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0. Preface

This is a course on discrete mathematics: the mathematics of finite, discrete
objects, such as integers, finite sets. Integer sequences are also included even
though they are infinite (since you only care about finite parts of them). We will
not cover linear algebra or abstract algebra – while still discrete mathematics,
these topics have their own classes.

The major topics we will cover in this course are

• mathematical induction and recursion;

• elementary number theory (divisibility, prime numbers, coprimality);

• basic enumerative combinatorics (counting and binomial coefficients);

• basic combinatorial game theory.

We will not go very deep, nor will we be fully rigorous. See the notes for
references that elaborate on these topics.
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1. Induction and recursion

1.1. The Tower of Hanoi

Let me start with a puzzle called the Tower of Hanoi.
You have 3 pegs (or rods). The first peg has n disks stacked on it, and these

disks have different sizes, stacked from largest to smallest as you go up. You
can make a certain kind of moves (“Hanoi moves”): You can take the topmost
disk from one peg and move it on top of another peg. However, you are only
allowed to do this if this disk is smaller than the other disks currently on the
latter peg. In other words, you cannot stack a bigger disk atop a smaller one.

Your goal is to move all n disks onto the third peg.

This game can be played online in many places (e.g. https://codepen.io/eliortabeka/pen/yOrrxG
).

Let us analyze the case n = 3. In this case, one strategy to win the game (i.e.,
achieve the goal) is as follows:

1. Move the smallest disk from peg 1 to peg 3.

2. Move the middle disk from peg 1 to peg 2.

3. Move the smallest disk from peg 3 to peg 2.

4. Move the biggest disk from peg 1 to peg 3.

5. Move the smallest disk from peg 2 to peg 1.

6. Move the middle disk from peg 2 to peg 3.

7. Move the smallest disk from peg 1 to peg 3.

This strategy wins the game in 7 moves for n = 3.

What about other values of n ? The questions are:

Question 1.1.1. (a) Can we always win the game?
(b) If so, then what is the smallest # of moves we need to make?

Let us record the answers for small values of n:

• For n = 0, we win in 0 moves (since all disks – all 0 of them – are on peg
3 already).

• For n = 1, we win in 1 move.

• For n = 2, we win in 3 moves.
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• For n = 3, our above strategy wins in 7 moves, but maybe we can do
better?

Solving the game by brute force gets more and more tiresome as n grows
larger. So let us try to spot a pattern in our strategies for small n’s, and see if it
holds on for higher n’s.

The n = 3 strategy seems to follow a pattern: Its first 3 steps are freeing the
biggest disk; the next step moves the biggest disk from peg 1 to peg 3; the last
3 steps are again placing the other disks on top of it. So we can rewrite our
n = 3 strategy as follows:

1.–3. Move the two smaller disks from peg 1 onto peg 2. (This is essentially
a Tower of Hanoi puzzle played only with the two smaller disks, except
that the goal is not to move them to peg 3 but to move them to peg 2.)

4. Move the largest disk from peg 1 onto peg 3.

5.–7. Move the two smaller disks from peg 2 onto peg 3. (This is again a Tower
of Hanoi puzzle played only with the two smaller disks.)

Now the logic behind the above strategy has become clear.

Let us try to adapt this same logic to the n = 4 case:

1.–7. Move the three smaller disks from peg 1 onto peg 2. (This is essentially a
Tower of Hanoi puzzle played only with the three smaller disks.)

8. Move the largest disk from peg 1 onto peg 3.

9.–15. Move the three smaller disks from peg 2 onto peg 3.

As you see, we don’t just have a strategy for n = 3 and a strategy for n = 4.
We have a “meta-strategy” that lets us win the game for n disks if we know
how to win it for n − 1 disks. We shall still refer to it as “strategy”.

Let us summarize what we gain from this strategy.

Definition 1.1.2. For any integer n ≥ 0, we let mn denote the # of moves
needed to win with n disks. If the game cannot be won with n disks, then
we set mn = ∞.

Thus, both of our Questions (a) and (b) boil down to computing mn.
Let us make a little table of small values of mn obtained using our strategy:

n 0 1 2 3 4 5 6

mn 0 1 3 7 15 31 63
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Note that these values are easily computed using our strategy, because in order
to win the game for a given n, we have to win it for n − 1, then make an extra
move, and then win it for n − 1 again. So we get

mn = mn−1 + 1 + mn−1 = 2mn−1 + 1 for all n ≥ 1.

Right?

Not so fast. We have defined mn to be the smallest # of moves needed to
solve the game. But what we have computed is the smallest # of moves needed
to solve the game using our strategy. What if our strategy is not the quickest
way? Then the true mn would be smaller than the one we have found.

