i.e., its addends
can be put in opposite order) without changing its value. This rule is
called “substituting u + v — k for k in the sum” or just “turning the sum
upside-down”.

¢ For any integers u < v and any number A, we have
(4
Z (v—u+1)A.

Now, Gauss’s proof takes the following shape:

3
I
pg:
_|_
7

>\~
I
—_
=
I
—_
-
I
—_

Il
1=
=
_|_
1=
=
_|_
—_
I
o>

here, we substituted n +1 — k
for k in the second sum

i
X
)
(X

I
1=
(—~
=
+
—~
N
+
—_
|
=
~—
~—
I
1=
—~
S
+
—_
~—
I
=
—~
S
+
—_
~—

bl
Il
—_
P
Il
—_
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We have now found closed-form expressions for several sums. Not every

sum has a closed-form expression. For example, there is no way to simplify
n

Zloerk
=1k =

Some more terminology:

0
The notation Y a; is called sigma notation or finite sum notation. The

symbol Y itself is called the summation sign. The numbers u and v are called
the lower limit and the upper limit of the summation. The variable k is called
the summation index or the running index, and is said to range (or run) from
u to v. The numbers a; are called the addends of the finite sum.

[

(4
There are many similarities between finite sums ) a; and integrals [ f (x) dx.

k=u u
u

u
There are some differences, though: Y. a; = a, (often nonzero) but [ f (x)dx =
k=u u
u—1

0. Also, Z ar = 0 but f f (x) dx # 0 usually.
k=u

Two more rules for finite sums:

¢ The “splitting-off rule”: For any integers u < v and any numbers a,, 4,11, . ..

we have
Z ap = a, + Z a (here, we “split off” the first addend)
k=u+1
= Z ay + ay (here, we “split off” the last addend) .

This is very useful for induction proofs.

0
* More generally, a finite sum ) a; can be split at any point: We have
k=u

v
Z ax = Z ar + Z ay
k=u =u k=w+1

for any integers u < w < v and any numbers a;. Without summation
signs, this is just saying that

Ay + Ayl + -+ ap = (ay +ayp1 + -+ dw) + (A1 T dwi2 + 0+ ap).

Finite sum notation, in the form above, is helpful when the summation index
is running over an integer interval (i.e., all integers from u to v for given u, v).
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More general versions of finite sums can be used to sum over other sets. For

example,
Y. k=24+44+6+---+m,

ke{1,2,...n} is even

where m is the largest even element of {1,2,...,n}. (This m is actually 2 LgJ )

See the notes and the references therein for more details.
See also the notes for a bunch of exercises.

2.2. Finite products

Finite products are just like finite sums, except that they rely on multiplication
instead of addition:

Definition 2.2.1. Let u and v be two integers. Let a,,4,41,...,4, be some
numbers. Then,
[
[Tax
k=u

is defined to be the product
ﬂuﬂu+1 M le.

It is called the product of the numbers a;, where k ranges from u to v. When
v < u, it is called empty and defined to be 1.

For example:

11
[Jk=6-7-8-9-10-11 = 332640;

k=6

fplotiiii a1
ek 67 89 10 11 332640

5

[Trk=1 (an empty product) ;

k=6

n

a=ga---q=a" for any number a2 and any n € IN;
—_—

k=1 n times

L ak = alg?. .. gt = g2t — an(n+1)/2
k=1

for any number a and any n € IN.

0
In a finite product [] a, the k is called the product index or the running
k=u
index, and the symbol [] is called the product sign. The numbers a; are called
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the factors of the product. Other terminology is analogous to the corresponding
terminology for sums. Almost all rules for finite sums have analogues for finite
products. For example:

* The “splitting-off rule”: For any integers u < v and any numbers a,, 4,41, ..., ay,

we have
0 0
H Ay = Ay - H ay (here, we “split off” the first factor)
k=u k=u+1
v—1
=1 ao (here, we “split off” the last factor) .
k=u

This is very useful for induction proofs.

2.3. Factorials

Recall that N = {0,1,2,...}.

Definition 2.3.1. For any n € IN, we define the positive integer n! (called the
factorial of 1, and often pronounced “n factorial”) by

nl =1-2----. .

This is the product of the first n positive integers.
For example,

0! = (empty product) = 1;
N=1=1;

21=1-2=2;
3'=1-2-3=6;
41=1-2-3-4=24;
5!'=1-2-3-4-5=120;
6!=1-2-3-4-5-6=720;

7! = 5 040;

8! = 40 320;

9! = 362 880;
10! = 3 628 800.

Note the following;:
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Proposition 2.3.2 (recursion of the factorials). For any positive integer n, we
have
nl'=mn-1 n

Proof. We have

See the end of §2.3 for several exercises on products and factorials.

2.4. Binomial coefficients: Definition

We are now ready to introduce the most important family of numbers in math-
ematics.

Definition 2.4.1. Let n and k be any numbers. Then, we define a number

(Z) as follows:

e If k € N, then

(Z) ::n(n—l)(n—i)!---(n—k-i—l)

(where the numerator is the product of k “consecutive numbers”, the
largest of which is n).
n
= 0.
(+)

The number (Z) is called “n choose k”, and is known as the binomial

coefficient of n and k.

e If k ¢ IN, then
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Example 2.4.2. For any number 1, we have

(n> _n(n-1)(n-2) n(n—1)(n—2)

3! - 6 ’

0! 1

=0 (since 2.5 ¢ IN) ;
=0 (since —1 ¢ IN).

)
)
n) (empty product) _ 1 _
)
)

For any k € IN, we have

(0) _0(0-1)(0—2)---(0—k+1) _ {1, if k = 0;

k K! 0, ifk>0;
-1 (=1 (=2)(=3)---(=k) (=D @-2----. k)
(k>: k! - 1.2..... k :(_1)k~

N

=

) for nonnegative integers n and k:

k=0|k=1|k=2|k=3|k=4|k=5 k=6
n=20 1 0 0 0 0 0 0
n=1 1 1 0 0 0 0 0
n=2 1 2 1 0 0 0 0
n= 1 3 3 1 0 0 0
n=4 1 4 6 4 1 0 0
n=>5 1 5 10 10 5 1 0
n==6 1 6 15 20 15 6 1

The first thing that might catch your attention here is the wall of zeroes in the
upper-right half of the table. This has a simple reason:

Proposition 2.4.3. Let n € IN and k > n. Then, <Z) =0.
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Proof. We have

(Z) n(n—l)(n—i)!---(n—knLl):%,

since the product n (n —1) (n —2) - - - (n — k+ 1) contains the factor n —n = 0.

(i)

For example,

G>:2ryom<uzo

4 4!
O
Warning: If n ¢ IN, then k > n does not imply (Z) = 0. For example,
1.5} 15-05-(-0.5)
(3)_ 3! 70

The proposition we just proved suggests that we stop tabulating the coeffi-

n )
cients ( k) with k > n, and focus on the ones with k < n. It makes more sense

to arrange these remaining coefficients in a triangle:

k=0
Ve
k=1
n=0 — 1 v
k=2
n=1 — 1 1 N
k=3
n=2 — 1 2 1 N
k=4
k=
n=4 — 1 4 6 4 1 N
n=5 — 1 5 10 10 5 1
n=6 — 1 6 15 20 15 6 1
n=7 — 1 7 21 35 35 21 7
n=8 — |1 8 28 56 70 56 28 8

This table is known as Pascal’s triangle, and has many wonderful properties:

I
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Pascal’s identity, aka the recurrence of the BCs (= binomial coefficients):
For any numbers n and k, we have

b=+

Symmetry of binomial coefficients: For any n € IN and any k, we have
n\y [ n
k) \n—k)

We have (Z) =1 for each n € IN.

Integrality of binomial coefficients: For any n € Z and any k, we have

(e

Let us prove these facts now, starting with the most important one.

2.5. Binomial coefficients: Properties
2.5.1. Pascal’s identity

Theorem 2.5.1 (Pascal’s identity). For any numbers n and k, we have
n\ (n-—1 n n—1
k) \k—1 k )

Proof. Let n and k be two numbers. We are in one of the following three cases:
Case 1: The number k is a positive integer.
Case 2: We have k = 0.
Case 3: None of the above. (So k ¢ IN.)
Let us first consider Case 1. Here, k is a positive integer. Hence, both k and
k — 1 belong to IN. Thus, the definition of BCs yields the three formulas

(n) _nn-1)(n—-2)---(n—k+1)

k Kl /
(n—l) _m-1)(n=2)(n-3)---(n—-1)—(k—=1)+1)
k—1 (k—1)!
_(m-1)(n-2)(n-3)---(n—k+1)
(k—1)! ’
(n—l) _ =1 m-2)(n—-3)---((n—1)—k+1)
k k!

m—1)(n—2)(n—3)---(n—k)
k! '
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Settinga := (n—1)(n—2) (n—3)---(n—k+1), these three formulas can be
rewritten as

n\ _na

k) Kk

n—-1\ a
k—1) (k=1
n—1\ a(n—k)
k) kK
So the formula we are proving — that is, the formula

0=+

na a a(n—k)

— simplifies to

Kt w—1ﬂ+ k!
Multiplying this by k!, we transform it into

%‘f‘d(ﬂ-k).

na—a-

Since W = k (by the factorial recurrence k! = (k —1)! - k), we can simplify

this further to
na=a-k+a(n—k),

which is obvious. So our claim is proved in Case 1.
Now, consider Case 2. In this case, k = 0. Hence, our claim

0=+

=1

rewrites as

=0
(since 0—1¢IN)

which is obvious.
Finally, consider Case 3. In this case, k is neither a positive integer nor 0.
Hence, k ¢ IN. Thus, k — 1 ¢ IN. Therefore, our claim

is true.
So we are done in all three cases, and the theorem is proved. O
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n
k
on n (at least when n € IN). Note that it is true not just for n € IN, but for all
numbers n. For example,

(5)-()+(5) e
(5)-(0)+(%)

2.5.2. The factorial formula

Pascal’s identity is highly useful for proving properties of by induction

n .
Binomial coefficients < k) make sense for arbitrary numbers n and k. But there

is a particularly simple expression in the case whenn € Nand k € {0,1,...,n}:

Theorem 2.5.2 (factorial formula). Let n € N and k € {0,1,...,n}. Then,

() =mowr

Proof. The definition of BCs yields

(Z) _n(n—1)(n—i)!---(n—k+1)_

Since

nn—1)n—-2)---(n—k+1)
=mn—k+1)-n—k+2)----- n

this rewrites as

k k! k! (n—k)!
O
|
Warning: The factorial formula Z) = m does not hold if n is

negative or non-integer. So it is less general than the definition of BCs.




Math 221 Winter 2024, version March 14, 2024 page 47

2.5.3. The symmetry of BCs

Theorem 2.5.3 (symmetry of BCs). Let n € IN, and let k be any number.

()-(,")

Proof. We are in one of the following four cases:

Case 1: We have k € {0,1,...,n}.

Case 2: We have k < 0.

Case 3: We have k > n.

Case 4: The number k is not an integer.

Let us first consider Case 1. In this csae, k € {0,1,...,n}, and thus n — k €
{0,1,....,n}. Therefore, we can apply the factorial formula to obtain

(Z) - k!~(Z!— 6! ': (n —Tllcl)!~k!; |
(ﬁk) - (n—k)!-(:— m—kN!  (n —12)!«!'

. . n n
which clearly yields < k) = <n B k)'

Now, consider Case 2, in which k < 0. Hence, k ¢ IN and therefore (Z) =0

by definition. But = 0 by the first proposition we proved about BCs

n
n—k
(since n — k > n (since k < 0)). So again (Z) = (n i k)'

Case 3 is similar to Case 2, but k and n — k switch roles.

Case 4 is even easier, since in that case both (Z) and (n i k) are 0 by

definition.
So we are done in all four cases. O

Corollary 2.5.4. For any n € IN, we have (Z) =1
Proof. Applying the symmetry theorem to k = 1, we get

(=" = (5) =

Warning: Neither the theorem nor the corollary hold when # is negative or

) is 0, not 1.

]

non-integer. For instance, < 1
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2.5.4. Pascal’s triangle consists of integers

Theorem 2.5.5. For any n € IN and any number k, we have (Z) € N.

Proof. We induct on n.
Base case: The theorem holds for n = 0, since any number k satisfies

0 1, ifk=0;
= € N.
(k) {O, ifk#0
Induction step: We make this step from n — 1 to n (rather than, as we usually

did, from n to n 4 1). So we fix a positive integer 1, and we assume (as the IH)
that the theorem holds for n — 1 instead of n. In other words, we assume that

<n ; 1) €N for all numbers k.

Our goal is to prove that the theorem holds for n. In other words, we must
prove that

(Z) €N for all numbers k.

Let’s do this: For any number k, Pascal’s identity yields

n n—1 n—1
()=o) + (M) =
N— N —
€N €N
(by the IH)  (by the IH)
So the induction step is complete. The theorem is proved. O

There is a different proof of the theorem, one which really explains what

(Z) is. This proof proceeds through the following result:

Theorem 2.5.6 (combinatorial interpretation of BCs). Let n € IN, and let k be
any number. Let A be any n-element set (e.g., the set {1,2,...,n}). Then,

(Z) is the number of k-element subsets of A.

Example 2.5.7. Let n =4 and k =2 and A = {1,2,3,4}. Then, the 2-element
subsets of A are

(1,2}, {3,4}, {1,3}, {24}, {1,4}, {2,3}.
~——

={21}
={12,1}
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‘ So there are 6 of them. This matches the claim of the theorem, because

R

We will prove the theorem later in this course (Chapter 4), as we learn more
about counting. Note that these k-element subsets are also known as combina-
tions without replacement.

2.5.5. Upper negation

Theorem 2.5.8 (Upper negation formula). For any number n and any integer

k, we have
(—kn> _ (_1)k (n+llz—1>.

Proof. If k ¢ IN, then this is just saying 0 = (—1)* - 0, which is obvious.
Remains to handle the case k € IN. In this case, the definition of BCs yields

(—kn) _(-m)(-n-1) (—nk—! 2) - (—n—k+1)

B nn+1)(n+2)---(n+k—1)
= (=" k!

and

(n+k—1> (m+k—1)(n+k—-2)(n+k—3)---n
k k!
nn+1)(n+2)---(n+k—1)
k!

Comparing these, we find

qed. O
Corollary 2.5.9. For any n € Z and any number k, we have (Z) €.

Proof. When n > 0, this has already been proved.
When k ¢ IN, this is obvious (since Z = 0).

In the remaining case, use upper negation (details left to the reader). O

2.5.6. Finding Fibonacci numbers in Pascal’s triangle
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Theorem 2.5.10. For any n € IN, the Fibonacci number f,,; is
Fort = n—20 n n—1 i n—2 n n n—n
o 1 2 n
B i (n — k)
k=0 k

For example, for n = 7, this is saying that

= (00 () (057) =+ ()

=1+6+10+4+0+0+0 =21

We will prove this theorem later on, in Chapter 6 (on enumerative combina-
torics).

2.6. The binomial formula

The BCs are called BCs because they are the coefficients in the binomial for-
mula:

Theorem 2.6.1 (binomial formula, aka the binomial theorem). Let a and b be
any two numbers, and let n € IN. Then,

wroy = £ (D)

k=0

Y 0pn Y 101 N 2n—2, . n\ 110
(O)ab —|—(1>ab —|—<2)ab + +<n)ab

= Z (Z) a"kpk,

k=0

Example 2.6.2. For n = 4, this says that

(a+b)* = (3) a’b* + (‘11) ath® + @) a*b* + (g) a’b! + CD a*b°

= b* + 4ab® + 6ab® + 4a%b + a*
= a* + 4a°b + 6a%b? + 4ab® + b*.

Likewise, for n = 2, this says that

(a+b)* = a* + 2ab + b?.
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Proof of the binomial formula. It suffices to prove the identity
(a+b)" = i (n) a* bk
=0 \k

(since the other two follow from it easily). We will prove this identity by induc-
tion on n:
Base case: This identity holds for n = 0, since

(a+b)° = ) (2) a0k

-~

_ 0 20500
0
=111=1

Induction step: Let n € IN. We assume (as the IH) that the identity holds for
n. In other words, we assume that

(a+b)" = kio (Z) a* bk,

We must prove that this identity also holds for n + 1. In other words, we must
prove that

(a+b)n+1 ;”il n+1 ik
i—o\ k

We have

(a+b)"" = (a+b)" (a+b)
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On the other hand,

nil (” + 1) Jpnt1-k
k

k=0 X ,
B n n
k1) \k
(by Pascal’s identity)

B () ()

k=0 —1

_ H (( n )akbn+1—k 4 (”) akbn+1—k)
= \\k—1 k

rf( n ) kpn+1—k nil N\ kpnti-k
= a*bt e + ( )a b
o\t 0\ )
n n+1 n n n n
_ 0pn+1-0 kpn+1-k — n+1pn+1—(n+1) kpn+1-k
(0—1) Ty (k—l)“ (n—l—l) ’ = (k)”
N — N———
~ =0
:nil n 1k (since n+1>n) ;
=1 \k—1 _5 Skpn+1—k
k=0 \ k

”il ( h ) kpn+1-k i M\ kynt+1-k

= a’b"t et ( )a A

o \k—1 o \k

Comparing these two equalities, we see that the second sums on their RHSs are

the same: ; ;
y <”) Akpr—k+l — y (”) gpnt1-k
k=0 k k=0 k

(since n —k+1 =n+1—k). If we can show that the first sums are also the
same, then we will conclude that the whole RHSs are equal, and so the LHSs
must also be equal, and this will finish our induction step.

So our goal is now to prove that the first sums are the same, i.e., that

i n ak+1bnk:’§L o\ kpn+1-k
k k—1 '

k=0 k=1

But both of these sums contain the exact same addends if you write them

out:
n Ayt 4 n 21 4 n By 4.+ Y 10
0 1 2 n

So they are equal.
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This argument can be made more rigorously using a summation rule called
substitution. In its simplest form, this rule says that

v v+0
Z Cx = Z Ck—o
k=u k=u-+6

for any integers u,v,0 and any numbers ¢y, cy1,...,Cp. This is the discrete
analogue of the well-known integral formula

/uvf(x)dx:/uijf(x—é)dx.

When we use the above formula

% v+40
Z Ck = Z Ck—o
k=u k=u+d

v44
Y. cx_s, we say that we are substituting k — J for

v
to rewrite a sum ) ¢, as
k=u k=u+do
(”) k+17,n—k
a“ b

n
k in the sum. For example, substituting k — 1 for k in the sum } )
k=0

transforms it into

"f ( n )ak—1+1bn—(k—1):'§( n )akbn+1—k
k=0+1 k=1 k=1 k=1

which is exactly what we wanted.
Combining all the above, we see that

(”) gk 4 i <”) gk pn—k+1
0 k P k=0 k :_bn+l—k

-~

s fon kpn+1-k
_k§1 k—1)"

sy n kin+1—k SN AW +1—k
n+1— n+1—
:Z(k )ab +Z(k>ab

k=1 -1 k=0
(o= (” + 1> JEpri—k

_kgo i

In other words, the binomial formula holds for n 4+ 1. This completes the in-
duction step, and thus the binomial formula is proved. O

1=

(ﬂ+b)n+1 _

(T
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3. Elementary number theory

Number theory means the study of integers and similar objects.

3.1. Divisibility
3.1.1. Definition

Definition 3.1.1. Let a and b be two integers.

We write a | b (and we say that “a divides b”, or “b is divisible by a”, or
“b is a multiple of a”, or “a is a divisor of b”) if there exists an integer ¢ such
that b = ac.

We write a 1 b if we don’t have a | b.

Example 3.1.2. (a) We have 4 | 12, because 12 = 4 - 3.
(b) We have 1 | b for every integer b, since b = 1-b.
(c) We have a | a for each integer a, since 4 = a - 1. In particular, 0 | 0.
(d) We have a | 0 for each integer a, since 0 = a - 0.
(e) An integer b satisfies 0 | b and only if b = 0.

Definition 3.1.3. (a) An integer 7 is said to be even if 2 | n.
(b) An integer # is said to be odd if 2 { n.

You might know a few things about even and odd numbers: e.g..

1. an even number plus an even number is an even number;
2. an even number plus an odd number is an odd number;

3. an odd number plus an odd number is an even number.

The first of these statements is easy to prove (2c +2d = 2 (c+d)), but the
second is trickier, and it is not clear how to prove the third (if all you have is
definition of “even” and “odd”). So we need to understand divisibility better.

3.1.2. Basic properties

In the following proposition, we shall let abs x denote the absolute value of a
real number x. This is commonly called |x|.

Proposition 3.1.4. Let a2 and b be two integers. Then:
(a) We have a | b if and only if absa | abs b.
(b) If a | band b # 0O, then absa < absb.
() Ifa|band b | a, then absa = absb.

(d) Assume that a # 0. Then, a | b if and only if Z €.
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Proof. (a) This part is just saying that the divisibility of a and b does not depend
on the signs of 2 and b, i.e., does not change its truth (or falsity) if we flip any of
these signs. Thus, in order to prove it, we must show the following two claims:

1. We have a | b if and only if —a | b.
2. We have a | b if and only if a | —b.

To prove the first claim, we can argue that a | b implies —a | b as follows: If
a | b, then there exists an integer c such that b = ac, and therefore b = ac =
(—a) (—c), which shows that —a | b. Conversely, we can argue that —a | b
implies a | b as follows: If —a | b, then there exists an integer ¢ such that
b = (—a)c, and therefore b = (—a) ¢ = a (—c), which shows that a | b.

So the first claim is proved.

For the second claim, proceed similarly: We can argue that a | b implies
a | —b as follows: If a | b, then there exists an integer c such that b = ac, and
therefore —b = —ac = a (—c), which shows that a | —b. Similarly, we can argue
the converse.

Thus, both claims are proved, and part (a) follows.

(b) Assume that a | b and b # 0. We must prove that absa < absb.

Set x = absa and y = absb. So we must prove that x <.

From a | b, we obtain absa | abs b (by part (a)), that is, x | y.

We have x > 0 and y > 0 (since b # 0).

From x | y, we see that there exists an integer z such that y = xz. Consider
this z. If z < 0, then we would have y = _x  _z < 0, contradict y > 0.

=0
Hence, we cannot have z < 0. Thus, z > 0, so that z > 1 (since z is an integer).
Multiplying this inequality by x (this is allowed since x > 0), we find xz > x1.
Thus, y = xz > x1 = x, that is, x <y, qed.

(c) Assume that a | b and b | a. We must prove that absa = absb.

If a =0, then b = 0 as well (since a | b) and we are done.

Similarly, we are done if b = 0.

It remains to handle the remaining case, which is when neither a nor b is 0.
In this case, part (b) yields absa < absb. But part (b) can also be applied with
the roles of a2 and b switched, and then it yields abs b < absa. Combining these
two inequalities, we find absa = abs b.

(d) Assume that a | b. Thus, there exists an integer c such that b = ac. For this

b b
¢, we must then have ¢ = " (since b = ac and a # 0) and therefore ;=¢ e Z.
b
So we have shown that a | b implies e Z.

. ]

SHES

Conversely, Z € Z implies a | b because b = a -
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Theorem 3.1.5 (rules for divisibility). (a) We have a | a for each a € Z. (This
is called reflexivity of divisibility.)

(b) If a,b,c € Z satisfya | band b | ¢, then a | c. (This is called transitivity
of divisibility.)

(o) If a1,ap,b1,by € Z satisfy ay | by and ap | by, then ajay | biby. (This is
called multiplying two divisibilities.)

(d) Ifd,a,b € Z satisfyd | aand d | b, then d | a+ b. (In other words, a
sum of two multiples of d is again a multiple of d.)

Proof. (a) This is because a = a - 1.
(b) Let a,b,c € Z satisfy a | b and b | c. We must prove that a | c.
From a | b, we see that there exists an integer x such that b = ax.
From b | ¢, we see that there exists an integer y such that ¢ = by.
Consider these x and y.
We have

c=_b y=axy=a (xy)
=ax an integer

Hence, a | c.

(c) Let ay,ap,b1,bp € Z satisfy a; | by and ap | bp. We must prove that
aidn | blbz.

From a; | b;, we see that there exists an integer ¢; such that by = ayc;.

From a5 | by, we see that there exists an integer ¢, such that by = aycp.

Now,

-

blbz = (alcl) ((12C2) = (alaz) (C1C2) .
——
an integer

This shows that aia, | bybs.
(d) Letd,a,b € Z satisfy d | a and d | b. We must prove thatd | a + b.
From d | a, we see that there exists an integer x such that 2 = dx.
From d | b, we see that there exists an integer y such that b = dy.
Now,

a+b=dx+dy=d(x+y).
~——
an integer

This shows that d | a + b. O

Part (b) of the above theorem tells us that divisibilities can be chained to-
gether: If a | b and b | ¢, then a | c. Often, such compound statements are
written as chains of divisibilities: e.g., one writes “a | b | ¢” for “a | band b | ¢”.
More generally, the statement

ﬂ1|ﬂ2|"'|ﬂk

means that each of the numbers a1, ay, ..., a; divides the next (i.e., that a; | a;,1
for each 7). By induction on k, it is easy to see that such a statement always
entails ay | a. For instance, 3 | 6 | 18 | 36, so that 3 | 36.
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| Exercise 3.1.1. Let a,b € Z such that a | b. Prove that a* | b* for each k € IN.

3.1.3. Divisibility criteria

How can you spot divisibilities between actual numbers? For small values of
a, checking whether a given integer b is divisible by a can be greatly simplified
using the following divisibility criteria:

Theorem 3.1.6. Let b € IN. Write b in decimal notation. Then:
(@) We have 2 | b if and only if the last digit of b is 0 or 2 or 4 or 6 or 8.
(b) We have 5 | b if and only if the last digit of b is 0 or 5.
(c) We have 10 | b if and only if the last digit of b is 0.
(d) We have 3 | b if and only if the sum of the digits of b is divisible by 3.
(e) We have 9 | b if and only if the sum of the digits of b is divisible by 9.

Example 3.1.7. Let b = 8102. Is 3 | b ? No, since the sum of the digits of b is
8 +1+ 0+ 2 = 11, which is not divisible by 3. Similarly, b is not divisible by
9 either.

Example 3.1.8. Let b = 8106. Is 3 | b ? Yes, since its sum of digits is 8 + 1 +
0 + 6 = 15, which is divisible by 3. Is 9 | b ? No, since 15 is not divisible by
9.

Part (c) of the theorem is easy to prove:

e If 10 | b, then the last digit of b is 0 because multiplying a number by 10
simply inserts a 0 at its end.

e If the last digit of b is 0, then b = 100’ where b’ is the number b with its
last digit removed; therefore, 10 | b.

Parts (a) and (b) are also not hard to prove. But parts (d) and (e) are tricky. We
will prove them using another relation between integers, known as congruence
modulo 7.

3.2. Congruence modulo n

3.2.1. Definition

Definition 3.2.1. Let n,a,b € Z. We say that a is congruent to b modulo 7 if
and only if n | a — b.

The notation for this is “a = bmod n”.

The notation for “a is not congruent to b modulo n” is “a # bmod n”.
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Example 3.2.2. (a) Is 3 = 7mod2 ? By definition, this means that 2 | 3 —7,
which is true (since 3 —7 = —4 =2 - (—2)). So yes, 3 = 7mod 2.

(b) Is 3 = 6mod 2 ? By definition, this means that 2 | 3 — 6, which is false
(3—6 = —3is odd). So 3 # 6mod?2.

(c) We have a = bmod 1 for any a,b € Z.

(d) Two integers a and b satisfy a = bmod 0 if and only if a = b.

(e) For any integers a and b, we have a +b = a — bmod 2, since (a + b) —
(a — b) = 2b is divisible by 2.

The word “modulo” should be read as something like “with respect to”. Two
integers a and b are congruent modulo 7 if and only if a equals b up to a
multiple of n, i.e., if a equals b plus a multiple of n. More formally:

a =bmodn if and only if a = b+ nc for some c € Z.

As we will soon see, congruence modulo 2 is parity: Two integers are con-
gruent modulo 2 if and only if they are both even or both odd.

3.2.2. Basic properties
| Proposition 3.2.3. Let n,a € Z. Then, a = Omod # if and only if n | a.

Proof. By the definition of congruence,
(a=0modn) <= (n|a—0) <= (n|a).
O

Proposition 3.2.4. Let n € Z. Then:

(a) We have a = amodn for each a € Z. (This is called the reflexivity of
congruence.)

(b) If a,b € Z satisfy a = bmodn, then b = amodn. (This is called the
symmetry of congruence.)

(c) If a,b,c € Z satisty a = bmodn and b = cmodn, then a = cmodn.
(This is called the transitivity of congruence.)

(d) If ay,a,,b1,by € Z satisfy

a1 = bymodn and a, = bymodn,
then
a1 —|—a2 = bl -|—b2modn;
a1 —ap = by — bymod n;
a1a; = bib, mod n.
(In other words, two congruences modulo n can be added, subtracted or
multiplied.)

(e) Let m € Z be such that m | n. If a,b € Z satisfy a = bmodn, then
a = bmod m. (For instance, if 4 = bmod 15, then 2 = bmod 3.)
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Proof. (a) For each a € Z, we have n | a —a (since a —a = 0 = n-0) and
therefore a = amod n (by the definition of congruence).

(b) Let a,b € Z satisfy a = bmod n. We must prove b = amod n.

From a = bmodn, we obtainn | a—b | (a—b)(—1) = b —a. Hence, b =
amod n.

(c) Let a,b,c € Z satisfy a = bmodn and b = cmod n. We must prove that
a = cmodn.

From a = bmod n, we obtain n | a — b.

From b = cmod n, we obtain n | b — c.

So we know that both 2 — b and b — ¢ are multiples of n. Hence, their sum
(a —b)+ (b —c) is also a multiple of n. Since this sum is just a — ¢, this means
that a — c is a multiple of n. In other words, a = cmod n.

(d) Let aq, a5, by, by € Z satisty

a1 = bymodn and a; = by mod n.

From a; = by modn, we see that n | a; — by. In other words, a; — by = ncy
for some ¢; € Z. Consider this c1. Solving this equation for a;, we find a1 =
b1 + ncy.

Similarly, a, = by + ncy for some ¢, € Z. Consider this c;.

Now,

a1+ ap = (by + ney) + (bp + ney)
:b1+b2+n(C1+C2),

so that (a7 +a) — (b1 +b2) = n(c1 +¢2) is a multiple of n. This shows that
a1 + ap = by + by mod n.

A similar argument shows that a; — a, = b; — by mod n.

Furthermore,

a1ap, = (by + ncy) (by + neyp)
= b1by + byncy + neiby + neyncy
=biby +n (b1C2 +c1by + TZClC2) ,

so that aja, — biby = n (bica + c1by + ncjcy) is a multiple of n. This shows that
a1a; = biby mod n.

(e) Assume that a,b € Z satisfy a = bmodn. Thus, n | a — b, therefore
m | n|a—b. Hence, m | a — b, so that a = bmod m. O

Part (b) of the above proposition tells us that congruences can be turned
around (a2 = bmod n implies b = amod n).

Part (c) says that congruences can be chained together (2 = bmodn and b =
cmod n imply a = cmod n). You will often see the notation “a = b = cmod n”
for “a = bmodn and b = cmod n”. More generally, the statement

M =ay)=---=a.modn
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means that each of the numbers a4, ay, .. ., ax is congruent to the next modulo 7.
By induction on k, this can easily be shown to imply a; = gy mod n and actually
a; = ajmod n.

Note that we cannot chain two congruences together if they have different
n’s. For example, from 4 = bmod 2 and b = cmod 3, you cannot conclude any
congruence between a and c.

Part (d) of the proposition gives us the right to add, subtract and multiply
two congruences modulo the same n. Note that you cannot divide two such
congruences, or take one to the other’s power. That is, from

a1 = bymodn and a, = by mod n,

a b

you cannot conclude that a_l = b—1 mod n or that a]
2 2

all the numbers in question are integers). However, we can at least take a

congruence to a fixed power:

2 = b’f2 mod n (even when

Exercise 3.2.1. Let n,a,b € Z be such that a = bmod n. Then, a¥ = b¥mod n
for any k € IN.

3.2.3. Proving the divisibility criteria
Recall the criterion for divisibility by 9:

Proposition 3.2.5. Let m € IN. Let s be the sum of the digits of m in decimal.
(For example, if m = 302, thens =34+0+2 =15.)
Then, 9 | m if and only if 9 | s.

Proof. Let mymy_q - - - mg be the decimal representation of m. Thus,

m=mg-109+my_1 1071+ 4+ mg - 10%
S=mg+mg_1+---+mp.

However, 10 = 1mod9 (since 10 — 1 = 9 is a multiple of 9). Hence, by the
exercise we just showed, 10 = 1¥mod 9 for every k € IN. Multiplying this
congruence by the obvious congruence my = mj; mod 9, we obtain

my - 108 = my - ¥ mod 9 for each k € {0,1,...,d}.
In other words,
my - 10F = m mod 9 foreach k € {0,1,...,d}.
These are d + 1 congruences. Adding them together, we get

my-10% +my_1 101+ 4+ mg - 100
=my+myg_q1+---+mpmod9.
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In other words,
m = smod9.

Thus, s = mmod 9.

Now, if 9 | m, then m = 0mod9, so that s = m = 0mod 9, thus s = 0mod 9,
meaning that 9 | s.

Conversely, a similar argument shows that 9 | s implies 9 | m.
Thus, 9 | m is equivalent to 9 | s. This proves the proposition. O

The same argument works for divisibility by 3, because 10 = 1 mod 3.

3.3. Division with remainder

3.3.1. The theorem

Theorem 3.3.1 (division-with-remainder theorem). Let n be an integer. Let d
be a positive integer. Then, there exists a unique pair (g, r) of integers

ge”z and re{0,1,...,d -1}

such that

n=gqd+r.

We will prove this soon. First, some notations:

Definition 3.3.2. Let n be an integer. Let d be a positive integer. Let (g,7)

be the pair whose existence and uniqueness is claimed in the above theorem.
Then:

* The number g is called the quotient of the division of n by d, and is
denoted by n//d. (In LaTeX: // and \sslash.)

* The number r is called the remainder of the division of n by d, and is
denoted by n%d. (In LaTeX: \%.)

e The pair (g,r) is called the quo-rem pair of n and 4.

As we have not yet proved that these g and r exist and are unique, we shall

use indefinite articles (“a quotient”, “a remainder”, “a quo-rem pair”) until
we have finished that proof.

Example 3.3.3. What are 8/ /5 and 8%5 ? We have

8//5=1 and 8%5 = 3,
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since
N R N ~—~—~
=n :q :d :7’6{0,1/2/3/4}

Example 3.3.4. What are 29/ /3 and 29%3 ? We have
29//3=9 and 29%3 = 2,

since
29=9-3+2.

Example 3.3.5. What are (—7) //5 and (—7) %5 ? We have (-7)//5 = -2
and (—7) %5 = 3, since

—7=(-2)-5+ _3
€{0,1,2,34}

Our theorem is saying that any integer n and any positive integer d have a
unique quo-rem pair. Let us now prove this.

3.3.2. The proof

Proof. We need to prove two things: that a quo-rem pair of n and d exists, and
that it is unique. Let us start with the uniqueness part.

Proof of the uniqueness part: Fix an integer n and a positive integer 4. We must
show that there is at most one quo-rem pair (g,7) of n and 4.

Assume the contrary. Thus, there exist two distinct quo-rem pairs (g1,71) and
(q2,72) of n and d. Pick two such pairs.

Since (q1,71) is a quo-rem pair of n and d, we have

q1 €Z, r1€{0,1,...,d—1} and n=qd+r.
Since (g2,72) is a quo-rem pair of n and d, we have
g2 € Z, rne{0,1,...,d -1} and n=qyd+r;.
Subtracting the equations n = g1d + r1 and n = qod + r2, we obtain
0= (qud+r1)—(qed+1r2) = (r1 —12) + (1 — 92) d.

Thus,
n—rn=—(n—q)d=(2-q)d
We are in one of the following three cases:
Case 1: We have q1 < q».




Math 221 Winter 2024, version March 14, 2024 page 63

Case 2: We have q1 = q5.

Case 3: We have q1 > q».

Consider Case 1. In this case, g1 < g, so that g — g1 > 0. Hence, g0 — g1 > 1.
Since d > 0, this entails (g2 — q1)d > 1d = d. Thus,

rn—ry=(q—q1)d >d.
However, this contradicts

rn— rn <rn<d-1<d.
S~

>0

Thus, we have found a contradiction in Case 1.
Consider Case 2. In this case, g1 = g2. Hence, (g2 — g1) d = 0. Thus,
—_———

=0
r—r2=(q2—q)d=0,

so that r; = rp. Combining this with g1 = g, we obtain (q1,71) = (g2, 72). This
contradicts the assumption that (g1,71) and (g, 72) are distinct. So we found a
contradiction in Case 2 as well.

Consider Case 3. In this case, g1 > g, so that g, < q;. Thus Case 3 is just
Case 1 with the roles of (g1,71) and (g2,72) switched. Thus, we again get a
contradiction.

We have now found a contradiction in each case. So our assumption was
wrong. This proves the uniqueness of a quo-rem pair.

Now, let us come to the existence part. We want to argue by strong induction
on 7, but this only covers the case n > 0. The case n < 0 will have to be handled
separately afterwards.

So let us first deal with the n > 0 case:

Lemma 3.3.6. Let n € IN, and let d be a positive integer. Then, there exists a
quo-rem pair of n and 4.

Proof of the lemma. Fix d. We use strong induction on n (without a base case).

Induction step: Let n € IN. Assume (as the IH) that the lemma holds for all
nonnegative integers smaller than n instead of n. In other words, assume that
for each nonnegative integer k < n, there exists a quo-rem pair of k and d. We
must prove that the lemma also holds for 7, i.e., that there exists a quo-rem pair
of n and d.

If n < d, then such a pair is easy to find: it is (0,n) (since n = 0d + n and
ne{0,1,...,d—1}).

Otherwise, n > d, so thatn —d € IN and n — d < n (since d > 0). This means
that we can apply the IH to n — d instead of n. This yields that there exists a
quo-rem pair of n —d and d. Let (g,r) be this pair. Then,

n—d=gqd+r.
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Hence,
n=d+qgd+r=(q+1)d+r.

This shows that (g + 1,7) is a quo-rem pair of n and d. Thus, we have found a
quo-rem pair of n and d, as we desired. This completes the induction step, and
thus the lemma is proved. O

So we have proved that
* there is always at most one quo-rem pair of n and d;
¢ there is at least one such pair if n > 0.

It remains to prove that there is at least one such pair if n < 0.
One way to do this is by a strong induction (similarly to the lemma), but now
inducting on —n, not on n.
A slicker way is by reducing the n < 0 case to the n > 0 case: Namely, let
n € Z be negative. Then, the product (1 —d) _n  is nonnegative. Hence, by
~—

—
<0 <0

our lemma, there exists a quo-rem pair for (1 —d)n and d. Let (g,7) be this
pair. Then,

(1—-dyn=qd+r, that is,
n—nd=gqd+r, that is,
n=nd+qd+r=n+q)d+r.

This shows that (n+¢,r) is a quo-rem pair for n and d. So n and d have a
quo-rem pair. This completes the proof. O

3.3.3. Application: even and odd integers

Recall that an integer # is even if 2 | 1, and is odd if 2 { n. This is how we
defined “even” and “odd”. Let us now prove a different criterion:

Proposition 3.3.7. Let n be an integer.

(@) The integer 7 is even if and only if there exists some k € Z such that
n = 2k.

(b) The integer n is odd if and only if there exists some k € Z such that
n =2k +1.

Proof. (a) follows from the definitions.
(b) This is an “if and only if” statement, so we need to prove both directions:

(n is odd) = (there exists some k € Z such that n = 2k + 1)
and

(n is odd) <= (there exists some k € Z such that n =2k +1).
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Proof of the = direction: Assume that n is odd. By the theorem we just
proved, there exists a quo-rem pair (g,) for n and 2. This pair satisfies

qeZ, re {0,1}, and n=2g+r.

If we had r = 0, then this would yield n = 29+ _r = 2q, contradicting
=0

the oddness of n. So r # 0. Therefore, r = 1 (since r € {0,1}). Thus, n =

2q+ _r = 2g+1. This shows that there exists some k € Z such thatn = 2k +1

=1
(namely, k = g).

Proof of the <= direction: Assume that there exists some k € Z such that
n = 2k + 1. Consider this k.

We must prove that n is odd. In other words, we must prove that 2 { n.
Assume the contrary. Thus, 2 | n. In other words, n = 2¢ for some integer c.
Consider this c.

Now, (k,1) is a quo-rem pair of n and 2 (since n =2k +1and 1 € {0,1}), but
(¢,0) is also a quo-rem pair of n and 2 (since n = 2c = 2c+0and 0 € {0,1}).
So n and 2 have (at least) two distinct quo-rem pairs, which is impossible by the
uniqueness part of the preceding theorem. So we get a contradiction, exactly
as desired. O

Corollary 3.3.8. (a) The sum of any two even integers is even.
(b) The sum of an even with an odd integer is odd.
(c) The sum of two odd integers is even.

Proof. (c) Two odd integers can be written as 2k + 1 and 2/ + 1 for some integers
k and ¢ (by the preceding proposition). Hence, their sum is

(Rk+1)+ (20 +1) =2k+20+2=2(k+ £ +1),

which is clearly even.
(a), (b) are similar. =

Note that part (c) of this corollary would not hold for other divisors than 2.
For instance, a sum of two integers that are not divisible by 3 may or may not
be divisible by 3.

3.3.4. Basic properties of quotients and remainders

Proposition 3.3.9. Let n € Z, and let d be a positive integer. Then:
(a) We have n%d € {0,1,...,d — 1} and n%d = nmod d.
(b) We have d | n if and only if n%d = 0.
(©Ifce{0,1,...,d—1} satisfies c = nmod d, then ¢ = n%d.
(d) We have n = (n//d)d + (n%d).
(e)If n € IN,thenn//d € N.
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Proof. We set q :=n//d and r := n%d. Thus, (g,r) is a quo-rem pair of n and
d. In other words, g € Zand r € {0,1,...,d — 1} and n = qd +r.
(d Wehaven= g d+ _r = (n//d)d+ (n%d).
~— ~
=n//d =n%d

(@) We have n%d =r € {0,1,...,d —1}. Next, n = gqd + r entails n — r = qd,
which is a multiple of d. Hence, n = rmodd. Thus, r = nmodd. In other
words, n%d = nmodd (since n%d = r).

() Letc € {0,1,...,d — 1} such that c = nmodd. We must prove that ¢ =
n%.d.

The congruence ¢ = nmodd entails # = cmodd, so that d | n —c. In other
words, n — ¢ = dx for some integer x. Consider this x.

Now, n — ¢ = dx entails n = dx + ¢ = xd + ¢, and this shows that (x,¢) is a
quo-rem pair of n and d (since ¢ € {0,1,...,d — 1}). Hence, ¢ = n%d (here we
are tacitly using the uniqueness of the quo-rem pair).

(b) This is an “if and only if” statement, so we should prove both directions.

=: Assume that d | n. We must prove that n%d = 0.

From d | n, we see that n = dx for some integer x. Thus, n = dx + 0, so that
(x,0) is a quo-rem pair of n and d. Hence, 0 = n%d.

Alternatively: From d | n, we see that n = Omodd. So 0 = nmodd. Since
0 € {0,1,...,d -1}, we can thus apply part (c) to ¢ = 0, and obtain that
0 = n%d. Hence, n%d = 0.

<=: Assume that n%d = 0. We must prove that d | n.

Wehaven =qd+ _r =qd, sothatd |n.

o

(e) Either induct on n (as in the proof of the lemma), or “chase inequalities”
(use the fact that any integer that is > —1 is automatically > 0). For details, see
the notes (Proposition 3.3.11 (e)). O

Corollary 3.3.10. Let n € Z. Then:
(a) The integer 7 is even if and only if n%2 = 0.
(b) The integer n is odd if and only if n%2 = 1.

Quotients and remainders are closely related to the floor function:

Definition 3.3.11. The integer part (aka the floor) of a real number x means
the largest integer that is < x. It is denoted by |x|.

For example,
13.8] =3, || =3, 13] =3, |—m| = —4.

Proposition 3.3.12 (“explicit formulas” for quotient and remainder). Let n €
Z, and let d be a positive integer. Then,

n//d—= EJ and n%d = n —d - LZJ .
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Proof. The main idea is the following: Two numbers u and x satisfy u = | x| if
and only if u is an integer and u < x < u 4 1.

Thus you can prove n//d = LSJ by showing that n//d < g < (n//d)+1
The latter is fairly easy (see the notes).

Having proved this, the other equality n%d =n —d - LZJ follows easily using
n=(n//d)d+ (n%d). O

3.3.5. Base-b representation of nonnegative integers

Division with remainder is the main ingredient in a useful feature of integers:
the fact that every integer can be uniquely expressed in decimal notation, or,
more general, in base-b notation for any given integer b > 1.

What does this mean for b = 10? For instance,

3401 =3-10004+4-100+0-10+1-1
=3-10°+4-10>4+0-10' +1-10°.

Thus, the big number 3401 has been written as a sum of powers of 10, with the
coefficients 3,4, 0, 1 being integers between 0 and 9 (commonly called “digits”).
This can be done for any n € IN instead of 3401, and for any fixed integer
b > 1 instead of 10. The coefficients will then be integers between 0 and b — 1.
This is called the “base-b representation” of the integer.
For instance, let us find the base-4 representation of 3401: This will be a
representation of the form

3401 = r64° + 1545 + 144% + 1343 + 1042 + 114" + r4°,

where each r; is a “base-4 digit” (i.e., an element of {0,1,2,3}). At least, this is
how it will look like if 7 digits are enough. If not, we need r7, 3, ..., whatever
amount will suffice.

How do we find these base-4 digits ro,71,...,76 ?

We start by looking at the equation

3401 = 144 + r54° + r44* + 1343 + 1pd? + r14! + rp4a?
= (1’645 —+ 1’544 -+ 1’443 —+ 1’342 -+ 1’241 —+ 1’14()) 4 4+ 40
~—

N

e €{0,1,2,3}

Thus,

red® + 154t + 148’ + 134 4 14! +114° = 3401/ /4 = 850,
ro = 3401%4 = 1.
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So we have found ry. Now,
850 = r¢4° + rs4* + 7443 + 1342 + rpal + 1140
= (reat +rst 4 a2 4 rag! £ 1od) dt 1y
—~~

e €{0,1,2,3}

Thus,
red® + 154% + 144 + r34! + 14" = 850/ /4 = 212,
r1 = 850%4 = 2.
So we have found ;.
Keep doing this to find 7y, 3,74, 15, 76 in succession. We get
=20, r3 =1, rg =1, rs = 3, re = 0.
So the base-4 representation of 3401 is
3401:$46+$45+$44+&43+&42+\r;41+\r9/40.
=0 =3 =1 =1 =0 =2 =1

One typically states this as “the number 3401 written in base-4 is 0311021”.
Commonly, one omits leading 0’s, so this would just be 311021.

This method works for any integer b > 1 instead of 4, and any n € IN instead
of 3401. The idea is to divide n by b with remainder; then divide the quotient
again by b with remainder; then divide the resulting quotient again by b with
remainder; and so on. The remainders obtained will be the base-b digits of n
(from right to left). The following theorem makes this formal:

Theorem 3.3.13. Let b > 1 be an integer. Let n € IN. Then:
(a) We can write # in the form

n= rkbk + rk_lbk_l + b+ robo

with
ke N and ro,r,.--, 1 €4{0,1,...,b—1}.

(b) If n < b*1 for some k € IN, then we can write 7 in the form
n=rdb"+r b4+ b+ rpl°

with
ro,7,.--,7x € {0,1,...,b— 1}.
(c) These rg, 11, ..., 1 are unique (when k is given). Moreover, they can be
explicitly computed by the formula

r = (n//bi> %b foreachi € {0,1,...,k}.
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Proof. See the notes (Theorem 3.3.15). O

3.3.6. Congruence in terms of remainders

The next proposition formalizes the close relation between remainders and con-
gruence:

Proposition 3.3.14. Let d be a positive integer. Let 2 and b be two integers.
Then, a = bmod d if and only if a%d = b%d.

Proof. We must prove the logical equivalence
(a =bmodd) <= (a%d = b%d) .

Let us prove its = and <= directions separately:
—>: Assume that a = bmod d. We must prove that a%d = b%d.
Recall that a%d € {0,1,...,d — 1} and a%d = amod d. Hence,

a%d = a = bmod d.

Thus, a%d = bmodd. So a%d is an integer in the set {0,1,...,d — 1} that
is congruent to b modulo d. But the only such integer is b%d. So we get
a%d = b%d.

<=: Assume that a%d = b%d. We must prove that a = bmod d.

Again recall that 4%d = amod d. Similarly, b%d = bmod d. Hence,

a = a%d = b%d = bmod d.
Soa=bmodd. O

Corollary 3.3.15. Let a and b be two integers. Then, 2 = bmod 2 holds if and
only if the numbers a and b are both even or both odd.

3.3.7. The birthday lemma

Assume, for simplicity, that any year has 365 days (so no leapyears). If you have
lived for exactly n days, then you are n//365 years and 1n%365 days old. On
any “normal” day, the latter number (1%365) increases by 1 while the former
number (1//365) remains unchanged. On a birthday, however, the former
number (1//365) increases by 1 whereas the latter number (1%365) gets reset
to 0.

This has nothing to do with 365; it holds for any positive integer d and any
ne4:
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Proposition 3.3.16 (birthday lemma). Let n € Z, and let d be a positive inte-
ger. Then:
(@) If d | n, then

n//d=(n-1)//d)+1 and
n%d =0 and (n—1)%d=d—1.

(b) If d 1 n, then

n//d=mn-1)//d and
n%d = ((n —1) %d) + 1.

Proof. See the notes. O

The equalities for n//d in the above proposition can also be stated in terms

of the floor function:
EJ:V;W“ itd | n;
EJ:V;J if d tn.

3.4. Greatest common divisors

3.4.1. Definition

Definition 3.4.1. Let a and b be two integers.

(a) The common divisors of a2 and b are the integers that divide a and simul-
taneously divide b.

(b) The greatest common divisor of 2 and b is the largest among the common
divisors of a and b, unless a = b = 0. In the case a = b = 0, we define it to be 0
instead.

We denote the greatest common divisor of 4 and b by ged (a,b), and we call
it the ged of a and b.

Some examples:

e Whatis ged (4,6) ?
The divisors of 4 are —4,—-2,—1,1,2,4.
The divisors of 6 are —6,—3,—-2,—1,1,2,3,6.

The common divisors of 4 and 6 are therefore —2,—1,1,2. The largest
among them is 2.

So ged (4,6) = 2.
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e Whatis ged (0,5) ?
The divisors of 0 are all the integers.
The divisors of 5 are —5, —1,1, 5.

The common divisors of 0 and 5 are therefore exactly the divisors of 5,
and the largest of them is 5.

So ged (0,5) = 5.
e What is ged (0,0) ?

It is 0 by definition. (The common divisors of 0 and 0 are all the integers,
so there is no largest among them.)

| Proposition 3.4.2. Leta,b € Z. Then, gcd (a,b) is well-defined.

Proof. If a = b = 0, then ged (a,b) = 0 by definition.

Let us consider the remaining case, i.e., the case when a and b are not both 0.
In this case, we defined gcd (a,b) to be the largest among the common divisors
of a and b. To check that it is well-defined, we shall show that the set of common
divisors of a and b is finite and nonempty (because then, it follows that this set
has a unique largest element, i.e., there is a largest common divisor of a and b).

* Finiteness: If a # 0, then any divisor of a has absolute value < |a|, which
leaves only finitely many choices for the divisor. If b # 0, then a similar
argument applies. Since a and b are not both 0, this covers all possibilities.

* Nonemptiness: There is at least one common divisor of a and b, because
the number 1 is such a common divisor.

O

3.4.2. Basic properties

Our goal is to find an easier way to compute gecd (a,b) than by checking all
divisors of a and/or of b.

| Proposition 3.4.3. We have ged (a,b) € N for any a,b € Z.

Proof. If a = b = 0, then this is clear since gecd (0,0) =0 € IN.

In the remaining case, ged (a, b) is literally the largest of the common divisors
of a and b. However, if it was negative, then — gcd (4, b) would be an even larger
common divisor of a and b, which would contradict this. So gcd (a,b) cannot
be negative. Thus, ged (a,b) € IN. O
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| Proposition 3.4.4. We have gcd (4,0) = gcd (0,4) = |a| for any a € Z.

Proof. Let a € Z. All integers are divisors of 0. So the common divisors of a
and 0 are precisely the divisors of a. The largest of those is |a| (unless a = 0,
but this case is obvious anyway). O

| Proposition 3.4.5. We have gcd (a,b) = ged (b, a) for any a,b € Z.
Proof. The definition is symmetric in 2 and b. O

Proposition 3.4.6. If a,b,c € Z satisfy b = cmoda, then gcd (a,b) =
ged (a,c).

Proof. Leta,b,c € Z satisfy b = cmod a. We must prove ged (a,b) = ged (a,¢).

If a = 0, then this is clear (since b = cmod a yields b = c)

So we only need to deal with the case a # 0. Consider this case. Here,
ged (a, b) is literally the greatest common divisor of a and b, whereas ged (4, c)
is literally the greatest common divisor of a and c. We must prove that they are
equal. We shall prove even more: We shall show that the common divisors of a
and b are precisely the common divisors of a and c.

To show this, we must prove the following two claims:

Claim 1: Each common divisor of a and b is a common divisor of a
and c.

Claim 2: Each common divisor of a and ¢ is a common divisor of a
and b.

Proof of Claim 1. Let d be a common divisor of 2 and b. We must show that 4 is
a common divisor of a and c.
The definition of d yields d | a and d | b. It remains to show that d | ¢ as well.
From b = cmoda, we obtain a | b —¢, so thatd | a | b — c. In other words,
b — c = dz for some integer z. Also, b = dy for some integer y (since d | b).
Using these z and y, we have

c=_b —(b—c)=dy—dz=d(y—2z).
———

—~—
=dy =dz
This shows that d | ¢. So Claim 1 is proved. O

Proof of Claim 2. The numbers b and ¢ are playing equal roles in our setting
(since b = cmoda entails ¢ = bmoda). So Claim 2 is just Claim 1, with the
roles of b and ¢ interchanged. O

Both claims are now proved. It follows that the common divisors of a and
b are the common divisors of a and c. Hence, the greatest of the former is the
greatest of the latter. In other words, ged (a,b) = ged (4, c). O
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| Proposition 3.4.7. We have gcd (a,b) = ged (a, ua + b) for any a,b,u € Z.

Proof. Let a,b,u € Z. Then, b = ua + bmod a. Thus, the preceding proposition
(applied to ¢ = ua + b) yields ged (a,b) = ged (a, ua +b). O

Proposition 3.4.8. Let a be a positive integer. Let b € Z. Then, ged (a,b) =
ged (a, b%a).

Proof. We have b = b%amod a (by one of the basic properties of quotients and
remainders). Hence, the second-to-previous proposition (applied to ¢ = b%a)
yields ged (a,b) = ged (a, b%a). O

The following facts are very easy:

| Proposition 3.4.9. We have gcd (a,b) | a and ged (a,b) | b for any a,b € Z.
Proposition 3.4.10. We have gcd (—a,b) = gecd(a,b) and ged (a,—b) =
ged (a,b) for any a,b € Z.

| Proposition 3.4.11. If 4,b € Z satisfy a | b, then ged (a,b) = |a.

Proof. Let a,b € Z satisfy a | b. Then, |a| is a common divisor of a and b (since
it divides a, which in turn divides b). It is furthermore the greatest of these,
since any divisor of a is < |a|. (Again, this does not work for a = 0, but this
case is trivial.) O

Corollary 3.4.12 (Euclidean recursion for the gcd). Let a € Z, and let b be a
positive integer. Then,

ged (a,b) = ged (b, a%D) .

Proof. We have
ged (a,b) = ged (b,a) = ged (b, a%b)

(by the proposition saying gcd (a,b) = ged (a, b%a), applied to b and a instead
of a and b). O
3.4.3. The Euclidean algorithm

By applying the last corollary repeatedly, we can compute gecds fairly quickly.
For instance,

ged (96, 18) = ged (18, 96%18) (by the corollary)
= gcd (18, 6)
= gcd (6, 18%6) (by the corollary)
= gcd (6, 0)
= |6 (by the proposition ged (a,0) = |al)

=6
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and

ged (1135, 739) = ged (739, 1135%739) (by the corollary)
= ged (739, 396)
= gcd (396, 739%396) (by the corollary)
— ged (396, 343)
= gcd (343, 396%343) (by the corollary)
= gcd (343, 53)
= ged (53, 343%53) (by the corollary)
= ged (53, 25)
= gcd (25, 53%25) (by the corollary)
= ged (25, 3)
= ged (3, 25%3) (by the corollary)
=gad (3, 1)
= gcd (1, 3%1) (by the corollary)
= ged (1,0)
= |1 (by the gcd (a,0) = |a| proposition)
=1

These two computations are instances of a general algorithm for computing
ged (a,b) for any two numbers a2 € Z and b € IN. This algorithm proceeds as
follows:

e If b =0, then the gcd is |a|.

e If b > 0, then we replace a2 and b by b and a%b and recurse (i.e., we apply
the method again to b and a%?b instead of a and b).

In Python code, this algorithm looks as follows:
def gcd(a, b): # for b nonnegative
if b ==
return abs(a) # this means |a]
return gcd(b, ab)
This algorithm is known as the Euclidean algorithm. Let us convince our-
selves that this algorithm terminates (i.e., does not get stuck in an infinite loop):

Proposition 3.4.13. Let 2 € Z and b € IN. Then, the Euclidean algorithm
terminates after at most b steps.

Proof. (See the notes for details.)
Every time the algorithm recurses (i.e., replaces a and b by b and a%b and
calls itself again), the value of b decreases by at least 1 (since a%b < b —1).
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But a nonnegative integer cannot keep decreasing by at least 1 infinitely often.
More concretely, decreasing b by at least 1 can be done at most b times until b
becomes negative. O

Actually, the “b steps” in the proposition greatly overestimate the time that
the Euclidean algorithm needs to terminate. A much better bound is log, (ab) +
2 steps (assuming that a,b > 0). See the notes for why this better bound holds.

The Euclidean algorithm can be easily adapted to arbitrary b € Z instead of
just b € IN:
def gcd(a, b): # for b arbitrary
if b < 0:
return gcd(a, -b)
if b ==
return abs(a) # this means |a]
return gcd(b, ab)

3.4.4. Bezout's theorem and the extended Euclidean algorithm

The Euclidean algorithm can be adapted to not only compute ged (a,b), but
also represent ged (4, b) as an “integer linear combination” of @ and b (i.e., as a
multiple of a plus a multiple of b). This lets us prove the following theorem:

Theorem 3.4.14 (Bezout’s theorem for integers). Let 2 and b be two integers.
Then, there exist two integers x and vy such that

ged (a,b) = xa + yb.

This can be restated as a claim about a coin problem: It says that ged (a,b)
cents can be paid with a-cent and b-cent coins, as long as you can get change.
Before we prove this theorem, let me give these x and y a name:

Definition 3.4.15. Let a and b be two integers. Then, a Bezout pair for (a,b)
means a pair (x,y) of two integers such that ged (a,b) = xa + yb.

For instance:

* A Bezout pair for (4,7) is a pair (x,y) of two integers such that ged (4,7) =
x-4+y-7 thatis, 1 = x-4+y-7. One such pair is (2,—1), since
1=2-4+(—1)-7. There are other such pairs as well, for instance ,3).

(=5
* A Bezout pair for (4, 6) is a pair (x,y) of two integers such that ged (4,6) =
x-4+y-6,thatis, 2 = x-4+y-6. One such pair is (—1,1).
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How would you prove Bezout’s theorem? Induction sounds like a good idea,
but induction needs to start somewhere, whereas both 4 and b in the theorem
are just integers.

Fortunately, we can adapt to this. Indeed, if we can prove Bezout’s theorem
for b € IN, then it easily follows for all b € Z, because if (u,v) is a Bezout pair
for (a,b), then (u, —v) is a Bezout pair for (a, —b) (since ged (a,b) = ged (a, —b)
and ua + (—v) (—b) = ua + vb). So it suffices to prove Bezout’s theorem for
b € IN. In other words, it suffices to prove the following:

Lemma 3.4.16. Let a € Z and b € IN. Then, there exists a Bezout pair for
(a,b).

Proof. Strong induction on b. In more detail: We do not fix 2. We consider the
statement

P (b) := (for each a € Z, there exists a Bezout pair for (a,b)).

We want to prove this statement P (b) for all b € IN. We do this by strong
induction on b:

Base case: We must prove P (0). This is easy: A Bezout pair for (a,0) is (+1,0),
where 1 is +1 or —1 depending on whether a > 0 or 2 < 0.

Induction step: Fix a positive integer b. We must prove the implication

(P(0) AND P (1) AND P(2) AND --- AND P (b—1)) = P (b).

So we assume that P (0) AND P (1) AND P (2) AND --- AND P (b —1) holds.
In other words, we assume that

(for each a € Z, there exists a Bezout pair for (4,0)) and

(for each a € Z, there exists a Bezout pair for (a,1)) and

(for each a € Z, there exists a Bezout pair for (a,2)) and
- and

(for each a € Z, there exists a Bezout pair for (a,b—1))

hold. In other words, we assume that for eacha € Z and eachd € {0,1,...,b— 1},
there exists a Bezout pair for (a,d). So this is our IH.

We must prove that P (b) holds. In other words, we must prove that for each
a € Z, there exists a Bezout pair for (a,b).

Let us do this. Fix a € Z. Since b > 0, we can divide a by b with remainder.
We know that a%b € {0,1,...,b—1}. So we can apply our IH to b and a%b
instead of 4 and b. We conclude that there exists a Bezout pair for (b, a%b).
This is a pair (#,v) of integers such that

ged (b, a%b) = ub+v (a%b).
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Consider this pair. The Euclidean recursion yields

ged (a,b) = ged (b, a%b) =ub+v (a%D)
——r
=a—(a//b)b
(since a=(a/ /b)b+(a%Db))
=ub+v(a—(a//b)b)

=va+ (u—v(a//b))b.

This shows that the pair (v, u — v (a/ /b)) is a Bezout pair for (a,b). So we have
shown that there exists a Bezout pair for (a,b). This completes the induction
step, and therefore the proof of the lemma. O

And, as we explained, the lemma yields Bezout’s theorem. In Python, this
algorithm looks as follows:
def bezout_pair(a, b): # for b nonnegative
if b == 0:
return (sign(a), 0)
(u, v) = bezout_pair(b, alb)
return (v, u - v * (a//b))
This algorithm is known as the extended Euclidean algorithm. As explained,
we can easily adapt it to negative b. (See the notes for details.)

3.4.5. The universal property of the gcd

The first major application of the extended Euclidean algorithm is the universal
property of the ged:

Theorem 3.4.17 (universal property of the gcd). Let a,b,m € Z. Then, we
have the equivalence

(m|aand m | b) <= (m|gecd(a,b)).

In other words, the common divisors of a and b are precisely the divisors of
ged (a,b). So ged (a,b) is not just the greatest of all common divisors of a4 and
b, but also a multiple of each of them.

Proof of the universal property. <=:1f m | gcd (a,b), thenm | a (since m | ged (a,b) |
a) and m | b (similarly).

=>: Assume that m | a and m | b. We must prove that m | gcd (a,b).

Bezout’s theorem yields that ged (a,b) = xa + yb for some integers x and y.
Consider these x and y.

From m | a, we know that a is a multiple of m. Thus, xa is also a multiple
of m. Similarly, yb is a multiple of m. Hence, the sum xa + yb is a multiple
of m as well (since a sum of multiples of m is again a multiple of m). In other
words, ged (a,b) is a multiple of m (since ged (a,b) = xa + yb). In other words,
m | ged (a,b). O
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3.4.6. Factoring out a common factor from a gcd

The following theorem may sound obvious, but actually is not. We shall prove
it using the universal property:

Theorem 3.4.18. Let s, a,b € Z. Then,

ged (sa,sb) = |s| - ged (a,b) .

Proof. Let
g =gcd (a,b) and h = ged (sa, sb) .

We must prove that & = |s| - g. Equivalently, we must prove that |h| = |sg]
(since g and & are nonnegative, so that |g| = gand |h| = h, and |sg| = |s| - |g| =
s1-8)-

One good way to prove that two integers p and g satisfy |p| = |g| (i-e., are
equal up to sign) is by showing that p | g and g | p. So, in order to prove that
|h| = |sg|, we only need to show that i1 | sg and sg | h. Let us show this:

* Proof of sg | h: We have ¢ = gcd (a,b) | a. Thus, sg | sa. Similarly, sg | sb.
Hence, the universal property of the ged yields sg | ged (sa, sb). In other
words, sg | I (since h = ged (sa, sb)).

* Proof of h | sg: We have h = gcd (sa, sb) | sa. In other words, sa = hu for
some integer u. Similarly, sb = hv for some integer v. Consider these u
and v.

However, Bezout’s theorem shows that ged (a,b) = xa + yb for some inte-
gers x and y. Consider these x and y.

Now, ¢ = gcd (a,b) = xa + yb. Hence,
sg =s(xa+yb) =sxa+syb= sa_x+ sb y
=hu =hv

N

= hux + hvy = h (ux + vy),
~—
an integer

so that 11 | sg.

(See the notes — proof of Theorem 3.4.11 — for a different way of showing
this.)

]
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3.5. Coprime integers
3.5.1. Definition and examples

Greatest common divisors are most useful when they equal 1. This situation is
known as “coprimality”:

Definition 3.5.1. Two integers a and b are said to be coprime (or relatively
prime) if ged (a,b) = 1.

Remark 3.5.2. This is a symmetric relation: If 2 and b are coprime, then b
and a are coprime (since ged (a,b) = ged (b, a)).

Example 3.5.3. (a) An integer 7 is coprime to 2 if and only if # is odd. Indeed,
we know that ged (n,2) is a divisor of 2 and is a nonnegative integer. But the
only nonnegative divisors of 2 are 1 and 2. Hence, ged (1,2) must always be
1 or 2. Now:

e If gcd (1,2) = 2, then n is even (since 2 = ged (1,2) | n).

e If gcd (n,2) = 1, then n is odd (since otherwise, 2 would be a common
divisor of n and 2, but this cannot happen when the greatest common
divisor is 1).

(b) An integer n is coprime to 3 if and only if # is not divisible by 3. (This
can be shown in the same way, since the only nonnegative divisors of 3 are 1
and 3.)

(c) An integer n is coprime to 4 if and only if #n is odd. Indeed, the non-
negative divisors of 4 are 1, 2 and 4, so that gecd (n,4) is 1, 2 or 4. Now:

e Ifged (n,4) =1, then n is odd (otherwise, 2 would be a common divisor
of n and 4).

e If gcd (1,4) = 2, then n is even (since 2 = ged (1, 4) | n).
e If gcd (1,4) =4, then n is even (since 2 | 4 = ged (n,4) | n).

(d) An integer n is coprime to 5 if and only if #n is not divisible by 5. (This
is for the same reason as the similar statements about 2 and 3.)

(e) An integer n is coprime to 6 if and only if n is neither even nor divisible
by 3. Indeed, the nonnegative divisors of 6 are 1, 2, 3 and 6. Now:

e If gcd (1,6) = 1, then n is not even (since otherwise, 2 would be a
common divisor of n and 6) and not divisible by 3 (similarly).

e If gcd (n,6) = 2, then n is even (since 2 = ged (1, 6) | n).
e If gcd (n,6) = 3, then n is divisible by 3.
e If ged (1,6) = 6, then n is both even and divisible by 3.
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Informally, I tend to think of coprimality as some sort of “unrelatedness” or
“independence” or “orthogonality” relation.

3.5.2. Three theorems about coprimality

The following three theorems are useful properties of coprime integers:

Theorem 3.5.4 (coprime divisors theorem). Let 4,b,c € Z satisfy a | ¢ and
b | c. Assume that a and b are coprime. Then, ab | c.

In other words, a product of two coprime divisors of c is again a divisor of
c.

Proof. We have ab | ac (since b | ¢) and ba | bc (since a | c). Since ba = ab and
ac = ca and bc = cb, we can rewrite these as follows:

ab | ca and ab | cb.

Hence, by the universal property of the gcd, we obtain

ab | ged (ca,cb)
= || - ged (a,b) (by the previous theorem)
N———

-’
. :l .
(since a and b are coprime)

=|c|.
Since divisibility is not affected by signs, this entails ab | c. O

Example 3.5.5. We have 4 | 56 and 7 | 56. Since 4 and 7 are coprime, the
coprime divisors theorem thus yields 4 - 7 | 56.

In contrast, from 6 | 12 and 4 | 12, we cannot obtain 6 - 4 | 12, since 6 and 4
are not coprime.

Theorem 3.5.6 (coprime removal theorem). Let a,b,c¢ € Z satisfy a | bc. As-
sume that a is coprime to b. Then, a | c.

Proof. We have a | ca and a | bc = cb. Thus, by the universal property of the
ged, we get

a | ged (ca,cb) = |c| - ged (a,b) =|c|.
—_——
(since a andglare coprime)

Since signs do not matter, this entails a | c. O
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Example 3.5.7. We have 6 | 7 - 12, but 6 is coprime to 7. Hence, the coprime
removal theorem yields 6 | 12.

Theorem 3.5.8 (coprime product theorem). Let a,b,c € Z. Assume that each
of a and b is coprime to c. Then, ab is also coprime to c.

Proof. Let g = ged (ab, c). We must prove that g = 1.
We have ¢ = gcd (ab,c) | ab and ¢ = ged (ab,c) | ¢ | ac. Hence, by the
universal property of the gcd,

< | ged (ab,ac) = |a| - ged (b, ) = |a|,
=1
(since b is c_oprime toc)

so that ¢ | 2. Combining ¢ | 4 and g | ¢ using the universal property of the ged,
we obtain ¢ | ged (a,¢) = 1 (since a is coprime to c¢). Thus, g = 1 (since the only
nonnegative divisor of 1 is 1), as desired. [

See the notes for more general versions of these three theorems.

3.6. Reducing a fraction

One application of the results above is the following:

Theorem 3.6.1. Let 4 and b be two integers that are not both 0. Let ¢ =

gcd (a,b). Then, the integers 7 and g are coprime.

This theorem is important for understanding rational numbers. Indeed, a

. . u . .
reduced fraction means a fraction p of two integers u and v with ged (u,v) = 1.

The theorem says that if you have any fraction % of two integers (not both 0),

then you can make it reduced by cancelling ged (4, b) from both numerator and
denominator.

Proof. Since a and b are not both 0, their gcd is positive. In other words, g > 0.

Thus, ? and b are well-defined. Moreover, g and g are integers (since § =

g 8
gcd (a,b) | a and similarly g | b).
We have

a b ab
=gcd (a,b) = cd( -, —) = cd (—,—)
g =gcd(a,b) =g gg 8g glg g

ab .
= ggecd (g,g) (since |g] =g)-
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Cancelling g (since g > 0), we obtain

b
In other words, 7 and = are coprime, ged. O

3.7. Prime numbers

3.7.1. Definition

Definition 3.7.1. An integer n > 1 is said to be prime (or a prime) if and
only if the only positive divisors of n are 1 and n.

The first few primes (= prime numbers) are
2, 3,5 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.

It can be shown (HW) that there are infinitely many primes.

3.7.2. The friend-or-foe lemma

The most fundamental property of primes is what we call the friend-or-foe
lemma:

Lemma 3.7.2 (friend-or-foe lemma). Let p be a prime. Let n € Z. Then, n is
either divisible by p or coprime to p, but not both.

Proof. The number p is prime, so its only positive divisors are 1 and p. Thus,
ged (n, p) must be 1 or p (since ged (n, p) is a positive divisor of p). So we are
in one of the following two cases:

Case 1: We have gcd (n,p) = 1.

Case 2: We have ged (1, p) = p.

Consider Case 1. In this case, gcd (1, p) = 1, so that n is coprime to p.
Moreover, 1 is not divisible by p (since otherwise, p would be a common divisor
of n and p, but a common divisor cannot be larger than the gcd, which is 1). So
the lemma is proved in Case 1.

Consider Case 2. In this case, gcd (1, p) = p > 1, so that n is not coprime
to p. Moreover, n is divisible by p (since p = ged (1, p) | n). So the lemma is
proved in Case 2. O

In contrast, if p > 1 is not a prime, then there exist integers n that are neither
divisible by p nor coprime to p. For instance, 14 is neither divisible by 6 nor
coprime to 6.
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3.7.3. Binomial coefficients and primes

Pascal’s triangle has yet another nice property we have not proved in the pre-
vious chapter: If p is prime, then all entries in the p-th row, except for the two
1’s at the left and right ends, are divisible by p. In other words:

Theorem 3.7.3. Let p be a prime. Letk € {1,2,...,p —1}. Then, p | (Z)

Proof. Exercise 5 (a) on HW#3 yields

(0)-r2)

an integer

Thus, p | k (IZ > . If we can show that p is coprime to k, then the coprime removal

theorem will thus yield p | (Z) , and we will be done. So it remains to show

that p is coprime to k.

The friend-or-foe lemma says that k is either divisible by p or coprime to p.
Since k cannot be divisible by p (since k € {1,2,...,p —1}), we thus conclude
that k is coprime to p. In other words, p is coprime to k. We are done. O

3.7.4. Fermat’s little theorem

It is easy to see that every integer a satisfy a> = amod 2 (since a> —a = a (a — 1)
is divisible by 2, because one of a and a — 1 is always divisible by 2).

Likewise, every integer a satisfies 4> = amod 3 (sincea® —a = (a+1)a(a—1)
is divisible by 3).

Unfortunately, the pattern breaks at 4: Not every integer a satisfies a* =
amod 4 (for example, a = 2 doesn't).

But the pattern reemerges at 5: Every integer a satisfies 2° = amod 5. (This
is a bit harder to check, since 2° —a = a(a —1) (a+1) (a*> + 1). Nevertheless,
it can be checked mechanically, since you can replace a by a%5 € {0,1,2,3,4}.)

The pattern again breaks down at 6, but reemerges at 7.

What is the actual pattern here?

Theorem 3.7.4 (Fermat'’s Little Theorem). Let p be a prime. Let 2 € Z. Then,
af = amod p.
Proof. We induct on a. This will only cover the case a > 0, so we will need an

extra argument for the case a < 0 afterwards.
Base case: The case a = 0 is saying 0 = 0mod p, which is obvious (07 = 0).
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Induction step: Let a € IN. Assume (as the IH) that 2 = amod p. We must
prove that (a +1)” = a+ 1modp.
The binomial formula yields

(a+1)P
— g Plap=1 4 (P24 ... p
a +(1)a +<2>a + +<p_1)a—l—1
=amodp  \ ~ <
(by the IH) divisible by p
(since the preceding theorem says
that p| Z for each ke{1,2,...,p—1})

= a + (a multiple of p) +1 = a+ 1mod p.

This completes the induction step.

So we have proved the theorem for all 2 > 0.

It remains to prove it for 2 < 0. So let a < 0. Set b := a%p. Then, b > 0, so
that b¥ = bmod p (since we have already proved the theorem for nonnegative
integers). However, b = a%p = amod p, so that b” = a” mod p. Hence,

a? =bP = b =amodp.
So the theorem is proved for a < 0 as well. (See the notes for details.) O

Remark 3.7.5. The converse of Fermat’s Little Theorem is not true: There
also exist some non-prime numbers p for which every a € Z satisfies a? =
amod p. These are called Carmichael numbers. One of them is 561.

3.7.5. Prime divisor separation theorem

You can think of the primes as “inseparable” positive integers: They cannot be
“broken apart” into two nontrivial factors.

This “inseparability” goes further than that: If a prime number p divides a
product ab of two integers, then it must divide a4 or b (or both). In other words:

Theorem 3.7.6 (prime divisor separation theorem). Let p be a prime. Let
a,b € Z be such that p | ab. Then, p |aor p | b.

Proof. We shall prove the claim in the following equivalent form: “If p t a, then
plb”.

Assume that p t a. We must then prove that p | b.

The friend-or-foe lemma yields that a is either divisible by p or coprime to
p. Since a is not divisible by p (because we assumed p t a), we thus conclude
that a is coprime to p. In other words, p is coprime to 4. Hence, the coprime
removal theorem lets us conclude p | b from p | ab. So we are done. ]
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This theorem crucially relies on p being a prime. For instance, it would break
for p=4,since4 |2-6but4/2and 416.
We can extend the above theorem to products of several factors:

Corollary 3.7.7 (prime divisor separation theorem for k factors). Let p be a
prime. Let ay,ay,...,a; € Z be such that p | aia; - - - ax. Then, p | a; for some
ie{l,2,...,k}.

(In words: If a prime divides a product of several integers, then it must
divide at least one of its factors.)

Proof. Induct on k. In the base case (k = 0), the claim is vacuously true since
p 1 1. In the induction step (from k to k + 1), write ajay - - - ay as (ajay - - - ax_1) ag,
and use the theorem. [

3.7.6. p-valuations: definition
We will need the following simple lemma:

Lemma 3.7.8. Let p be a prime. Let n be a nonzero integer. Then, there exists
a largest m € IN such that p™ | n.

Proof. We have p® = 1 | n, so the relation p™ | n is always satisfied for m = 0.
Every m > |n| satisfies p” > p/"l > |n|, so that p™ { n. So there are only
finitely many m € N satisfying p™ | n. In particular, there is a largest one.
Alternatively: The relation p™ | n means that n can be divided by p at least
m times without getting a non-integer. This can clearly not hold for arbitrarily
large m, since dividing n by p over and over will eventually produce a non-
integer (because each such division decreases |n|). So again, there is a last time
that it works, i.e., a largest m. O

Definition 3.7.9. Let p be a prime.

(a) Let  be a nonzero integer. Then, v, (1) shall denote the largest m € IN
such that p™ | n. In other words, v, (1) is the number of times that we can
divide n by p without getting a non-integer.

This number v, (n) is called the p-valuation (or the p-adic valuation) of 7.

(b) We also define v}, (0) (in order for v, (1) to exist for all n € Z). Namely,
we define it to be co. This symbol o is not an actual number, but we shall
pretend that it behaves like one. In particular, we can add and compare it to
other numbers, following the rules

k4+o00=00+k=0c0 forall k € Z;
00 + 00 = 00;
k < ooand oo > k forall k € Z.

(So oo acts like a “mythical number that is larger than any actual number”.)
As we said, oo is not really a number, but it plays its role well as long as we
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only add and compare. (If we start subtracting, things break: Subtracting
oo from 0 + o0 = 1 + oo would yield 0 = 1, which is wrong. So you cannot
involve oo in subtract.)

Here are some examples:
e We have
v3(99) =2 (since 32| 99 but 33 +99) ;

since 3° | 98 but 3! { 98) ;

v3 (96) = 1 <since 31| 96 but 32 1 96

4

We can view v, (n) in yet another way: If p is a prime and 7 is a positive
integer, then v, (1) is the number of zeroes at the end of the base-p represen-
tation of n. For example, the base-2 representation of 344 is 101011000, which
has three zeroes at the end, so that v, (344) = 3.

Note that the definition of v, (1) can be generalized to any integer p > 1
instead of p (not just a prime). But most of its useful properties require p to be
a prime.

3.7.7. p-valuations: basic properties

Lemma 3.7.10. Let p be a prime. Leti € IN and n € Z. Then, p' | n if and
only if v, (n) > i.

Proof. If n = 0, then this is clear (because both p’ | 0 = n and v, (n) = v, (0) =
oo > 7 hold in this case).

It remains to deal with the case n # 0. In this case, v, (1) is defined as the
largest m € IN such that p™ | n. Thus, in this case,

e ifi < v, (n), then p' | p»") | n;
o if i > v, (n), then p’ { n.
So we conclude that p’ | n if and only if i < v, (n). O

Next, we recall some standard notations: For any two numbers x and y,
we let min {x,y} and max {x,y} denote the smallest and the largest of x and
y. More generally, if S is any set of numbers, then min S and max S denote
the smallest and the largest elements of S (if these exist). These notations are
extended to co in the obvious way:

min {k, 00} = min {0, k} =k for any k € Z U {co};
max {k, 00} = max {00, k} = o0 for any k € Z U {0} .

Now, we can state a bunch of important facts about p-valuations:
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Theorem 3.7.11 (basic properties of p-valuations). Let p be a prime. Then:
(@) We have v, (ab) = vy, (a) + vy (b) for any a,b € Z.
(b) We have v, (a + b) > min {v, (a), vy (b)} for any a,b € Z.
(c) We have v, (1) =
(d) We have v (p) =
(e) We have v, (q) = 0 for any prime g # p.

Proof. (a) Let a,b € Z. We must prove that v, (ab) = v, (a) + v} (b).

If a = 0, then this boils down to co = 0 4 v, (b), which is obvious. Similarly
for b = 0. Thus, it only remains to handle the case when both 4 and b are
nonzero.

Consider this case. Then, v, (a) and v, (b) are nonnegative integers. Let’s
call them

n=uv,(a) and m = v, (b).

Thus, p" | a but p"*1 1 a4, and likewise p™ | b but p*! ¢ b.

We must prove that v, (ab) = n + m. In other words, we must prove that
p"t™ | ab but p" "1y ab.

From p" | a, we see that a = p"x for some integer x. This integer x cannot
be divisible by p (since otherwise, we would have x = px’ for some integer x/,
and therefore a = p"x = p"px’ = p"T'x’, which would contradict p"*! 1 a).

So we have written 4 as a = p"x for some integer x not divisible by p.

Similarly, we can write b as b = p™y for some integer y not divisible by p.

Hence, ab = p"x - p™y = p"t"xy, which immediately yields p" ™ | ab.

Remains to prove that p"*"*! { gb. Assume the contrary. Thus, p"*"*! |
ab. Since ab = p"™xy, this rewrites as p"T"*1 | p"*Myxy. Cancelling p" ™"
from this divisibility, we obtain p | xy. Hence, by the prime divisor separation
theorem, p | x or p | y. But this is impossible, since neither x nor y is divisible by
p. This contradiction shows that our assumption was false, and thus p"*"*+1 §
ab is true.

From p"*™ | ab and p"*™*1 { ab, we obtain vy, (ab) = n+m = v, (a) + vy (b),
so the proof is complete.

(b) Let a,b € Z. We must prove vy, (a +b) > min {v, (a), v, (b)}.

If @ = 0, then this is saying v, (b) > min {oco, v, (b)}, which is obvious. If
b = 0, then this is obvious for similar reasons. Thus, again, we only need
to care about the case when a and b are nonzero. In this case, set k :=
min {v, (a), v, (b)}. Then, both a and b are multiples of p* (since k < v, (a)
and k < vy, (b)). Hence, a + b is also a multiple of pF. In other words, by the
above lemma, v, (¢ +b) > k = min {v, (a), v, (b)}, so we are done.

(c) Follows from p° =1 | 1and p' = p1{ 1.

(d) Follows from p! = p | p and p? | p.

(e) Let g # p be a prime. Then, p 1 g (since the only positive divisors of g are
1 and g, but p is neither of them). In other words, p' t 4. But p° =1 | . So
vp () =0. 0
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Corollary 3.7.12. Let p be a prime. Then,
vp (mag---ax) = vp (a1) +vp (a2) + - - - +vp (ar)
for any k integers ay,ay, . .., a.

Proof. Induct on k. In the base case, use v, (1) = 0. In the induction step, use
part (a) of the theorem. O

3.7.8. Back to Hanoi

Proposition 3.7.13. Let n € IN. Recall the strategy for the Tower of Hanoi
puzzle with n disks.

Let k € {1,2,...,2" —1}. Then, the k-th move of this strategy moves the
(v2 (n) + 1)-th smallest disk.

This is proved in the notes (§3.6.9). The sequence

(02 (1), 02(2), 02(3), (%)) (4), 02(5), )
=(0,1,020103010201,04, ...

is known as the ruler sequence.

3.7.9. The p-valuation of n!

Theorem 3.7.14 (de Polignac’s formula). Let p be a prime. Let n € IN. Then,

o 3] 3] 5]

= (n//p") + (n/19%) + (n/ 19%) + -+

Proof idea. First of all, these are infinite sums. In truth, they are finite sums in
disguise, because only finitely many of their addends are nonzero. For instance,
for p =2 and n = 13, we have

n n n
PR A R ]
13 13 13
= |[6.5] +|3.25] 4 [1.625| 4 |0.8125] + |0.40625] + - - -
=6+3+1+0+0+0+0+---

Throw these away!

=6+3+1=10.
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n
Moreover, for every positive integer d, we have {EJ = n//d, so that the two
sums

5[5 (3]
and (n//p") + (n/70%) + (n/ /9%) + -

are equal. We thus only need to prove that these two sums equal v, (n!). In
other words, we must prove that

o 3] 3]+ L5

We can prove this by induction on n:

Base case: For n = 0, we must show that Up (1) = 0, which is obvious.

In the induction step, we proceed from n — 1 to n. So we assume (for a fixed
integer n > 0) that

n—1 n—1 n—1
vy ((n—1)!) = +{ J+{ J+
A {le p? P
We must prove that

o= 3] 5[5+

The trick is to show that the left hand sides of these two equations differ by
vp (1), and so do the right hand sides. For the left hand sides, this is easy:

vp (n!) = v, ((n—1)!-n) (since n! = (n—1)!-n)
=vp ((n—1)!) +ovp (n).

For the right hand sides, we recall the birthday lemma:
n n—1 .
LEJ:{ d J ifdfn;

EJ:V;JH ifd|n

This yields that

{%J:{”;JH ifi <o, (n);

{%J = V;lJ ifi >wv,(n).

Details in the notes (Theorem 3.6.15). O
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3.7.10. Prime factorization

We are now ready to prove one of the most important properties of primes: the
fact that any positive integer can be uniquely decomposed into a product of
primes. For instance,

200=2-100=2-2-50=2-2-5-10= 2-2-5-2-5
—

a product of primes

The word “uniquely” here means that any two ways of decomposing a given
n > 0 into a product of primes are equal up to reordering the factors. For
example, 200 = 5-5-2-2-2 counts as the same way.

Let us state this fact in full generality. First, we introduce a name for these
decompositions:

Definition 3.7.15. Let n be a positive integer. A prime factorization of n
means a finite list (p1, p2, ..., px) of primes (not necessarily distinct) such
that

n:plpz...pk'

For example, (2,2,5,2,5) and (5,5, 2,2,2) are two prime factorizations of 200.
The claim is that any prime factorization of 200 is the same up to the order of
its factors, i.e., consists of three 2’s and two 5’s.

More generally:

Theorem 3.7.16 (Fundamental Theorem of Arithmetic). Let n be a positive
integer. Then:

(a) There exists a prime factorization of 7.

(b) This prime factorization is unique up to reordering its entries. In other
words, if (p1,p2,...,px) and (q1,42,...,9¢) are two prime factorizations of
n, then (q1,492, . ..,q¢) can be obtained from (p1, p2, ..., px) by reordering the
entries.

(c) Let (p1,p2,--.,px) be a prime factorization of n. Let p be any prime.
Then, the number of times that p appears in this list (p1, p2,..., px) is vp (n).

Proof. (a) This was proved a while ago, as an example of strong induction.
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(c) By the definition of a prime factorization, n = p1pz - - - px. Thus,

vp (1) = vp (p1p2- - Pk)
=0y (p1) +0p (p2) + - +vp (px) (by the last corollary)

a sum of 0’s and 1’s, where the 1’s correspond to
the p;’s that equal p

since v, (p) = 1 and since v, (g) = 0
for all primes g # p

(the number of 1’s in this sum)

(the number of p;’s that equal p)

(the number of times that p appears in (p1,p2,...,Px)) -

(b) Let (p1,p2,--.,px) and (41,92, - -.,q¢) be two prime factorizations of n.

For any prime p, the number of times that p appears in (p1, p2, ..., px) is
vp (n) (by part (c)), but the number of times that p appears in (41,42, ...,4¢)
is also v, (n) (by part (c) again). Thus, any prime p appears the same num-
ber of times in (p1,p2,...,px) as it does in (g1,92,...,4¢). So the two lists
(p1,p2,--.,px) and (1,92, . . ., g¢) contain each prime the same number of times.
Thus, the two lists are equal up to order. In other words, one is obtained from
the other by reordering the entries. O

3.8. Least common multiples

Least common multiples (short: lcms) are a counterpart to greatest common
divisors (gcds).

Definition 3.8.1. Let a2 and b be two integers.

(a) The common multiples of a and b are the integers that are divisible by
both a and b simultaneously.

(b) The least common multiple (aka the lowest common multiple, or just
the Icm) of a and b is defined as follows:

e If a and b are nonzero, then it is the smallest positive common multiple
of a and b.

e Otherwise, it is 0.

It is denoted by lem (a, b).
Some examples:

e We have lem (3,4) = 12.
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We have lcm (6,4) = 12.

We have lem (6

4

(6

(6,8) =
We have lem (3, 6)

(0,5)

(

We have lem (0

4

We have lem (3, —4) = 12. (In fact, the multiples of —4 are just the multi-
ples of 4.)

Note that the lem of positive integers is a well-known concept: The lowest
common denominator of two fractions is precisely the lcm of their denomina-
tors.

Theorem 3.8.2. Let a2 and b be two integers. Then:
(a) The lcm of a and b exists.
(b) We have lcm (a,b) € IN.
(c) We have lem (a,b) = lem (b, a).
(d) We have a | lem (a,b) and b | lem (a, b).
(e) We have lem (—a,b) = lem (a,b) and lem (a, —b) = lem (a, b).

Proof. (a) If a or b is 0, then this is clear by definition.
Otherwise, we need to show that there is a positive common multiple of a
and b. To do so, we just notice that |ab| is such a multiple.

(b), (c), (d) Obvious.
(e) This is because divisibility does not depend on signs. O

Recall the universal property of the gcd, which says that
(m|aand m | b) <= (m|gecd(a,b)).
There is an analogous property for lecms:

Theorem 3.8.3 (universal property of the lcm). Let a, b, m € Z. Then, we have
the equivalence

(a|mand b | m) <= (lem(a,b) | m).

In words: The common multiples of a and b are precisely the multiples of
lem (a, b).

Proof. <=: Assume that lem (a,b) | m. We must prove thata | m and b | m.
We have a | lem (a,b) | m, thus a | m. Similarly, b | m.
<=: Assume that a | m and b | m. We must prove that lem (a,b) | m

24. (In fact, the positive multiples of 8 are 8, 16, 24, ...

)
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If a or b is O, then this is easy (since if a or b is 0, then a | m and b | m entails
m = 0, so that lem (a,b) | 0 = m). It remains to consider the other case.

In this other case, 2 and b are nonzero, so that lcm (g, b) is literally the smallest
positive common multiple of a and b. Let us denote it by ¢. So ¢ = lem (a,b) >
0.

Now, let q := m//{ and r := m%/ be the quotient and the remainder of
dividing m by ¢. Then,

ge”z and re{0,1,...,0—1} and m=qgl+r.

Fromr € {0,1,...,0 — 1}, we getr < /.

From m = g¢ + r, we obtain r = m — gf. Since both m and ¢ are multiples of
a (because a | m and ¢ = lem (a, b)), the difference m — g is a multiple of a. In
other words, r is a multiple of a (since r = m — g{). Similarly, r is a multiple of
b. So r is a common multiple of a and b.

If  was positive, then r would thus be a positive common multiple of a4
and b, and therefore r > ¢ since / is the smallest positive common multiple
of a and b; but this would contradict » < ¢. So r cannot be positive. Since
r € {0,1,...,¢ — 1}, this entails that » = 0. Thus, m%¢ = r = 0, so that ¢ | m.
Since ¢ = lem (a,b), so this means that lem (a,b) | m. Qed. O

The ged and the lem of two integers are related by the following formula:

Theorem 3.8.4. Let a and b be two integers. Then,

ged (a,b) -lem (a,b) = |ab|.

Proof sketch. (See a reference in the notes for a detailed proof.)

The case when a or b is 0 is easy. Consider the other case. Argue that
ab
ged (a,b)
of the lem) a multiple of lem (a,b). Thus,

ab
lem (ﬂ, b) | M, and thus

ged (a,b) -lem (a, b) | ab.

is a common multiple of a and b, and thus (by the universal property

On the other hand, is an integer (by the universal property of the

ab
lem (a, b)
lem) and divides ged (a, b) (by the universal property of the ged, since it divides
both a and b). Thus,

ab |
lem (a, b)
ab | ged (a,b) -lem (a,b) .

ged (a,b), and thus




Math 221 Winter 2024, version March 14, 2024 page 94

Now recall that if two integers x and y mutually divide each other (i.e., satisfy
x |y and y | x), then |x| = |y|. Hence, from

ged (a,b) - lem (a,b) | ab and
ab | ged (a,b) -lem (a,b),
we obtain
|ged (a,b) - lem (a,b)| = |ab| .
The LHS does not need || brackets because the thing inside is already > 0. [

Both gcds and lems have easily computable p-valuations:

Theorem 3.8.5. Let p be a prime. Let a and b be two integers. Then,

vp (ged (a,b)) = min {op (a), v, (b)};
vp (lem (a,b)) = max {v, (a), v, (b)}.

Proof. See the reference in the notes. Or do it yourself using the universal
properties and using the properties of p-valuations. O

This theorem gives an easy way to compute gcd (a,b) and lem (a,b) if you
know the prime factorizations of 4 and b. For instance, knowing that 54 =
21.3% and 12 = 22 - 3! we obtain

ged (54, 12) =21 .31 = ¢;
lem (54, 12) = 22-3% = 108.
If you don’t know prime factorizations of 4 and b, then the best way to com-

pute ged (a,b) and lem (a, b) is to first compute ged (a,b) by the Euclidean al-
gorithm, and then solve the equation

ged (a,b) -lem (a,b) = |ab|
for lem (a, b).

Finally, let me notice that gcds and lecms can also be defined for multiple
(more than two) numbers. They satisfy most of the same properties, except
that the formula

ged (a,b) -lem (a,b) = |ab|

becomes more complicated (not ged (a, b, ¢) -lem (a, b, ¢) = |abc| but ged (a,b, ¢) -
lem (be, ca, ab) = |abc|). See the notes for a reference.
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3.9. Sylvester’s xa + yb theorem (aka Chicken McNugget
theorem)

Now we recall the coin problem from Chapter 1: what denominations can be
paid with 3-cent coins and 5-cent coins without taking change.

Let us generalize this problem: Given a,b € IN, we want to know what
denominations can be paid with a-cent coins and b-cent coins without taking
change. As a warmup, let us solve this problem with change as well. We
introduce notations first.

For this entire section, we fix two positive integers a and b.

Definition 3.9.1. (a) A Z-linear combination (short: Z-LC) of a and b will
mean a number of the form

xa+yb with x,y € Z.

In other words, it means a number of cents that you can pay using a-cent
coins and b-cent coins if you can take change.
(b) An IN-linear combination (short: IN-LC) of 2 and b will mean a number
of the form
xa +yb with x,y € IN.

In other words, it means a number of cents that you can pay using a-cent
coins and b-cent coins without taking change.

The result we found back a while ago is that the IN-LCs of 3 and 5 are

0, 3,5 6, 8 9 10, ....
~—_———

all integers n>8

A similar (but more exhausting) analysis shows that the IN-LCs of 5 and 9
are

0,5 9 10, 14, 15, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, ....

all integers n>32

What can we say about the general case? We see some patterns in the above
two examples:

* There is a threshold value after which every denomination can be paid.

* Exactly half of the nonnegative integers below this threshold value can be
paid.

¢ The threshold value is a power of 2.
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The first two of these patterns generalize; the third does not. However, there
is a hidden requirement here: a and b need to be coprime. (If 2 and b have
a common divisor 4 > 1, then any IN-LC of 2 and b is also a multiple of d,

and thus non-multiples of d cannot be paid.) But the coprime case is the only

. . . . . a
interesting case, since in the other case you can just replace a and b by ocd (a,5)
ged (a,

and m and all the IN-LCs of a and b will also be shrunk by ged (a,b).
In this C(;prime case, the following result (by J. J. Sylvester, 1884) tells us that
our first two patterns generalize:

Theorem 3.9.2 (Sylvester’s two-coin theorem). Assume that the two positive
integers a and b are coprime. Then:

(a) Every integer n > ab —a — b is an N-LC of 2 and b.

(b) The number ab — a — b is not an IN-LC of a and b.

(c) Among the first ab — a — b + 1 nonnegative integers 0, 1, ..., ab—a —b,
exactly half are N-LCs of 2 and b.

(d) Let n € Z. Then, exactly one of the two numbers n and ab—a —b —n
is an IN-LC of a and b.

This theorem does not characterize the IN-LCs of a2 and b are completely,
but it makes their characterization into a finite problem that you can give to a
computer (since there are only finitely many values 1,2,...,ab—a—-b —1 to
check).

A proof of this theorem can be found in the notes (§3.8).

For comparison:

| Theorem 3.9.3. The Z-LCs of a and b are just the multiples of ged (4, b).

Proof. Easy using the Bezout theorem. (See the notes.) O

3.10. A bit of cryptography

Cryptography is the study of ciphers, i.e., methods of encrypting data (usually
text). It is a whole science in itself (not part of mathematics, but using a lot of
mathematics).

We will see an ancient (Roman) and a modern (20th century) cipher. There
are many more, and you can learn about them from various books, some of
which are cited in the notes. Most ciphers are based on number theory.

3.10.1. Caesarian ciphers (alphabet rotation)

We begin with an encryption algorithm used by Julius Caesar to encrypt mili-
tary communications. We assume that our messages are text and are written in
the modern English alphabet, all in uppercase.
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The modern English alphabet has 26 letters, and we assign a number to each
of them:

A|B|C/ D E|F|G|H| I|]J | K|L|M
oO|1(2|3|4 (5|6 |7 |8|]9 101112

N|O|IP|Q|R|S|T|U|V W X]|Y]|Z
131141516 |17 |18 |19 |20 |21 |22 |23 |24 |25

Thus, each letter corresponds to a unique number in the set {0,1,...,25}. For
instance, F = 5 and X = 23 and N = 13. This is called numeric encoding of

letters.
A word is just a finite list of letters, and thus can be encoded as a finite list
of numbers (in the set {0,1,...,25}) using the numeric encoding. For instance,

KITTEN — (K, I, T, T, E,N) — (10, 8, 19, 19, 4, 13).

Conversely, any finite list of numbers (in this set) can be decoded into a word
(not necessarily a meaningful one). For instance, (17, 0, 19) — RAT.

Now we can formulate Caesar’s algorithm, which is nowadays known as the
“Caesarian cipher ROT3":

Caesarian cipher ROTj3: To encrypt a word, proceed as follows:

1. Encode the word as a finite list of numbers (a1, 4y, ...,4,) using the nu-
meric encoding.

2. Replace each number 4; in this list by (a; + 3) %26.

3. Decode the resulting list back into a word.

For example,
CRAZY — (2,17, 0, 25, 24) — (5, 20, 3, 2, 1) — FUDCB.

In other words, if we view the alphabet as being wrapped around a dial, then
ROTj shifts each letter by 3 steps along this dial.

How do we decrypt a word encrypted using ROT3z ? Using the following
algorithm:

Caesarian cipher ROT_3: To decrypt a word, proceed as follows:

1. Encode the word as a finite list of numbers (a1, 4y, ...,4,) using the nu-
meric encoding.

2. Replace each number g4; in this list by (a; — 3) %26.
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3. Decode the resulting list back into a word.

More generally, for any integer k, we can define the ROT} encryption/decryption
algorithm as follows:

Caesarian cipher ROT): To en/decrypt a word using a given integer k, pro-
ceed as follows:

1. Encode the word as a finite list of numbers (a1, 4y, ...,4,) using the nu-
meric encoding.

2. Replace each number 4; in this list by (a; + k) %26.
3. Decode the resulting list back into a word.
We can easily see the following:

* The ROT} algorithm is undone by the ROT_j algorithm. In other words,
a word encrypted using ROT; will always be decrypted using ROT _.

* The ROTj algorithm does nothing: The encrypted word will be just the
original word.

e The ROTy4 algorithm also does nothing: (a4 26) %26 = a for each a €
{0,1,...,25}.

* More generally, if two integers k and ¢ satisfy k = ¢ mod 26, then ROT} =
ROT). Thus, there are only 26 distinct Caesarian ciphers, namely

ROT,, ROT;, ROT,, ..., ROTys.

Any other ROTj is just a duplicate of one of these 26. Out of these 26,
only 25 are useful as ciphers, since ROT does nothing.

* If k and ¢ are two integers, then applying ROT; and ROT, consecutively
yields the same result as just applying ROT,.

* The algorithm ROTj3 undoes itself —i.e., a word encrypted using ROT;3
can be decrypted by applying ROT;3 again. Indeed, applying ROT;3 and
ROTy3 consecutively gives ROTq313 = ROTy = ROT\, which does noth-
ing.

These observations are obvious if you view ROTj as shifting each letter by
k steps on the alphabet dial. If you want to prove them rigorously using the
remainder definition, you need to recall the facts that

* two integers a and b satisfy 2 = bmod 26 if and only if 2%26 = b%26, and

e the remainder 1%26 is the unique integer in {0, 1, ...,25} that is congruent
to 2 modulo 26.
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For example, to prove that ROT_j; undoes ROT}, you need to show that if
a€{0,1,...,25} and b = (a + k) %26, then a = (b — k) %26. This can be done
as follows:

b= (a+k)%26 = b=a+kmod26
— b—k=amod?26
= a=b—kmod?26
= a= (b—k) %26

sincea € {0,1,...,25}.

3.10.2. Keys and ciphers

Caesarian ciphers are not very secure. They are one-trick ponies: Once your
enemy knows the cipher, he can decrypt anything you encrypt. Even if he does
not know the k, he can easily find it given a bit of ciphertext. In fact, there are
only 25 reasonable Caesarian ciphers

ROT;, ROT,, ..., ROTys,

and you can easily tell which one I am using by trying to decrypt using each
one and seeing which of the results will not be gibberish. In modern terms, the
key size is too small. So we need better methods. Next time we will see some.

Example: Let’s say you know that the ROTy-encrypted ciphertext is “BPQA
QA VWB BPM EIG”, but you don’t know what k is. How do you decrypt the
text?

You just apply each of ROTy, ROT;, ROT,, ..., ROTjs5, and see which of
them results in non-gibberish text. The answer is ROTyg, and the text you get
is “THIS IS NOT THE WAY”. So the k was —18 or, equivalently, 8.

So Caesarian ciphers are a bad cipher, at least for two reasons: The key size is
too small (26), and the encryption algorithm is not “chaotic” enough (e.g., each
letter is encrypted by the same rule). Over the centuries, people have invented
better ciphers, which solve one or the other of these reasons. Some examples:

* Monoalphabetic cipher: Instead of shifting each letter, we apply an arbi-
trary permutation to the alphabet. For instance, let me choose the permu-
tation

A|B|C|D|E GIH| I|]J |K|L
O/E|T|LIR|IQIA|X|V |F|K|C|T

i

Z
<
os)
)]
=
<
O
=
T
O
c
N
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Thus, for example, the word KITTEN becomes KVMMRN.

This cipher has a much bigger key size than a Caesarian cipher, since the
keys are now the permutations of the whole alphabet, and (as we will
soon see) there are 26! = 403291461 126 605 635 584 000 000 of them. You
cannot just try them all and see which of them works.

Nevertheless, if your text is long enough, the “lack of chaos” in this
method will eventually betray you. For instance, equal letters in the ci-
pher text come from equal letters in the plain text; the frequencies of the
letters have been preserved even if permuted (and this is useful, since
some letters are much more frequent than others); certain pairs of letters
rarely appear consecutively; and so on.

Certain variants have been suggested, which are less prone to some of
these issues.

* Viginere code: This like a Caesarian cipher, except that each letter gets a
different k added to it, depending on its position. So the key is an infinite
(or sufficiently long) sequence

(k1,kz,k3,...) of integers in {0,1,...,25} (or any integers).

To encrypt a word, you encode it as a sequence (a1, 4y, . .., a,) of numbers;
then you replace each number a; by (a; + k;) %26; then you decode the
resulting sequence back into a word.

This cipher is actually unbreakable if the key (ky,k, k3, .. .) really is a ran-
dom sequence of arbitrary numbers in {0, 1, ...,25}. However, to achieve
this in practice, you need a codebook —i.e., a book full of random letters
in a well-defined order. The sender and the receiver must both have a
copy of the codebook. The total length of the codebook should be at least
as large (or at least comparable to) the total length of the text the sender
wants to send. This makes the method impractical in many situations.

If you “cheat” —e.g., if you repeat a key, i.e. if you pick a periodic sequence
(k1,ko, k3, ...) — then the cipher quickly becomes breakable.

Many other techniques have been developed over the centuries to keep infor-
mation secure. See Simon Singh’s “Code Book” for the history and for many
examples.

3.10.3. The RSA cipher

All the methods discussed above are classical ciphers. Generally, any cipher
constructed before the 20th century is called classical. These ciphers have one
thing in common: They can be used (for encryption and decryption) with pen
and paper, without the use of computers. In the mid-20th century, computers
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came along, and with them a new generation of ciphers, which require com-
puters to encrypt/decrypt text with. These are called modern ciphers.

With computers, basically all classical ciphers are breakable (unless the ci-
phertext is too short). Breaking classical ciphers was one of the reasons why
computers were developed during WWIL.

We will show one “simple” example of a modern cipher, namely the RSA
cipher (invented in the 1970s/80s by Rivest, Shamir and Adleman). It is again
based on division with remainders and modular arithmetic.

One interesting thing about the RSA cipher is that it works in a less fair-
weather situation than most classical ciphers. In a classical cipher, usually, the
sender and the receiver must have agreed on the key (e.g., the k in a Caesarian
cipher) secretly. If the eavesdropper has been able to listen to this agreement, he
will know the key and the cipher will be useless. In contrast, in the RSA cipher,
the parties can agree on their keys even over a completely public channel!

Here is how RSA works. Assume that Albert and Julia are communicating
over a public channel (e.g., the Internet). Julia wants to send Albert a message
that no eavesdropper will understand. But Albert and Julia have not exchanged
keys in advance. How can they communicate secretly?

Setup:

¢ Julia tells Albert (over the channel) that she wants to communicate and
thus he should start creating keys.

* Albert generates two distinct large and sufficiently random primes p and
q.
[How? “Sufficiently random” numbers can be created in many ways,
e.g., using Geiger counters or other ways to observe physical processes.
Sooner or later you will find a prime number. To check whether a given
number is prime, there are several reasonably fast algorithms — e.g., the
Solovay-Strassen test.]

¢ Albert computes the product m = pgq. This number m (called the modu-
lus) he makes public.

[Note that it is hard to reconstruct p and g from m. At least, no fast
algorithm is known to factor a large number into primes. Maybe someone
will find one and the whole cipher will get broken.]

e Albert computes the product { = (p — 1) (9 — 1), but keeps this private.

* Albert randomly picks an integer e € {2,3,...,¢ — 1} that is coprime to /.

[Again, he can do this by picking random numbers. Sooner or later, he
will find one that is coprime to ¢. To check coprimality quickly, he can
compute ged (e, /) by the Euclidean algorithm.]
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¢ Albert computes a positive integer d such that ed = 1 mod /.

[How? We have 1 = gcd (e,¢) = xe + yl for some integers x and y,
by Bezout’s theorem. These x and y can be computed by the extended
Euclidean algorithm. Then, 1 = xe + yf = xe = exmod /. So Albert can
just take d = x.]

e Albert publishes the pair (¢, m) as his public key.

* We assume that the message that Julia wants to send to Albert is an ele-
ment of {0,1,...,m — 1}. (If the message is longer, she just breaks it into
chunks of size m and encrypt each chunk separately.)

Encrypting a message:

If Julia wants to send a message a € {0,1,...,m — 1} to Albert, she just sends
a®%m. In other words, she encrypts her message by taking it to the e-th power
and taking its remainder upon division by m.

[How to compute this? a° will often be a huge number. However, a°%m can
easily be computed without having to compute a°. For instance,

a>%m = ((az%m> a) Yom;
a*%m = <<<a2%m> a) %m> a%m

= (a®*%m 2%m;
(a2em)

In particular, you can use binary exponentiation, and each time you encounter
a number larger than m, you replace it by its remainder upon division by m.]

Decrypting a message:
When Albert receives an encrypted message b € {0,1,...,m —1}, he de-
crypts it by taking b?%m.

Why does this work? It boils down to the following fact:

Proposition 3.10.1 (correctness of RSA). Let p and g be two distinct primes.
Letm =pgand ¢/ = (p —1) (g —1). Let e and d be two positive integers such
that ed = 1mod ¢. Leta,b € {0,1,...,m — 1} be such that b = a°%m. Then,
a = b?%m.

To prove this proposition, we need the following lemma:

Lemma 3.10.2. Let p and g be two distinct primes. Let N be a positive integer
such that N = 1mod (p — 1) (g — 1). Let a be any integer. Then,

a™ = amod py.
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Example 3.10.3. Let p = 3 and g = 5 and N = 9 (this does satisfy N =
1mod (p —1) (g — 1)). Then, the lemma says that

a° = amod 15.

Proof of the lemma. The primes p and g are distinct, and therefore coprime (why?).
Our goal is to prove the congruence a = amod pg, that is, the divisibility
pq | aN —a. By the coprime divisors theorem, this would follow if we can show
the two divisibilities p | a¥ —a and g | " — a (since p and g are coprime). So
let us prove these two divisibilities.

Specifically, we will only prove p | a — 4, since the proof of g | aV¥ —a. In
other words, we will prove a¥ = amod p.

Now N=1mod(p—1)(qg—1),sothat (p—1)(g—1) | N—1. Hence,

p—1[(p-1)(@g-1)[N-1L

So N—1 = (p—1)c for some integer c. Consider this c. Easily, ¢ > 0. So
N=(p—1)c+1.
For example, assume that c = 4. Thus, N=(p—1)-4+1, s0

aN — a(p—l)-4+1 — gh—1gp—1,p-1 ab—1,
——
=aP=amod p
(by Fermat'’s Little Theorem)
=g 1gP~1 af g
S~
=aP=amod p
(by Fermat'’s Little Theorem)
=g~} a’~1a
—
=aP=amod p

(by Fermat'’s Little Theorem)

a’1g = amod p.
N~
=aP=amod p
(by Fermat’s Little Theorem)

The same argument works for any c¢: We have

aN = a(pfl)c+1 e apflapfl e apfl apfla
——"
=aP=amod p
(by Fermat'’s Little Theorem)
=gl 1gp1 aP g ( d i
= e same product with one fewer factor)
—

=aP=amod p
(by Fermat'’s Little Theorem)

L L L (same product with one fewer factor)
--- =amod p.

So we have shown that a¥ = amod p, qed. O
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Proof of the proposition. We have b = a®%m = a® mod m. Taking this congruence
to the d-th power, we find

v = (a°)" = a* mod m.

But ed = 1mod /. In other words, ed = 1mod (p — 1) (9 —1). So the lemma
(applied to N = ed) yields
2 = amod pq, that is,

a° = amod m.

Thus, b? = a®® = amod m. Thus, b?%m = a%m = a, qed. O

In practice, for RSA to be reasonably secure, you need to apply it “right”, in
particular

¢ making sure that your random primes p and g really are random;
¢ avoiding certain “unsafe” primes;

* not reusing p without reusing 4.

The RSA cipher is symmetric: If Albert wants to respond to Julia, he can use
his decryption method as encryption, and Julia can do similarly.

RSA can be used not just for secret communications, but also for authentifi-
cation. As I said, it is essentially secure by modern standards. Nevertheless,
better ciphers have been invented, such as elliptic curve cryptography, which is
roughly the same idea but working with more complicated structures instead
of numbers in {0,1,...,m —1}. See a real course on cryptography to learn
about those.

4. An informal introduction to enumeration

Enumeration is a fancy word for counting — i.e., answering questions of the
form “how many things of a certain type are there?”. Here are examples of
such questions:

* How many ways are there to choose 3 odd integers between 0 and 20, if
the order matters? The answer is 1000.

* How many ways are there to choose 3 odd integers between 0 and 20, if
the order does not matter? The answer is 220.
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* How many ways are there to choose 3 distinct odd integers between 0 and
20, if the order matters? The answer is 720.

* How many ways are there to choose 3 distinct odd integers between 0 and
20, if the order does not matter? The answer is 120.

* How many prime factorizations does 200 have (counting different order-
ings as distinct)? The answer is 10.

* How many ways are there to tile a 2 x 15-rectangle with dominos? The
answer is 987.

e How many addends do you get when you expand the product (a +b) (c+d +e) (f + g)
? The answeris 2-3-2 = 12.

¢ How many positive divisors does 24 have? Let’s list them: 1, 2,3, 4, 6,8, 12, 24.
So there are 8.

We will first solve a few basic counting problems informally, and then (in the
next chapter) make the underlying concepts rigorous, and finally come back to
solve more counting problems.

4.1. A refresher on sets

The notion of a set is one of the most fundamental things in mathematics, and
it cannot be formally defined.

Informally, a set is a collection of objects (numbers, matrices, functions, or
other sets, or whatever else comes to your mind) that knows which objects it
contains and which it doesn't.

That is, if S is a set and p is any object, then S can either contain p (in which
case we write p € S) or not contain p (in which case we write p € S). There is
no such thing as “containing p twice”.

The objects that a set S contains are called the elements of S; they are said to
belong to S (or lie in S, or be contained in S).

A set can be finite or infinite (i.e.,, contain finitely or infinitely many ele-
ments). It can be empty (i.e., containing nothing) or nonempty (i.e., containing
something).

An example of a set is the set of all odd integers. This set contains each odd
integer, but nothing else. Generally, “the set of X” means the set that contains
X and nothing else.

A finite set can be written by listing its elements. For example, the set of all
odd integers between 0 and 10 can be written as

{1,3,5,7,9}.

The symbols { and } around the list are known as set braces; they signify that
whatever stands between them goes into the set.
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Some more examples of finite sets are

{1,2,3,4,5},

{1,2},

{1} (this set only contains the element 1),
{} (the empty set, also denoted @),

{1,2,...,1000}

the “...” refers to a pattern that
should be clear from the context |~

Some infinite sets can also be written in this form:

{1,2,3,...} (this is the set of all positive integers),
{0,1,2,...} (this is the set of all nonnegative integers),
{4,5,6,...} (this is the set of all integers > 4),
{—-1,-2,-3,...} (this is the set of all negative integers),
{...,—2,-1,0,1,2,...} (this is the set of all integers) .

Some other infinite sets cannot be written in this form. For example, how would
you list all rational numbers?

Another way to describe a set is simply by putting a description of its ele-
ments in set braces. For example,

{all integers} (this is the set of all integers),
{all integers between 3 and 9 inclusive},
{all real numbers} .

Often, you want to define a set that contains all things of a certain type that
satisfy a certain condition. For example, let’s say you want all integers x that
satisfy x? < 20. The notation for this is

{x is an integer | x> < 20} .

The vertical bar | here should be read as “such that” (don’t mistake it for a
divisibility sign). The part before this bar tells you what things you are consid-
ering. The part after this bar imposes a condition (or several) on these things.
The result is the set of all things that satisfy this condition. For instance,

{x is an integer | x* < 20}

= {all integers whose squares are smaller than 20}
={-4,-3,-2,-1,0,1,2,3,4}.

Some authors put a colon : instead of the vertical bar |.
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Some sets have standard names:

Z = {all integers} ={...,—2,-1,0,1,2,...};
IN = {all nonnegative integers} = {0,1,2,...};
Q = {all rational numbers} ;

R = {all real numbers};

C = {all complex numbers};

o=} (this is the empty set) .

Using these notations, we can rewrite
{x is an integer | x* < 20} as {x cZ | ¥* < 20}.

Yet another way of defining sets is when you let a variable range over a given
set and collect certain derived quantities. For instance,

{x2+2 | x e {1,3,5,7,9}}

means the set whose elements are the numbers x? + 2 for all x € {1,3,5,7,9}.
Explicitly,

{x2+2 | x € {1,3,5,7,9}}
_ {12+z, 3242 5242, 7242, 92+2}
= {3, 11, 27, 51, 83}.
In general, if S is a given set, then the notation
{an expression | x € S}

means the set whose elements are the values of the given expression for all
X €S.
Some more examples of this:

{le |x € {1,2,3,4}}

1+12+13+1 4+1
27 37 4

1
345
{2151511}

{x2%5 | x € N} - {02%5, 1295, 22%5, 32%5, 42%5, 5%5, 62%5, }

={0,1,4,41,0,1,4,4,...}
—{0,1,4}

and
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(since the only elements are 0, 1 and 4).
Let me stress once again that a set cannot contain an element more than once,
and does not come with a specified order on its elements. So

{1,2} ={2,1} = {1,2,1} = {2,1,1,2,1,2,1,1,1,2}.

Sets can be compared and combined in several ways:

Definition 4.1.1. Let A and B be two sets.

(a) We say that A is a subset of B (and we write A C B) if each element of
A is an element of B.

(b) We say that A is a superset of B (and we write A D B) if each element
of B is an element of A. This is equivalent to B C A.

(c) We say that A = B if the sets A and B contain the same elements. This
is tantamount to saying that both A C Band A O B.

(d) We define the union of A and B to be the set

A U B :={all elements that are contained in A or B}
={x | x€ Aorx € B}.

(The “or” is non-exclusive, as usual.)
(e) We define the intersection of A and B to be the set

AN B :={all elements that are contained in both A and B}
={x | x € Aand x € B}.

(f) We define the set difference of A and B to be the set

A\ B :={all elements that are contained in A but not in B}
={x | xeAandx¢B}={x€ A | x¢ B}.

Some authors denote this by A — B.

(g) We say that A and B are disjoint if AN B = @ (that is, A and B have
no elements in common).
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For example,

{3,5,7} € {1,2,3,4,5,6,7},
{1,2,3,4,5,6,7} D {3,5,7},
we don’t have {3,5,7} C {1,2,3,4,5,6},
{1,2,3} = {3,2,1},
{1,3,5} U{3,6} ={1,3,5,3,6} = {1,3,5,6},
{1,3,5} n{3,6} = {3},
[1,3,5)\ {3,6} = {1,5,
{3,6}\ {1,3,5} = {6},
Z \ N = {all negative integers} = {—1,-2,-3,...}.

Moreover, the sets {1,2,4} and {3,5} are disjoint, since {1,2,4} N {3,5} = @.

Definition 4.1.2. Several sets Ay, Ay, ..., Ay are said to be disjoint if any two
of them (not counting a set and itself) are disjoint, i.e., if A; N A; = & for all
i <j.

For example, the three sets {1,6}, {2,7}, {3,4} are disjoint, but the three
sets {1,6}, {2,7}, {3,6} are not (since {1,6} N {3,6} # ©).

4.2. Counting, informally

Now let us see how the elements of a set can be counted. We have no rigorous
definition of counting yet, so we will be working somewhat informally, but
once we find that definition (in two chapters), all our arguments will become
rigorous with little changes.

For example, the set of all odd integers between 0 and 10 has 5 elements,
which we can list directly: they are 1,3,5,7,9. More generally:

1
Proposition 4.2.1. Let n € IN. Then, there are exactly (n+1) //2 = V * J

2

odd integers between 0 and 7 (inclusively).

n+1

Informal proof. The equality (n+1)//2 = { J follows from something we

have done a while ago (n//d = n ). It remains to prove that there are exactl
& p y

d

1
V —2'_ many odd integers between 0 and n.

We will prove this claim by induction on n:
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1
Base case: For n = 0, the claim says that there are exactly {O%J many odd

0+1
integers between 0 and 0. This is true, since {%J = 0 is really the # of odd

integers between 0 and 0.
Induction step: Let n be a positive integer. Assume (as IH) that the claim

holds for n — 1. That is, assume that there are exactly {gJ many odd integers
between 0 and n — 1. Our goal is to prove that our claim holds for 7, i.e., that

1
there are exactly {%J many odd integers between 0 and .

In other words, our IH is that

(# of odd integers between 0 and n — 1) = LEJ ,

and our goal is to show that

(# of odd integers between 0 and n) = V i 1J .

2

We are in one of the following two cases:

Case 1: The number 7 is even.

Case 2: The number 7 is odd.

Consider Case 1. Here, n is even. Thus, n is not odd. Therefore, the odd
integers between 0 and n are exactly the odd integers between 0 and n — 1
(since the newcomer 1 does not qualify as odd). Thus,

(# of odd integers between 0 and n)
= (# of odd integers between 0 and n — 1)

- L;J (by the IH)
= VI _2'_ 1J (by the birthday lemma) .

So the goal is proved in Case 1.
Now consider Case 2. Here, n is odd. Therefore, the odd integers between 0

and n are the odd integers between 0 and n — 1 along with the new integer n.
Thus,

(# of odd integers between 0 and 1)
= (# of odd integers between 0 and n — 1) +1

- {;J +1 (by the TH)
= {n —Zi_ 1J (by the birthday lemma) .

So the goal is achieved in Case 2 as well.
Thus, we are done in both cases, so the induction step is complete. ]
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Note: We only called this proof “informal” since we don’t yet know what
counting means. Other than that, it is rigorous, so we won’t need to reprove
the proposition after giving the formal definition of counting.

Proposition 4.2.2. Let a,b € Z be such thata < b+ 1.

Then, there are exactly b —a + 1 numbers in the set
{a, a+1,a+2, ..., b}. In other words, there are exactly b —a + 1
integers between a and b (inclusive).

Note that the condition 2 < b + 1 ensures that b —a + 1 is not negative.
Of course, if a > b, then the set {a, a+1, a+2, ..., b} is empty, so it has 0
elements.

| Convention 4.2.3. We agree to use the symbol “#” for “number”.

4.3. Counting subsets
4.3.1. Counting them all

Now let us count something less trivial numbers.
Let us count the subsets of the set {1,2,3}. These are

{1y, {v3}, {v2y, {123}, {}, {23}, {2}, {3}
There are 8 of them. More examples:
e There are 4 subsets of {1,2}, namely {}, {1}, {2}, {1,2}.

* There are 2 subsets of {1}, namely {} and {1}. (Note that any set A
satisfies {} C Aand A C A.)

* There is 1 subset of {}, namely {} itself.
e There are 16 subsets of {1,2,3,4}.
At this point, the pattern should be clear:
Theorem 4.3.1. Let n € IN. Then,

(# of subsets of {1,2,...,n})=2".
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Informal proof. We induct on n.

Base case: The set {1,2,...,0} is empty, and thus has exactly 1 subset. This
matches 2 = 1. So the theorem holds for 1 = 0.

Induction step: We proceed from n — 1 to n. Thus, let n be a positive integer.
Assume (as [H) that

(# of subsets of {1,2,...,n—1}) = on=1,

Our goal is to prove that

(# of subsets of {1,2,...,n}) <o,
We define

e ared set to be a subset of {1,2,...,n} that contains n;

* a green set to be a subset of {1,2,...,n} that does not contain n.

For example, if n = 3, then the red sets are

{3}, {1,3}, {2,3}, {1,2,3},

whereas the green sets are

{3, {1}, {2}, {v2}.
Each subset of {1,2,...,n} is either red or green, but not both. Hence,

(# of subsets of {1,2,...,n})
= (# of red sets) + (# of green sets) .

So let us now count the red sets and the green sets separately.

We start with the green sets: These are the subsets of {1,2,...,n} that do not
contain 7. In other words, they are just the subsets of {1,2,...,n—1}. Hence,

(# of green sets) = (# of subsets of {1,2,...,n—1}) =2""1,

Let us now count the red sets. These are just the green sets, with an n
inserted into them. More precisely: Each green set can be turned into a red set
by inserting 7 into it. Conversely, each red set can be turned green by removing
n from it. This way, each green set is paired up with a unique red set. Here is
how this pairing looks like for n = 3:

green  {} {1} {2} {1,2}
red {3} {1,3} {23} {1,2,3}

The existence of this pairing shows that

(# of red sets) = (# of green sets) = 2" 1,
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Altogether,
(# of subsets of {1,2,...,n})
= (# of red sets) + (# of green sets)
:;nrfl :2‘;4’71
— 271—1 _|_ 2?1—1 — 2 . 211—1 — 271
This completes the induction step. Thus, the theorem is proved. O

More generally:
Theorem 4.3.2. Let n € IN. Let S be an n-element set. Then,

(# of subsets of S) = 2".

Informal proof. Rename the n elements of S as 1,2,...,n, and apply the previous
theorem. u

For example,
(# of subsets of {cat, dog, rat}) = 8.

4.3.2. Counting the subsets of a given size

Let us now refine our question: Instead of counting all subsets of {1,2,...,n},
we only count the k-element subsets of {1,2,...,n} for a given number k.
For example, how many 2-element subsets does the set {1,2,3,4} have?

These are
{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}.

So there are 6 of them.
More generally:

Theorem 4.3.3. Let n € IN, and let k be any number. Let S be an n-element
set. Then,

(# of k-element subsets of S) = (Z) .

Informal proof. We induct on n (without fixing k). That is, we use induction on
n to prove the statement

“for any number k and any n-element set S,

P(n):= we have (# of k-element subsets of S) = (n) "

k
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for each n € IN.
Base case: Let’s prove P (0). Let k be any number. The only 0-element set is
@, and this set has only one subset, which is @ itself. Hence,

(# of k-element subsets of &) = L k=0 _ <0>
0, else k

So P (0) is proved.

Induction step: Let n be a positive integer. Assume (as IH) that P (n — 1) holds.
We must prove that P (n) holds.

So we consider any number k and any n-element set S. We must prove that

(# of k-element subsets of S) < (Z) .

Again, we can rename the n elements of S as 1,2, ...,n. So we must prove that

(# of k-element subsets of {1,2,...,n}) < <Z>

To prove this, we define

e ared set to be a k-element subset of {1,2,...,n} that contains n;

* a green set to be a k-element subset of {1,2,...,n} that do not contain n.
Then, as before,

(# of k-element subsets of {1,2,...,n})
= (# of red sets) + (# of green sets) .

Let us now count the green sets. These are just the k-element subsets of
{1,2,...,n—1}. Hence,

(# of green sets)
= (# of k-element subsets of {1,2,...,n—1})

_ (” . 1) (by the TH).

Now to the red sets. If T is a red set, then T \ {n} is a (k — 1)-element subset
of {1,2,...,n—1}.

Let us refer to the (k — 1)-element subsets of {1,2,...,n — 1} as the blue sets.
Thus, if T is a red set, then T\ {n} is a blue set. Conversely, if U is a blue set,
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then U U {n} is a red set. This allows us to pair up each blue set with a red set
and vice versa. Thus,

(# of red sets) = (# of blue sets)
= (#of (k—1)-element subsets of {1,2,...,n—1})

n—1
= (k—l) (by the IH) .
Altogether,

(# of k-element subsets of {1,2,...,n})
= (# of red sets) + (# of green sets)

J N J/

-~

n—1 n—1
o) ()
= <n B 1) + (n - 1> = (n> (by Pascal’s recurrence) .
k—1 k k

This proves P (1), and thus completes the induction. O

4.4. Tuples (aka lists)

4.4.1. Definition and disambiguation

Definition 4.4.1. A finite list (aka tuple) is a list consisting of finitely many
objects. The objects appear in this list in a specified order, and they don’t
have to be distinct.

A finite list delimited using parentheses: i.e., the list that contains the
objects ay,ay, ..., a, in this order is called (a1, a4y, ...,a,).

“Specified order” means that the list has a well-defined first entry, a
well-defined second entry, and so on. Thus, two lists (a1,ay,...,4,) and
(b1,by,...,by) are considered equal if and only if

e we have n = m;

e we have a; = b; for each i € {1,2,...,n}.

For example:

e Thelists (1,2) and (2,1) are distinct, even though the sets {1,2} and {2,1}
are equal.

e The lists (1,2) and (1,1,2) are distinct, even though the sets {1,2} and
{1,1,2} are equal.
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e Thelist (1,1,2) and (1,2,2) are distinct, even though the sets {1,1,2} and
{1,2,2} are equal.

Definition 4.4.2. (a) The length of a list (ay, 4, ...,4ay,) is the number n.
(b) A list of length 2 is called a pair (or an ordered pair).
(c) A list of length 3 is called a triple.
(d) A list of length 4 is called a quadruple.
(e) A list of length n is called an n-tuple.

For example, (1,3,2,2) is a list of length 4 (though it has only 3 distinct
entries), i.e., a quadruple or a 4-tuple. Meanwhile, (5,8) is a 2-tuple, i.e., a pair.
There is only one list of length 0: the empty list (), which contains nothing.

Lists of length 1 consist of just a single entry: For any object o, there is a
1-tuple (o).

4.4.2. Counting pairs

Now let us count pairs (the simplest nontrivial lists):

e How many pairs (a,b) are there with a,b € {1,2,3} ? There are nine,

namely
(1,1), (1,2), (1,3),
(2,1), (2,2), (2,3),
1), (3,2), (3,3).

I have laid them out in a rectangular table, where each row determines
the first entry of the pair (i.e., in the i-th row I've put all pairs starting
with i), and each column determines the second entry. This table has 3
rows and 3 columns, thus 3 - 3 = 9 cells. So there are nine such pairs.

e How many pairs (a,b) are there with a,b € {1,2,3} and a < b ? There are
three, namely
(1,2), (1,3), (2,3).

e How many pairs (a,b) are there with a,b € {1,2,3} and a = b ? There are
three, namely

(1,1), (2,2), (3,3).

e How many pairs (a,b) are there with a,b € {1,2,3} and a > b ? There are
three, namely
(2,1), (3,1), (3,2).

Let us generalize this:
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Proposition 4.4.3. Let n € IN. Then:

(a) The # of pairs (a,b) with a,b € {1,2,...,n} is n?.

(b) The # of pairs (a,b) with a,b € {1,2,...,n}anda < bis1+4+2+---+
(n—1).

(c) The # of pairs (a,b) witha,b € {1,2,...,n} and a = b is n.

(d) The # of pairs (a,b) witha,b € {1,2,...,n} anda > bis1+2+4---+
(n—1).

Informal proof. (a) These pairs can be arranged in a table with n rows and n
columns:

(L,1), (1,2), ..., (1,n),

2,1), (2,2), ..., (2,n),

(n,.l), (n,.Z), ...., (n,.n)

(where the rows determine the first entry and the columns determine the sec-
ond). This table has 7 - n = n? cells, so there are n? pairs.

(b) In the above table, the condition @ < b means that the pair (a,b) is above
the main diagonal. So we need to count the cells of our table that are above the
main diagonal. In the first column, there are 0 such cells. In the second column,
there is 1. In the third, there are 2. And so on. In the last column, there are
n — 1. So the total number of cells above the main diagonal is

041424 4+n—-1)=142+---+(n—1).

So there are 1 +2+ - - - + (n — 1) many pairs (a,b) with a < b.
(c) We now need to count the cells on the main diagonal. In each column,
there is exactly 1 of them. Altogether, there are therefore 1 +1+---+1 =n of

n times
them.

(d) The pairs (a,b) satisfying a > b are in one-to-one correspondence with
the pairs (a,b) satisfying a < b: Namely, each former pair becomes a latter pair
if we swap its two entries, and vice versa. Thus, the # of former pairs equals
the # of latter pairs. But the # of latter pairsis 1 +2+ - - - + (n — 1) (by part (b)).
Thus the # of former pairsis 1 +2+---+ (n —1). O

The proposition we just proved has a curious consequence: For any n € IN,
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we have

n? = (# of pairs (a,b) witha,b € {1,2,...,1n})
= (# of pairs (a,b) witha,b € {1,2,...,n} and a < b)
+ (# of pairs (a,b) witha,b € {1,2,...,n} and a = b)
+ (# of pairs (a,b) witha, b€ {1,2,...,n} anda > b)
= (1424 +(n—=1)+n+(1+2+---+(n—-1))
142t :(1+24:f-+n)fn
=142+ 4n)+A+2+4-+n)—n
=2 (1424 +n)—n

Solving this for 1 +2 4 - - - +n, we find

n>+n _ n(m+1)

1+24... —
+2+---+n > >

So we have reproved the Little Gauss formula by counting pairs.
Exercise 4.4.1. How many pairs (a,b) are there with a € {1,2,3} and b €
{1,2,3,4,5} ?

Solution. By the same reasoning as in part (a) of the above proposition, we can

arrange these pairs in a table with 3 rows and 5 columns. So there are 3-5 = 15
of them. O

The same reasoning gives the following more general rule:

Theorem 4.4.4. Let n,m € IN. Let A be an n-element set. Let B be an m-
element set. Then,

(# of pairs (a,b) witha € Aand b € B) = nm.

What about triples?

Theorem 4.4.5. Let n,m,p € IN. Let A be an n-element set. Let B be an
m-element set. Let C be a p-element set. Then,

(# of triples (a,b,c) witha € Aand b € Band c € C) = nmp.
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Informal proof. Re-encode each triple (a,b,c) as a pair ((a,b),c) (a pair whose
tirst entry is itself a pair). This is a pair whose first entry comes from the set of
all pairs (a,b) with a € A and b € B, whereas its second entry comes from C.

Let U be the set of all pairs (a,b) witha € A and b € B. Then, this set U is
an nm-element set, since

(# of elements of U) = (# of pairs (a,b) witha € Aand b € B)
= nm (by the previous theorem) .

Now, we have re-encoded each triple (a,b,c) as a pair ((a,b),c) with (a,b) €
U and c € C. Thus,

(# of triples (a,b,c) withae€ Aandb € Band c € C)
= (# of pairs ((a,b),c) with (a,b) € Uand c € C)
= (# of pairs (u,c) withu € Uand c € C)

= (nm) p

(by the preceding theorem, since U is an nm-element set, and C is a p-element
set). Since (nm) p = nmp, this is precisely what we need to prove. O

4.4.3. Cartesian products

There is a general notation for sets of pairs:

Definition 4.4.6. Let A and B be two sets.
The set of all pairs (a,b) witha € A and b € B is denoted by A x B, and is
called the Cartesian product (or just product) of the sets A and B.

For instance, {1,2} x {7,8,9} is the set of all pairs (a,b) with a € {1,2} and
b € {7,8,9}. Explicitly, it consists of the six pairs

(1,7), (1,8), (1,9),
(2,7), (2,8), (2,9)

A similar notation exists for k-tuples instead of pairs:

Definition 4.4.7. Let A1, Ay, ..., A be k sets.
The set of all k-tuples (ay,4ay,...,a;) witha; € Ajand a, € Ay and - - - and
ay € Ay is denoted by
Al X Ap X - X Ay,

and is called the Cartesian product (or just product) of the sets
A1, Ay, ... Ag.
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For instance, the set {1,2} x {5} x {2,7,6} consists of all triples (a,b, c) with
a€{1,2} and b € {5} and c € {2,7,6}. Explicitly, these are the triples

(1,5,2), (1,5,7), (1,5,6),
(2,5,2), (2,5,7), (2,5,6).

The word “Cartesian” refers to René Descartes and his concept of Cartesian
coordinates. In a Cartesian coordinate system, every point in space can be
described by a triple of real numbers (its coordinates), so that space can be
identified with the Cartesian product R x R x R. Similarly, the plane can be
identified with R x R.

Using Cartesian products, we can restate our above theorems as follows:

Theorem 4.4.8 (product rule for two sets). If A is an n-element set, and B is
an m-element set, then A x B is an nm-element set.

Theorem 4.4.9 (product rule for three sets). If A is an n-element set, and B is
an m-element set, and C is a p-element set, then A x B x C is an nmp-element
set.

More generally:

Theorem 4.4.10 (product rule for k sets). Let Ay, Ay, ..., Ay be k sets. If each
Aj is an n;-element set, then A1 X Ay X - -+ X Ag is an niny - - - n-element set.

In other words, when you count k-tuples, with each entry coming from a
certain set, the total number is the product of the numbers of options for each
entry.

4.4.4. Counting strictly increasing tuples (informally)

Above we have shown that for any n € IN, the # of pairs (a,b) of elements of
{1,2,...,n} satisfying a < b is

1+2+---+(n—1):w: <Z>

What is the # of triples (a,b, ¢) of elements of {1,2,...,n} satisfyinga < b < ¢
?

Such a triple (a, b, c) always determines a 3-element subset {a,b,c} of {1,2,...,n}.
Conversely, any 3-element subset of {1,2,...,n} becomes a triple (a,b, c) satis-
tying a < b < cif you list its three elements in increasing order. Thus, the triples
(a,b,c) of elements of {1,2,...,n} satisfying a < b < c are just the 3-element
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subsets of {1,2,...,n} in disguise (i.e., there is a one-to-one correspondence
between the former and the latter). Thus,

(# of triples (a,b,c) of elements of {1,2,...,n} satisfyinga < b < c)
= (# of 3-element subsets of {1,2,...,n})

= (g) (by a theorem from the previous section) .

More generally, for any k € IN, we have

(# of k-tuples (ay,ay,...,a;) of elements of {1,2,...,n} satisfying aq < ap < --- < ay)
_(n

- \k

(by the same argument). For comparison,

(# of k-tuples (ay,ay,...,a;) of elements of {1,2,...,n})
=un---n (by the product rule for k sets)
N——

k times

= 1’lk.

Not every counting problem has such a nice answer. For instance, it is not
hard to check that

(# of k-tuples (aq,a,...,a;) of elements of {1,2,...,n} with largest entry a;)
=1kl okl k]

14

but there is no closed form for the RHS without ) signs or “- - - ”s.

In the next two chapters, we will put the notion of counting on a rigorous
footing. For this purpose, we must get familiar with the concept of maps (aka
functions).

6. Maps (aka functions)

6.1. Functions, informally

One of the main notions in mathematics is that of a function, aka map, aka
mapping, aka transformation.
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Intuitively, a function is a “black box” that takes inputs and transforms them
into outputs. For instance, the “f (t) = t>” function takes a real number ¢t and
outputs its square #2.

You can thus think of a function as a rule for producing an output from an
input. This gives the following provisional definition of a function:

Definition 6.1.1 (Informal definition of a function). Let X and Y be two sets.
A function from X to Y is (provisionally) a rule that transforms each element
of X into some element of Y.

This is not a real definition, since it just kicks the can down the road: What is
a “rule”? But it gives the right intuition, as long as you understand it correctly.
Here are some clarifying comments:

* A function has to “work” for each element of X. It cannot decline to
operate on some elements. For example, “take the reciprocal” is not a
function from R to IR, since it would not operate on 0 (since 0 has no
reciprocal).

¢ A function must not be ambiguous. Each input must produce exactly
one output. Thus, “take your number to some random power” is not a
function from R to RR, since different powers give different results.

* The result of applying a function f to an input x is denoted by f (x) or
sometimes by fx.

e We write “f : X — Y” for “f is a function from X to Y”.

e Instead of saying “f (x) = y”, we can say “f transforms x into y” or “f
sends x to y” or “f takes x to y” or “f maps x to y” or “f takes the value
y at x” or “y is the value of f at x” or “y is the image of x under f” or
“applying f to x yields y” or “f : x — y”.
For instance, if f is the “take the square” function from R to R, then
f:2+4and f takes 2 to 4 and f transforms 2 into 4, etc.

* As the above terminology suggests, the value of a function f at an input
x means the corresponding output f (x).

* When are two functions equal? In programming, functions are often un-
derstood to be (implemented) algorithms, and two algorithms can differ
even if they compute the same thing. In mathematics, on the other hand,
the outputs are what matters, not the implementation (and in fact, there
might even not be any implementation).

So when are two functions considered equal?
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Two functions f; : X; — Y7 and f, : X, — Y5 are said to be equal if and
only if

X1 =X and Yi=Y and
f1(x) = fa(x) for all x € Xj.

An example of two equal functions is:
— the function f; : R — R that sends each x to x?;

— the function f, : R — R that sends each x to |x|%,
since each x € R satisfies x2 = |x|*.

e Letf:Y = Zand g: X — Y be two functions. Then, f o g (pronounced
“f after ¢” or “the composition of f and g”) denotes the function from X
to Z that sends each x € X to f (g (x)). In other words, it satisfies

(fog)(x)=f(g(x)) for each x € X.

For example, if f : R — R is the sin function and if ¢ : R — R is the “take
the square” function, then f o g is the function that takes each x € R to

sin (x2). In contrast, g o f is the function that takes each x € R to (sin x)z.
This shows that even when f o g and g o f are both defined, they don’t
have to be the same.

¢ The notation

X =Y,
x — (some expression involving x)

means “the function from X to Y that sends each element x of X to the
expression on the right hand side”. Here, the expression can be (for ex-

ample) x? or i foZ or (sinx)™.
For example,
R = R,
X — x?

is the “take the square” function (sending each element x of R to x?). For
another example,

R — R,
X

"~ sinx+ 13
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is the function that takes the sine of the input, then adds 13, and then
divides the input by the result.

For yet another example,

R — R,
X+ 2

is the function that sends each real number x to 2; this is an example of a
constant function.

For yet another example,

Z — Q,
x — 2

is a function. Some of its values are

x| —-2|-1]0]1|2
1 |1

2X

¢ The notation

f:X=Y,
x — (some expression involving x)
means that we take the function from X to Y that sends each x € X to the
expression on the RHS, and we call this function f.

For example, if we write
f R—=R,
X x2+ 1,

then f will henceforth denote the function from R to R that sends each
x€Rtox?+1.

e If the set X is finite, then a function f : X — Y can be specified by simply
listing all its values. For example, we can define a function / : {1,5,8} —
Z by setting

h(1) = 30, h(5) =18, h(8) = 30.

The values here have been chosen at whim; they don’t need to follow any
rule or pattern.
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e If f is a function from X to Y, then the sets X and Y are part of the
function. Thus,

g1:Z—>Q,
x — 2F

and
gle—>Q,
x — 2

and
gg:N—)N,
x — 2

are three distinct functions! We distinguish between them in order to have
well-defined notions of “domain” and “target”. Namely, the domain of
a function f : X — Y is defined to be the set X, whereas the target of
this map is defined to be the set Y. For example, g1 and g, have different
domains (g; has domain Z while g, has domain IN), whereas g» and g3
have different targets (g2 has target Q while g3 has target IN).

At this point, we have an idea what a function is, but the provisional defi-
nition we gave above is not fully precise. In particular, when a function is not
given by an explicit formula or specified by a finite list of values, we might get
into doubts about whether it is a function. Thus we eventually need a rigorous
definition of a function.

This we shall give in a moment. We will define functions to be relations with
a certain property. So let us define relations first.

6.2. Relations

Relations (to be specific: binary relations) are another concept whose many
examples you are already familiar with:

e The relation C is a relation between two sets. For example, {2,4} C
{1,2,3,4} but {2,5} Z {1,2,3,4}.

e The order relations < and < and > and > are relations between two
integers (or rational numbers or real numbers). For example, 1 < 1 and
1<5and 1 £0.

¢ The containment relation € is a relation between an object and a set. For
instance, 3 € {1,2,3} but5 ¢ {1,2,3}.
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e The divisibility relation | is a relation between two integers.
* The relation “coprime” is a relation between two integers.

* Plane geometry is a great source of relations: “parallel” (a relation be-

tween lines), “perpendicular”, “congruent” (a relation between shapes),
“similar”, “directly similar”, ....

¢ For any given integer 1, the relation “congruent modulo n” is a relation

between two integers. Let me call it =. Thus, 2 = b means a = bmod 1.

3
For example, 2 2 8 but 2 #7.

What do all these relations have in common? They can be applied to pairs
of objects. Applying a relation to a pair of objects gives a statement which is
either true or false. For example, applying the relation “coprime” to the pair
(5,8) yields the statement “5 is coprime to 8”, which is true. But applying it to
the pair (5,10) yields the statement “5 is coprime to 10”, which is false.

A general relation R relates elements of a set X with elements of a set Y. For
any pair (x,y) € X x Y, we can apply the relation R to the pair (x,y), obtaining
a statement “x R y”, which is either true or false. To describe the relation R, we
need to know which pairs (x,y) € X x Y satisfy x R y and which pairs don't.
In other words, we need to know the set of all pairs (x,y) € X x Y that satisfy
x Ry.

For a rigorous definition of a relation, we simply define the relation R to be
this set:

Definition 6.2.1. Let X and Y be two sets. A relation from X to Y is a subset
of X xXY.

If R is a relation from X to Y, and if (x,y) € X x Y is a pair, then
e we write x Ry if (x,y) € R;

* we write x Ryif (x,y) & R.

All the relations we have seen so far can be recast in terms of this definition:
e The divisibility relation | is a subset of Z x Z, namely the subset

{(x,y) € ZxZ | x divides y}
={(x,y) € Z x Z | there exists some z € Z such that y = xz}
={(x,xz) | x€eZandz e Z}.

For instance, the pairs (2,4) and (3,12) and (10, 20) belong to this subset,
but the pairs (2,3) and (12,3) and (10,5) do not.
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* The coprimality relation (“coprime to”) is a subset of Z x Z, namely the
subset

x,Yy) € Z X Z | xis coprime to
y P y
={(v,y) €ZXZ | ged(x,y) =1}.

¢ For any n € Z, the “congruent modulo n” relation = is a subset of Z x Z,
namely the subset

{(x,y) €ZXZ | x=ymodn}
={(x, x+nz) | x€ZandzecZ}.

* A geometric example: Let P be the set of all points in the plane, and let
L be the set of all lines in the plane. Then, the “lies on” relation (as in “a
point lies on a line”) is a subset of P x L, namely the subset

{(p,¢) e PxL | plieson {}.

e If A is any set, then the equality relation on A is the subset E4 of A X A
given by
Ea={(x,y) e AxXA | x=y}
={(x,x) | xe€ A}.

Two elements x and y satisfy x E4 y if and only if they are equal.

¢ We can literally take any subset of X x Y and it will be a relation from X
to Y. It does not have to be defined by a “meaningful” rule. For example,
here is a relation from {1,2,3} to {5,6,7}:

{1e), (L7), (35)}
Equivalently, it can be described by its truth table:

5 6 7
1 no yes yes
2 no no no
3 yes no no

(where a “yes” in row x and column y means that (x,y) belongs to the
relation). If we call this relation R, then we have 1 R6and 1 R7and 3 R 5
butl R5and2 R6.

A good way to visualize a relation R from a set X to a set Y is to draw a node
for each element of X and a node for each element of Y, and to draw an arrow
from the x-node to the y-node for every pair (x,y) € R.
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6.3. Functions, formally

We can now define functions properly:

Definition 6.3.1 (Rigorous definition of a function). Let X and Y be two sets.
A function from X to Y means a relation R from X to Y that has the following

property:

Output uniqueness: For each x € X, there exists exactly one
y € Y such that x R y.

If R is a function from X to Y, and if x € X, then the unique elementy € Y
satisfying x R y will be called R (x).

In our above example, the relation

{(16), (1L,7), (3,5)}

is not a function from {1,2,3} to {5,6,7}, since it fails output uniqueness for
x = 1 and also fails it for x = 2. Either failure would be enough to disqualify
it.

Among all our above examples of relations, only the equality relation E4 is a
function.

Another example of a function is the relation

{(1L2), (21), B31)}

from {1,2,3} to {1,2,3}. This relation satisfies output uniqueness, so it is a
function. If we call it f, then f (1) =2and f(2) =1and f (3) = 1.

In terms of our blobs-and-arrows picture, output uniqueness simply says that
each x-node (for each x € X) is the starting point of exactly one arrow.

We now have two definitions of functions: the provisional one (as “rules” that
transforms inputs into outputs) and the rigorous one (as relations that satisfy
output uniqueness). These definitions are equivalent, since:

e If Ris a rigorous function from X to Y, then we can view R as a provisional
function, which sends each x € X to the unique y € Y that satisfies x R .

* Conversely: If f is a privisional function from X to Y, then the corre-
sponding rigorous function is the relation

{(x, f(x) | xeX}.

In other words, this is the relation that relates each input to its corre-
sponding output under f.
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6.4. Some more examples of functions
Example 6.4.1. Consider the function
fo:{1,2,3,4} — {1,2,3,4}

that sends 1,2,3,4 to 3,2,3,3, respectively. As a rigorous function, it is the
relation R that satisfies

1R3, 2R2, 3R 3, 4R3

and nothing else. In other words, it is the relation

{(1L,3),(22), (3,3), (43)}

Example 6.4.2. What about the function

f1: {1,2,3,4} — {1,2,3},
n—mn?

Such a function f; does not exist, since it would have to send 4 to 4, but 4 is
not in the target {1,2,3}.

The problem here is that not every expression that appears to define a
function actually defines a function. Make sure that the expression to the
right of “—=" always is an actual element of the target.

Example 6.4.3. Consider the function

£:{1,2,3,..3 = {1,2,3,...},
n — (the number of positive divisors of 1) .

As a relation, it is

{(1,1), (2,2), (3,2), (43), (52), (6,4), (7,2), (84), (9,3), ...}.
Thus, f,(1) =1and f, (2) =2 and f, (3) = 2 and so on.

Example 6.4.4. What about the function

fo:Z —+{1,2,3,...},
n +— (the number of positive divisors of n) ?

Again, there is no such function fz, since fz (0) would have to be oo or unde-
tined (every integer divides 0), which in either case is not an element of the
target {1,2,3,...}.
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Example 6.4.5. What about the function

f3:{1,2,3,..3 = {1,2,3,...},
n +— (the smallest prime divisor of n) ?

Again, there is no such function f3, since f3 (1) is undefined (1 has no prime
divisors).
However, we can salvage f3: Either we make it a relation

{(n, p) | pis the smallest prime divisor of n},

or we restrict it to {2,3,4,...}. The restricted version

f3:4{2,3,4,..} = {1,2,3,...},
n — (the smallest prime divisor of n)

is a function.
Example 6.4.6. What about the function

fa:Q—2Z,
a

5 (fora,b € Z with b #0) ?
Restated in words, this is to be a function that takes a rational number as
input, writes it as a ratio of two integers, and outputs the numerator. Is there
such a function?

Again, the answer is no. The problem is again a failure of output unique-
ness, but this time because there are too many different outputs for a given

input. For example, f4 (%) would be 1 but f4 (%) would be 2. However,
1 2 1 2 . -
1= 7550 that f4 (I) should equal f4 (E) This is a contradiction.

The underyling issue is that a rational number can be written as a fraction
in several different ways, and the numerators of these fractions will be dif-

ferent. Thus, the rule % — a will produce different outputs from the same

input.

6.5. Well-definedness

We have seen several ways in which the definition of a function can go wrong.
Situations where they don’t go wrong are called “well-definedness”. Thus we
say that “a function is well-defined” to mean that “our definition does not suffer
from the above issues”. So you should read “This function is well-defined [resp.
not well-defined]” as “The definition we just gave actually defines a function
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[resp. does not define a function]”.
For example, as we just saw, the function

f4:Q_>Z/
a

E'—>El

is not well-defined (i.e., there is no such function), but the function

f5:Q—=0Q,

a 612

— H J—

b b?
is well-defined (in fact, it can be rewritten without reference to a specific frac-
tion, as x — x?). For another example, the function

f1:{1,2,3,4} — {1,2,3},
n—n

is not well-defined (since its supposed output f1 (4) does not lie in the target),
whereas the function

fo:4{1,2,3,4} — {1,2,3},
n— 1+ (710/03)

is well-defined (since its values do lie in the target).

6.6. The identity function

Definition 6.6.1. For any set A, there is an identity function id4 : A — A.
This is the function that sends each element a € A to a itself. It is precisely
the relation E 4 we defined above.

6.7. More examples, and multivariate functions

As we said before, a function f : X — Y can be described either by a rule or by
a list of values (if X is finite) or as a relation. For instance, the “take the square”
function on real numbers is the function

f:R—=R,
X x2

As a relation, it is the set

{(x2) | xer}.
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When the domain of a function f is a Cartesian product of several sets (i.e., its
inputs are tuples), f is called a multivariate function. For instance, the function

f:ZXZ—Z,
(a,b) —a+b
(which sends each pair (a, b) of two integers to their sum a + b) is a multivariate

function. Its input is a pair of two integers, i.e., it really has two inputs (2 and
b). As a relation, it is the subset

{((a,b), a+b) | a,beZ}
={((a,b), ¢) | a,b,c € Zand c =a+ b}

of (Z xZ) x Z. Of course, this function has a name: addition of integers.
Other multivariate functions are

ZxZ — Z,
(a,b) —a—b
and
ZxZ — Z,
(a,b) — ab

as well as analogous functions defined for other types of numbers. However,
there is no “division” function

QxQ—-0Q,
(a,b) —a/b

(but there is a division function

Qx (Q\{0}) - Q
(a,b) —a/b

)

When f is a multivariate function whose inputs are k-tuples, we commonly
use the notation

f (a1, an, ..., a) for f((a1,a2,...,a5)).

For example, if f is the addition of integers, then f (a,b) = f ((a,b)) = a+1b
foralla,b e Z.

6.8. Composition of functions
6.8.1. Definition

Recall how functions are composed:
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Definition 6.8.1. Let X,Y,Z be three sets. Let f : Y =+ Zand g : X — Y be
two functions. Then, f o ¢ denotes the function

X —Z,
x— f(g(x)).

In other words, f o g is the function that first applies ¢ and then applies f.
It is called the composition of the functions f and g, and is pronounced “f
after g”.

In terms of relations, if we view f and g as two relations F and G (as in our
rigorous definition of a function), then f o g is the relation

{(x,z) | thereexistsy € Y suchthatx Gyandy F z}.

Example 6.8.2. Consider the two functions

fR—=R,

x = x>

and
g:R—=R,

X =

X247

Then, for any x € IR, we have

(fog)(x)=f(g(x)) =f<;) - <;>3

and

(gof)(x)=g(f(x) =g (x3) -

These two results are different; thus, fo g # go f.

6.8.2. Basic properties
Here are two basic facts that are proved in the notes:

Theorem 6.8.3 (associativity of composition). We have

(fog)oh=fo(goh)

whenever the compositions make sense (i.e., whenever X,Y,Z, W are four
setsand f: Z -+ Wand g:Y — Zand h: X — Y are three maps).
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Theorem 6.8.4. Let f : X — Y be a map. Then,

foidy =idyof = f.

6.9. Jectivities (injectivity, surjectivity, bijectivity)
Now we define some important properties of functions.

Definition 6.9.1. Let f : X — Y be a function. Then:
(a) We say that f is injective (aka one-to-one, aka an injection) if

for each y € Y, there exists at most one x € X such that f (x) =v.

In other words: f is injective if there are no two distinct elements x1, xp € X
such that f (x1) = f (x2).
(b) We say that f is surjective (aka onto, aka a surjection) if

for each y € Y, there exists at least one x € X such that f (x) = y.

In other words: f is surjective if every element of Y is an output of f.
(c) We say that f is bijective (aka a one-to-one correspondence, aka a
bijection) if

for each y € Y, there exists exactly one x € X such that f (x) = y.

In other words: f is bijective if f is both injective and surjective.
Some examples:
¢ The function
f:IN—=N,
ki &

is injective (since no two different nonnegative integers have the same
square) but not surjective (since not every nonnegative integer is a perfect
square — e.g., the integer 3 is not). So it is not bijective.

e Let S=1{0,1,4,9,16,25,...} be the set of all perfect squares (= squares of
integers = squares of nonnegative integers). Then, the function

g:IN =5,
k — k2

is injective (for the same reason as f) and is surjective (since every s € S
is a value of g), so it is bijective.
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The function

gintZZ—>S,
k — k2

is still surjective, but not injective (since gint (—1) = gint (1)), so it again
fails to be bijective.

The function

h:IN — N,
kw—k//2

is not injective (since h (4) = h (5)), but is surjective (since each n € IN
equals /1 (2n)). It is again not bijective.

Let E = {0,2,4,6,...} be the set of all even nonnegative integers. Then,
the function

k—k//2

is injective (since k//2 = k/2 for each k € E) and surjective (since each
n € IN equals heven (217)). So it is bijective.

Let O = {1,3,5,7,9,...} be the set of all odd nonnegative integers. Then,
the function

hoddZO%N,
k—k//2

is injective (since k//2 = (k—1) /2 for each k € O) and surjective (since
each n € N equals hygqq (211 4 1)). So it is bijective.

Consider the map

fiZx7 -7,
(a,b) —a+b

(the addition of integers). This map f is not injective (since f(3,4) =
f(5,2) orsince f (1,0) = f (0,1)), but is surjective (since n € Z is f (0,n)).

Remark 6.9.2. Consider a function f : X — Y given by a table of all its
values (possibly an infinite table if X is infinite). Assume that all possible
inputs x € X appear on the top row of the table (each exactly once), and the
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corresponding outputs appear under them in the bottom row, so the table
looks as follows:

f ) | f(a) | f(b)|f(c)

Then:

(a) The function f is injective if and only if the bottom row of this table has
no two equal entries.

(b) The function f is surjective if and only if each y € Y appears on the
bottom row of the table.

(c) The function f is bijective if and only if each y € Y appears exactly once
on the bottom row.

For example, the map f : {1,2,3} — {1,4} with value table

x (111213
f(x)[4]|14

is not injective (since there are two 4’s on the bottom row) but is surjective
(since all elements of {1,4} appear on the bottom row).

We can also restate the definition of (in/sur/bi)jectivity in terms of the blobs-
and-arrows picture: If a map f : X — Y is visualized as such a picture, then

* f is injective if and only if no two arrows hit the same Y-node.
* f is surjective if and only if each Y-node is hit by at least one arrow.

* f is bijective if and only if each Y-node is hit by exactly one arrow.

6.10. Inverses

Bijective maps have a special power: they can be inverted. Let us define what
this means:

Definition 6.10.1. Let f : X — Y be a function. An inverse of f means a
function g : Y — X such that

fog=idy and gof =idx.
In other words, an inverse of f means a function g : Y — X such that

flgly) =y foreachy € Y, and
X for each x € X.
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Roughly speaking, an inverse of f thus means a map that undoes f and is
undone by f.

Not every function has an inverse. We shall soon see which ones do. First,
some examples:

e Let f:{1,2,3} — {5,6,7} be the “add 4” map, i.e., the map

{1,2,3} = {5,6,7},
k— k-+4.

This map f has an inverse: the “subtract 4” map

¢:{5,6,7} — {1,2,3},
k— k—4.

To see that g is an inverse of f, we must prove that each y € {5,6,7}
satisfies f (¢ (y)) = y, and that each x € {1,2,3} satisfies g (f (x)) = x.
This is easy: For each y € {5,6,7}, we have

flgy)=Wy—4) +4=y.

Similarly for the other equation.

e Let £:{1,2,3,4,5} — {1,2,3,4,5} be the map with the value table

x [1]2]3]4]|5
f(x)|314]1]5]2

This map f has an inverse, namely the map ¢ : {1,2,3,4,5} — {1,2,3,4,5}
given by

y |1]2]3/4]|5
gy)|3|5[1]2]4

e Let £:{1,2,3,4} — {1,2,3,4} be the function with the value table

x [1]2]3]4
fx)|1]2/3]3

This function f has no inverse, since any inverse g of f would have to
satisfy both ¢ (3) = 3 and g (3) = 4, which is a contradiction. The under-
lying issue here is that f is not injective, so there are two different inputs
giving the same output, and the inverse ¢ would have to send that output
to both of these inputs at once.
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e Let f:{1,2,3} — {1,2,3,4} be the function with the value table

x (11123
fx)|[1/2]3

This function f has no inverse, because if ¢ was an inverse of f, then g (4)
would have to be an x € {1,2,3} that f sends to 4, but there is no such x.
The underlying issue here is that f is not surjective, so some y € Y is not
hit by any arrow, and thus the inverse ¢ does not have any element of x
to send it to.

6.10.1. Invertibility is bijectivity by another name

Combining the two last examples, we see that only bijective maps have a chance
at having an inverse. It is not hard to see that this is actually necessary and
sufficient: Any bijective map has an inverse. We summarize:

Theorem 6.10.2. Let f : X — Y be a map between two sets X and Y. Then, f
has an inverse if and only if f is bijective.

Proof. The “only if” part has been argued in the above two examples.

For the “if” part, let us assume that f is bijective. Now, define g : Y — X to
be the map that sends each y € Y to the unique x € X that satisfies f (x) = y.
It is easy to see that this g is an inverse of f, so f has an inverse. (See the notes
for details.) O

6.10.2. Uniqueness of the inverse

Theorem 6.10.3. Let f : X — Y be a function. Then, f has at most one
inverse.

Proof. In other words, we must show that any two inverses of f must be equal.
See the notes for that (Theorem 5.10.3). O

Definition 6.10.4. Let f : X — Y be a function that has an inverse. Then, we
call this inverse “the inverse of f” (since the theorem above shows that it is
unique), and we denote it by f~1.

Thus, if f : X — Y is a map that has an inverse, then we have
flof =idx and foft=idy,
that is,
FHf(x) =x forall x € X, andm
f(]c_1 (y)) =y forally € Y.




Math 221 Winter 2024, version March 14, 2024 page 139

6.10.3. More examples

* Let E = {0,2,4,6,...} be the set of all even nonnegative integers. Then,
the function

f:E—N,
k—k//2=k/2

has an inverse. This inverse is the function
f 1.N > E
k — 2k.
e Let R>o = {all nonnegative real numbers}. Then, the function

f:R>o — Rxy,
X — x2

has an inverse. This inverse is the function

f_l : R>0 — R>o,
x — v/x.

¢ In contrast, the function

f'R—=R,

x — x2

has no inverse (as it is neither injective nor surjective, so definitely not
bijective). But the function

f:R—=R,
X x°

has an inverse, which is the function
'R = R,

x — Jx.

6.10.4. Inverses of inverses and compositions

Here are a few basic properties of inverses (see the notes for proofs):
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Proposition 6.10.5. Let X be any set. Then, the identity map idx : X — X
has an inverse, namely itself.

Theorem 6.10.6. Let f : X — Y be a map that has an inverse f~! : Y — X.
Then, f~! has an inverse, which is f.

Theorem 6.10.7 (socks-and-shoes formula). Let X, Y, Z be three sets, and let
f:Y = Zand g: X — Y be two bijective maps. Then, f o g: X — Z is again
bijective, and its inverse is

(fog) '=glof

Notice that the RHS here is g~1 o f =1, not f~1o g~ 1.

Remark 6.10.8. The socks-and-shoes formula shows that the composition of
two bijective maps is always bijective. However, a composition of two non-
bijective maps can sometimes also be bijective.

See the notes (§5.11) for some solved exercises.

6.11. Isomorphic sets

Definition 6.11.1. Let X and Y be two sets. Then, we say that these two sets
X and Y are isomorphic as sets (or, for short, isomorphic, or in bijection, or
in one-to-one correspondence, or equinumerous) if there exists a bijective
map from X to Y.

This relation “isomorphic” is symmetric: If X and Y are isomorphic, then so
are Y and X.
Some examples:

e The sets {1,2,3} and {5,6,7} are isomorphic, since there is a bijection
from {1,2,3} to {5,6,7} (namely, for example, the “add 4” map).

e The sets {1,2,3} and {1,2} are not isomorphic, since any bijective map
from {1,2,3} to {1,2} would have to use 3 arrows, but this would force it
to hit some element of {1,2} at least twice.

e Thesets {1,2,3} and {1,6,75} are isomorphic, since the map f : {1,2,3} —
{1,6,75} with value table

f(x)|1/6]75

is a bijection.
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e The sets IN and E := {all even nonnegative integers} are isomorphic,
since the map

N — E,
n—2n

is a bijection.

e Thesets N and O := {all odd nonnegative integers} are isomorphic, since
the map

N — O,
n—2n-+1

is a bijection.

* The sets N and Z are isomorphic, since there is a bijection from IN to Z
that sends

0,1,2,3,4,5,6,7,... to
0,1,-1,2,—-2,3,—-3,4,—4,..., respectively.

Explicitly, this f can be defined by the formula

—n/2, if n is even,
fn)= o
(n+1) /2, ifnisodd.

¢ The sets N and Q are isomorphic, since there is a bijection from IN to Q

that sends
0,1,2,3,4,5,6,7,... to
101 -2 -112 -3 -3 -2-11233
U1 0 102721 1'2'3'3'3327
A ~~ J/ NG -~ J
all reduced fractions all reduced fractions all reduced fractions
whose numerator whose numerator whose numerator
and denominator are <1 and denominator are <2 and denominator are <3
in absolute value in absolute value in absolute value
(ordered from smallest (ordered from smallest (ordered from smallest
to largest) to largest) to largest)

* The sets N and IN x IN are isomorphic, since there is a bijection f from IN
to IN x IN that sends

0,1,2,3,4,5,... to
(0,0) , (1,0), (0,1), (2,0), (1,1), (0,2),
S~ A -~ 7N ~~ o
all pairs all pairs all pairs
whose entries whose entries whose entries
sum to 0 sum to 1 sum to
(ordered by (ordered by
increasing 2nd increasing 2nd

entry) entry)
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The inverse f~! : IN x N — IN of this bijection can be described by an
explicit formula:

_ _(n4+m)(n+m+1)
£ ) = .

(nice exercise: why?).

* The sets N and R are not isomorphic. See the notes for references to
proofs of this (or google Cantor’s diagonal argument).

7. Enumeration revisited

7.1. Counting, formally
7.1.1. Definition

As you have probably noticed, isomorphic sets have the same size (= number
of elements). We shall now use this to define the size of a set!
First, some notations:

Definition 7.1.1. (a) If n € N, then [n] shall mean the set {1,2,...,n}.
For example, [3] = {1,2,3} and [7] = {1,2,...,7} and [0] = @.
(b) If a,b € Z, then [a, b] shall mean the set

{a,a+1,a+2,...,b} = {all integers x such that a < x < b}
={xeR | a<x<b}.

If a > b, then this is @.
For example, [3,5] = {3,4,5} and [3,3] = {3} and [5,3] = @.

Now let’s define the size of a finite set:

Definition 7.1.2. Let n € IN. A set S is said to have size n if S is isomorphic
to [n] (that is, if there is a bijection from S to [n]).

For example:
e The set {cat, dog, rat} has size 3, since the map

{cat, dog, rat} — [3],
cat — 1,
dog +— 2,
rat — 3

is a bijection.
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e The set [4,7] = {4,5,6,7} has size 4, since the map
[4,7] — 4],
ki— k-3
is a bijection.

e The set IN is infinite, so there is no bijection between IN and [#] for any
n € IN. Thus, IN does not have size n for any n € IN.

Here is another, equivalent definition of size:

Definition 7.1.3. We define the notion of “a set of size n” recursively as
follows:

(@) A set S is said to have size 0 if and only if it is empty.

(b) Let n be a positive integer. A set S is said to have size n if and only if
there exists an element s € S such that S\ {s} has size n — 1.

This is a recursive definition, as it reduces the question “what is a set of size
n” to the simpler question “what is a set of size n — 1”.
The following fact is not obvious, but can be proved:

Theorem 7.1.4. (a) The above two definitions of size are equivalent.
(b) The size of a finite set is determined uniquely —i.e., a set cannot have
two different sizes at the same time.

We can now introduce a few notations:

Definition 7.1.5. (a) An n-element set means a set of size n.

(b) A set is said to be finite if it has size n for some n € IN.

(c) If S is a finite set, then |S| shall denote the size of S.

(d) We also refer to |S| as the cardinality of S, or as the number of elements
of S.

For example,
|{cat, dog, rat}| =3 and |[4,7]] = 4.
The # of odd integers between 4 and 8 is
|{odd integers between 4 and 8}| = |{5,7}| = 2.

Recall that sets cannot “contain an element more than once”, so |{3,5,3}| = 2.

7.1.2. Rules for sizes of finite sets

We can now state several common-sense principles that are used all over enu-
merative combinatorics.
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Theorem 7.1.6 (Bijection Principle). Let A and B be two finite sets. Then,
|A| = |B| if and only if there exists a bijection from A to B.

| Theorem 7.1.7. For each n € N, we have |[n]| = n.

Theorem 7.1.8. Let S be a set. Then:

(@) We have |S| = 0 if and only if S = & (that is, S is empty).

(b) We have |S| =1 if and only if S = {s} for a single element s.

(c) We have |S| =2 if and only if S = {s,t} for two distinct elements s and
t.

Theorem 7.1.9. Let S be a finite set. Let t be any object such that t ¢ S. Then,

ISU{t} =S|+ 1.

Theorem 7.1.10 (Sum rule for two sets). Let A and B be two disjoint finite
sets. Then, the set A U B is again finite, and its size is

|AUB| = |A| + |B|.

Theorem 7.1.11 (Sum rule for k sets). Let Ay, Ay, ..., Ax be k disjoint finite
sets. Then, the set Aj U Ay U - - - U Ak is again finite, and its size is

|A1UA2U---UAk|:|A1|+|A2|+'--+|Ak|.

Theorem 7.1.12 (Difference rule). Let T be a subset of a finite set S. Then:
(@) The set T is finite, and its size satisfies |T| < |S|.
(b) We have |S\ T| = |S| — |T|.
(@ If |T| =S|, then T = S.

Theorem 7.1.13 (Product rule for two sets). Let A and B be any finite sets.
Then, the set

A x B = {all pairs (a,b) witha € Aand b € B}
is again finite and has size

|Ax B| =|A[-[B].
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Theorem 7.1.14 (Product rule for k sets). Let Aj, Ay, ..., Ay be any k finite
sets. Then, the set

Al X Ap X - X A
={(ay,ap,...,ar) | a; € A; for each i € [k]|}

is again finite and has size

‘AlXAZX"'XAk|:|Al|'|A2’ ..... |Ak|

The above theorems are basic and can be used to derive further counting
rules. For instance:

Corollary 7.1.15. Let A and B be two finite sets (not necessarily disjoint).
Then,
|AUB| =|A|+|B| — |ANB].

Corollary 7.1.16. Let A, B and C be three finite sets (not necessarily disjoint).
Then,

JAUBUC| = |A|+ |B|+|C|— |JANB|—|ANC| — |BNC|+|ANBNC|.

In fact, these two corollaries are the beginning of a pattern: For any k sets
A1, Ay, ..., Ay, we can write |A1 U Ay U - - - U Ag| as the sum of their sizes |A;],
corrected for all kinds of intersections. This is known as the “principle of inclu-
sion and exclusion” or the “Sylvester sieve formula”.

7.2. Redoing some proofs rigorously

Armed with these counting rules, we can now put all our counting proofs on
a rigorous footing. Let me only show this on a couple examples (see the notes
for more).

First, we recall the following proposition:

Proposition 7.2.1. Let a,b € Z be such thata < b+ 1.
Then, there are exactly b — a + 1 numbers in the set |4, b]. In other words,
there are exactly b — a 4 1 integers between a and b (inclusive).

I said that this can be proved by induction on b, but let us sketch a different
proof:
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Proof. Consider the map

f: [b—a+1] — [ab] ,
——— N~

={1,2,...b—a+1} ={a,a+1,...b}

i—i+(a—1).

This map f just adds a — 1 to its input.
The map f has an inverse, namely the map

g: [abl — [b—a+1],

S~ N—
={a,a+1,...,b} ={1,2,...b—a+1}
j—=j—(a—1).

So f is a bijection. Hence, we have found a bijection from [b —a + 1] to [a, ]
(namely, f). The bijection principle thus yields

|[b—a+1]] = [[a,b]].

Thus,
|[a,b]|=|[b—a+1]|=b—a+1.

Let us return to the theorems that count all subsets of a given set.
Theorem 7.2.2. Let n € IN. Then,

(# of subsets of [n]) =2".

Rigorous proof. We induct on n.

Base case: The set [0] is empty, and thus has exactly 1 subset. This matches
20 = 1. So the theorem holds for n = 0.

Induction step: We proceed from n — 1 to n. Thus, let n be a positive integer.
Assume (as [H) that

(# of subsets of [n —1]) =2""1,
Our goal is to prove that
(# of subsets of [n]) L om,
We define

e ared set to be a subset of [n] that contains #;

e a green set to be a subset of [1] that does not contain n.
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For example, if n = 3, then the red sets are

{3}, {1,3}, {2,3}, {1,2,3},

whereas the green sets are

{1y, {2}, {12},

Each subset of [1] is either red or green. In other words,
{subsets of [n]} = {red sets} U {green sets} .

But no subset of [n] is simultaneously red and green. Thus, the sets {red sets}
and {green sets} are disjoint. Hence, by the sum rule,

|{red sets} U {green sets}| = |{red sets}| + |{green sets}|.

Thus,
|{subsets of [n]}| = |{red sets}| + |{green sets}|.

In other words,
(# of subsets of [n]) = (# of red sets) + (# of green sets).

So let us now count the red sets and the green sets separately.
We start with the green sets: These are the subsets of [n] that do not contain
n. In other words, they are just the subsets of [n — 1]. Hence,

(# of green sets) = (# of subsets of [n —1]) = 2"

Let us now count the red sets. These are just the green sets, with an n
inserted into them. More precisely: Each green set can be turned into a red set
by inserting 7 into it. Conversely, each red set can be turned green by removing
n from it. Thus we obtain two maps

ins,, : {green sets} — {red sets},
G— GU{n}

and

rem, : {red sets} — {green sets},
R+— R\ {n}.

It is clear that these maps ins, and rem,, are inverses of each other. Hence, the
map rem, has an inverse, and thus is a bijection. Therefore, by the bijection
principle,

|{red sets}| = |{green sets}|.




Math 221 Winter 2024, version March 14, 2024 page 148

In other words,
(# of red sets) = (# of green sets) = 21,
Altogether,
(# of subsets of [n]) = (# of red sets) + (# of green sets)

. / J/
-~

—n-1 :;71

— 211—1 _I_ 271—1 — 2 . 271—1 — 21/1.

This completes the induction step. Thus, the theorem is proved. O

More generally:

Theorem 7.2.3. Let n € IN. Let S be an n-element set. Then,

(# of subsets of S) = 2".

Rigorous proof. Informally, we derived this from the preceding theorem by re-
naming the elements of S as 1,2,...,n and arguing that the subsets of S then
become the subsets of [n].

To make this rigorous, we set up a bijection between S and [n], and then we
apply this bijection elementwise to the subsets.

In detail: The set S has size n. In other words, S is isomorphic to [n]. Thus,

there exists a bijection « : S — [n]. Consider this a. As a bijection, « has an

inverse a L.

Now, we define a map

ay : {subsets of S} — {subsets of [n]},
T {a(t) | teT}.

This map a, is a bijection, because it has an inverse (¢ !)_(constructed in the

same way as ., but using a~! instead of a).
So the bijection principle yields

|{subsets of S}| = |{subsets of [n]}|.
In other words,
(# of subsets of S) = (# of subsets of [n]) = 2"

(by the previous theorem). O

7.3. Lacunar subsets

Another type of objects we can count are the so-called lacunar subsets:
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Definition 7.3.1. A set S of integers is said to be lacunar if it contains no two
consecutive integers (i.e., if there exists no integer i such that both i and i +1
belong to S).

For example, {2,4,7} is lacunar, whereas {1,2} and {1,2,5} are not. Any
1-element set of integers is lacunar, and so is the empty set.
Now we can ask ourselves three natural questions: For given n € N,

1. how many lacunar subsets does the set [n] = {1,2,...,n} have?
2. how many k-element lacunar subsets does [n] have for a given k ?
3. what is the largest size of a lacunar subset of [n] ?

Let us answer all these three questions, starting with the easiest one, which
is Question 3:

Proposition 7.3.2. Let n € IN. Then, the maximum size of a lacunar subset
. |n+1
of [n] is .

Proof. See the notes (but pretty easy). O
Let us come to Question 1: We can easily generate a lot of data:

n 012345 6 7 8
# of lacunar subsetsof [n] 1 2 3 5 8 13 21 34 55

For example, for n = 4, the lacunar subsets of [4] are

o, {1}, {2}, {3}, {4}, {13}, {14}, {2,4}.

So we suspect:

Theorem 7.3.3. For any integer n > —1, we have
(# of lacunar subsets of [1]) = f,+2,

where f; denotes the i-th Fibonacci number. Here, we agree that [—1] := &,
and more generally, [k] := @ for all k < 0.

Proof. For any integer n > —1, let us set
¢, = (# of lacunar subsets of [n]).

So our goal is to prove that ¢, = f,1, for every integer n > —1.

We observe that /_1 =1 = f; and ) = 1 = f,. So the theorem holds for
n = —1and for n = 0.

We will now show that the sequence (¢_1, ¢y, (1, ...) satisfies the same recur-
sion as the Fibonacci sequence:
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Claim 1: We have ¢, = {,,_1 + {,,_» for each integer n > 1.
Proof of Claim 1. Let n > 1 be an integer. We shall call a subset of [n]
e red if it contains n, and
* green if it does not contain .
Then, the definition of /,, shows that

¢, = (# of lacunar subsets of [n])
= (# of red lacunar subsets of [n]) + (# of green lacunar subsets of [n]).

So we need to count the lacunar subsets of each color.
The green ones are easy: The green lacunar subsets of [n] are the lacunar
subsets of [n — 1]. Thus,

(# of green lacunar subsets of [n])
= (# of lacunar subsets of [n —1]) = £,_;.

What about the red ones? If we remove n from a red lacunar subset of [n],
then we obtain a lacunar subset of [n — 2] (since the original red lacunar subset
contained n and thus could not have contained n — 1 due to its lacunarity).
Conversely, if we insert n into a lacunar subset of [n — 2], we get a red lacunar
subset of [n] (since the lack of n — 1 in our subset creates a “buffer zone” so that
the newly inserted n does not have a neighbor). So we obtain two maps

rem,, : {red lacunar subsets of [n]} — {lacunar subsets of [n —2]},
R+ R\ {n}

and

ins,, : {lacunar subsets of [n — 2]} — {red lacunar subsets of [n]},
L— LU{n},

which are obviously inverses of each other. Thus, they are bijections, and the
bijection principle yields

(# of red lacunar subsets of [n])
= (# of lacunar subsets of [n —2]) = £,_».

Altogether, we now have

n = (# of red lacunar subsets of [n]) + (# of green lacunar subsets of [n])

[ J/ /
-~ -~

=ly_2 =l

=lyp o+l ="y 1+ lu 2.

This proves Claim 1. O
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Now recall that our goal is to show that the sequences (¢_1,{p, ¢1,...) and
(f1, f2, f3,...) are identical. But at this point, this is very easy: These two se-
quences

* have the same two starting entries ({_1 = f; and ¢y = f»),

¢ and satisfy the same recursive equation: namely, each entry of either se-
quence is the sum of the preceding two (by Claim 1).

So the sequences must be equal. O

The remaining one of the three questions about lacunar subsets was: How
many lacunar subsets does [n] have of a given size k ?

Theorem 7.3.4. Let n € Z and k € IN be such that k < n + 1. Then,

n+1—k)

(# of k-element lacunar subsets of [n]) = < '

Proof. One way to prove this is by induction on #, using red and green colors
as before.
A nicer proof proceeds using the bijection principle. We construct a bijection

from {k-element lacunar subsets of [n]}
to {k-element subsets of [n+1—k|}.

Namely, this bijection sends each k-element lacunar subset S = {s1 < sy < -+ <
of [n] (this notation means that the elements of S are called s1, sy, ..., sk in in-
creasing order) to the k-element subset

{s1—0, su—1, s3—2, ..., sy—(k—1)} of [n+1—Kk].

In other words, the elements of S get “squeezed together” in that the distance
between any two consecutive elements gets shrunk by 1. This operation pre-
serves the relative order of these elements, in the sense that

51—0<Sz—1<53—2<"'<Sk—(k—1)

(since S is lacunar).
This map is bijective, because it has an inverse: namely, the map

from {k-element subsets of [n+1—k|}
to {k-element lacunar subsets of [n]}

that sends each k-element subset {f; < t; < --- <t} of [n+1—k] to

{t1+0, th+1, t3+2, ..., tk—l-(k—l)}.

sk}
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Thus, the bijection principle yields

(# of k-element lacunar subsets of [n])
= (# of k-element subsets of [n+1 —k])

_ (n+1-k by the combinatorial
N k interpretation of BCs /-

O
So we have now answered all three questions about lacunar subsets: how big
they can get, how many there are, and how many have a given size. As for the

second question, we actually obtain two different answers:
On the one hand, we have shown that

(# of lacunar subsets of [n]) = f,12.
On the other hand, by the sum rule,

(# of lacunar subsets of [n])

n+1
= (# of k-element lacunar subsets of [n])

k=0 - ~
(n+1-k
()
B ”il (n +1-— k)
k=0 k
Comparing these equalities, we obtain

fra= (")

k=0

()0 () e ()

If we substitute n — 1 for n in this equality, it becomes:

Corollary 7.3.5. Let n € IN. Then, the Fibonacci number f,,; is

fn =% (")

k=0

(o) (") () ()




Math 221 Winter 2024, version March 14, 2024 page 153

7.4. Compositions and weak compositions
7.4.1. Compositions

How many ways are there to write the number 5 as a sum of 3 positive integers,
if the order matters?

5=2+4+2+1=2+1+2=1+2+2
=3+1+1=1+3+1=1+1+3.

So there are 6 such ways.
What about the general case?

Definition 7.4.1. (a) If n € IN, then a composition of n shall mean a tuple
(i.e., finite list) of positive integers whose sum is 7.

(b) If n,k € IN, then a composition of n into k parts shall mean a k-tuple
of positive integers whose sum is 7.

(This is old terminology and has nothing to do with compositions of maps.)
For example, the compositions of 5 into 3 parts are

22,1, (212), (122, @GLL), (@131, (1,13).
The compositions of 3 are
3), (21), (12, (1,11).

The only composition of 0 is the O-tuple (), which is a composition into 0 parts.
Let us now count compositions of n into k parts.

Theorem 7.4.2. Let n,k € IN. Then,

-1
(# of compositions of n into k parts) = (Z B k).

If n > 0, then

(# of compositions of n into k parts) = (Z : i)

Proof. The case n = 0 is very easy, so we just omit it. Thus, WLOG assume that
n > 0. Thus,n —1 € N.
We are looking for a bijection

from {compositions of n into k parts}
to {(k —1)-element subsets of [n —1]}.
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Such a bijection can be constructed as follows: It sends every composition a =
(a1,az,...,ax) of n to the subset

{a1, my+ay, ay+ay+az, ..., ay+ax+---+ax 1}.

To prove that this is a bijection, we have to construct its inverse. This inverse
sends a (k — 1)-element subset S = {s1 < sy < --- < s¢_1} to the composition

(s1, S2—51, 53 —5S2, S4—53, ..., Sk_1—Sk_p, N —Sk).
Thus the bijection principle yields

(# of compositions of n into k parts)
= (# of (k—1)-element subsets of [n —1])

_(n—1 by the combinatorial
N interpretation of BCs

B n—1 by the symmetry
S \(n—1)—(k—1) of BCs

]

Theorem 7.4.3. Let n be a positive integer. Then, the # of all compositions of
nis 2"1,

Proof. Same idea as above, but now we no longer restrict to k parts / k —1
elements. ]

7.4.2. Weak compositions

If we extend the notion of a composition to allow 0’s as entries, then we end up
with weak compositions:

Definition 7.4.4. (a) If n € IN, then a weak composition of n shall mean a
tuple (i.e., finite list) of nonnegative integers whose sum is 7.

(b) If n,k € IN, then a weak composition of n into k parts shall mean a
k-tuple of nonnegative integers whose sum is n.

For instance, the weak compositions of 2 into 3 parts are
(1,10, (101), (0,1,1), (2,0,0), (0,2,0), (0,0,2).

It makes little sense to ask for the # of all weak compositions of 7, since there
are oo of them (for example, 0 has weak compositions (), (0), (0,0), (0,0,0),
and so on). But we can ask for the # of all weak compositions of n into k parts:
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Theorem 7.4.5. Let n,k € IN. Then,

(# of weak compositions of n into k parts) = (n +:§ a 1) .
Proof. Consider the bijection
from {weak compositions of n into k parts}
to {compositions of n + k into k parts}
which sends
(ay,ap,...,01) = (@ +1, ap+1, ..., ap+1).
Its inverse map sends
(b1,by, ..., bx) — (b1 —1, bp—1, ..., by —1).
So the bijection principle yields
(# of weak compositions of 7 into k parts)
= (# of composition of n + k into k parts)
— (Z il; - }{) (by a previously proved theorem)

(1)

7.5. Selections

Here is a classical question we posed a few chapters ago and haven’t fully
addressed yet: How many ways are there to select k elements from a given
n-element set S ?

The words “k elements” here can be interpreted in 4 different ways, leading
to 4 different problems. Here are the choices you can make:

1. Do we want k arbitrary elements or k distinct elements?

2. Does the order of these k elements matter or not? (E.g., do we count “1,2”
and “2,1” as two different selections?)

Let us explore these 4 options now.
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7.5.1. Unordered selections without repetition (= without replacement)

To select k distinct elements from S without regard for their order is the same
as selecting a k-element subset of S. We know how to count them:

Theorem 7.5.1. Let n € IN, and let k be any number. Let S be an n-element
set. Then,

(# of k-element subsets of S) = (Z) .

7.5.2. Ordered selections without repetition

Now, let us consider the question of selecting k distinct elements from a set S
with regard to their order. This kind of selections is best described as k-tuples
of a specific kind: what I call “injective k-tuples”.

Definition 7.5.2. Let k € IN. A k-tuple (i1, ip, ..., i) is said to be injective if
its k entries i1, 1y, . . ., i} are distinct (i.e., if i; # i, whenever a # b).

For example, (3,1,5) is injective, but (3,1, 3) is not.

Definition 7.5.3. Let S be any set, and let k € IN. Then, Sk shall mean the
Cartesian product

SxSx---xS={(ay,a,...,ar) | a,az,...,ar €S}

k times

= {k-tuples whose all entries belong to S} .

Now, our counting problem becomes the question of counting the injective
k-tuples in S¥. Here is the answer:

Theorem 7.5.4. Let n,k € IN. Let S be an n-element set. Then,

<# of injective k-tuples in Sk) =nn—-1)n—-2)---(n—k+1)

-(0)

Informal proof. (See the notes for a rigorous proof.)

Example: Letn = 5and k = 3 and S = {a,b,c,d,e}. We must count the
injective k-tuples in S, that is, the injective 3-tuples in S3. These are the triples
(x,y,z) of distinct elements of S. Here is a way to choose such a triple:
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1. First, we choose its first entry x. There are 5 options for this, since S has 5
elements.

2. Next, we choose its second entry y. There are 4 options for this, since
y can be any of the 5 elements of S except for x (since the injectivity of

(x,y,z) requires y # x).

3. Finally, we choose its third entry z. There are 3 options for this, since z
can be any of the 5 elements of S except for x and y (and x and y are
distinct).

Altogether, we have 5 options at the first step, 4 at the second, and 3 at the
third. This gives rise to 5 -4 - 3 possible outcomes, and each outcome gives a
different 3-tuple, and each 3-tuple really is obtained this way. So the total # of
injective 3-tuples is 5 -4 - 3 = 60.

The general case is similar. What we are tacitly using is a counting rule called
the dependent product rule, which (informally) states that if we perform a
multi-step construction, and we have

* exactly n; options in step 1,
* exactly np options in step 2,

[ ]
“ ey

* exactly ny options in step k,

then the entire construction can be performed in n1n; - - - ny many different
ways. Usually, proofs that use this rule can be rewritten as induction proofs
(inducting on k). In particular, in the notes, I do this with the proof above. [

7.5.3. Intermezzo: Listing n elements

If we apply the above theorem to k = 1, then we conclude that the # of ways to
choose n distinct elements from an n-element set S, where the order matters, is

nin—1)n-2)---(n—n+1)=nn-1)n-2)---1=nl

Of course, when you choose 7 distinct elements from an n-element set S, you
necessarily must choose all the elements of S. So these ways are just ways of
listing the n elements of S in some order. So we have obtained:

Corollary 7.5.5. Let n € IN. Let S be an n-element set. Then, the # of ways to
list the 1 elements of S in some order (i.e., the # of n-tuples of elements of S
that contain each element of S exactly once) is n!.

For example, the ways to list the 3 elements of [3] are

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
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7.5.4. Ordered selections with repetition

The ways to select k elements from an n-element set S, if the order matters, are
simply the k-tuples of elements of S. Their # is
nmm---n=mn".

H/—/
k times

So we have shown:

Theorem 7.5.6. Let 7,k € IN. Let S be an n-element set. Then,

<# of all k-tuples in Sk> — .

7.5.5. Unordered selections with repetition

Now only one question remains: What is the # of ways to choose k arbitrary
elements from an n-element set S if we don’t care about their order?
There are several ways to rigorously define what this means:

1. We can define the notion of a multiset, which is “like a finite set but
allowing for repeated elements”. This is usually done in combinatorics
courses (Math 222).

2. Alternatively, we can define the notion of an unordered k-tuple, which is
a “k-tuple up to reordering its entries”. Rigorously, it is an equivalence
class of k-tuples with respect to the relation of “being a permutation of”.
This is the algebraic approach (see classes on abstract algebra).

3. The most pedestrian way: We restrict ourselves to the case S = [n], and we
count only the weakly increasing k-tuples —i.e., the k-tuples (iy, 1y, .. ., i)
that satisfy 17 <ip <--- <.

These three definitions yield different but equivalent objects (“equivalent”
meaning here that there are bijections between from each kind of object to each
other). So the #s of these objects are the same. Here is a formula for these #s:

Theorem 7.5.7. Let n,k € IN. Let S be an n-element set. Then,

(# of all ways to select k elements from S (if order does not matter))
_ (k+n-—1
= L _

See the notes for a proof.

See the notes also for a few other counting problems.
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