So what we have really proved is the following:

Proposition 1.1.3. Let n be a positive integer. If mn−1 is an integer (i.e., not
∞), then mn ≤ 2mn−1 + 1.

To practice some mathematical writing, let us spell the proof out in detail:

Proof. Assume that mn−1 is an integer. Thus, we can win the game for n − 1
disks in mn−1 moves. Let S be the strategy (i.e., the sequence of moves) needed
to do this. So the strategy S moves n − 1 disks from peg 1 onto peg 3 in mn−1
moves.

Let S23 be the same strategy as S, but with the roles of pegs 2 and 3 swapped.
Thus, S23 moves n − 1 disks from peg 1 onto peg 2 in mn−1 moves.

Let S12 be the same strategy as S, but with the roles of pegs 1 and 2 swapped.
Thus, S12 moves n − 1 disks from peg 2 onto peg 3 in mn−1 moves.

Now, to win the game with n disks, we proceed as follows:

A. We use strategy S23 to move the n − 1 smaller disks from peg 1 onto peg
2. (This is allowed because the largest disk rests at the bottom of peg 1
and does not interfere with the movement of smaller disks.)

B. We move the largest disk from peg 1 onto peg 3. (This is allowed because
this disk is free (i.e., has no disks on top of it) and because peg 3 is empty
(since all other disks are on peg 2).)

C. We use strategy S12 to move the n − 1 smaller disks from peg 2 onto peg
3. (Again, this is allowed since the largest disk rests at the bottom of peg
3 and does not interfere.)

This strategy wins the game (for n disks) in mn−1 + 1 + mn−1 = 2mn−1 + 1
many moves. So the game for n disks can be won in 2mn−1 + 1 moves. In other
words, mn ≤ 2mn−1 + 1. Qed.
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Now, let us see if the inequality mn ≤ 2mn−1 + 1 is an equality or just an
inequality – i.e., whether our above strategy is optimal or there is a faster one.
I claim that it is optimal:

Proposition 1.1.4. Let n be a positive integer. If mn−1 is an integer (i.e., not
∞), then mn = 2mn−1 + 1.

Proof. Again, we assume that mn−1 is an integer.
We need to show that mn = 2mn−1 + 1. It suffices to show that mn ≥ 2mn−1 +

1, since our previous proposition says that mn ≤ 2mn−1 + 1. In other words, it
suffices to show that any winning strategy for n disks has at least 2mn−1 + 1
many moves.

So let us consider a winning strategy T for n disks. Somewhere during T,
the largest disk has to move. Let us refer to these moves (i.e., the moves that
move the largest disk) as special moves. There may be one of them or more,
but there has to be at least one.

Before the first special move can happen, the smallest n − 1 disks have to
all be moved on the same peg which is either peg 2 or peg 3 (since otherwise,
the largest disk could either not be lifted or not be placed). Thus, before the
first special move can happen, we must have won the Tower of Hanoi game for
n − 1 disks. So we need to make at least mn−1 moves before our first special
move.

Now, consider what happens after the last special move. This last special
move necessarily moves the largest disk to peg 3. After that, we still need to
move all the other disks onto peg 3. We note that at the time of the last special
move, all these other disks must be on the same peg, since otherwise the largest
disk could not be moved. So we still need to win the Tower of Hanoi game for
n − 1 disks. For this we need at least mn−1 moves.

Altogether, we see that our strategy T needs to have

1. at least mn−1 moves before the first special move,

2. at least one special move,

3. at least mn−1 moves after the last special move.

So, altogether, it has to contain at least mn−1 + 1 + mn−1 = 2mn−1 + 1 moves.
This proves mn ≥ 2mn−1 + 1. Qed.

So this proposition confirms the table we have carelessly made before:

n 0 1 2 3 4 5 6 7 8 9

mn 0 1 3 7 15 31 63 127 255 511
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A look at this table suggests that maybe there is an explicit formula for mn (that
is, a formula that gives mn directly, without having to compute m0, m1, . . . , mn−1
first). Namely, it suggests that

mn
?
= 2n − 1.

For example, you can spot it by computing ratios between consecutive en-
tries:

m8

m7
=

255
127

≈ 2.0079;

m9

m8
=

511
255

≈ 2.0039;

. . . ,

which suggest that mn ≈ 2n, and then you can easily spot the pattern in the
difference mn − 2n.

I claim that the above formula mn = 2n − 1 is actually true. How could this
be proved?

Our above proposition shows that if mn−1 ̸= ∞, then mn = 2mn−1 + 1. Thus,
if the formula mn−1 = 2n−1 − 1, then

mn = 2
(

2n−1 − 1
)
+ 1 = 2 · 2n−1︸ ︷︷ ︸

=2n

−2 + 1 = 2n − 2 + 1 = 2n − 1.

In other words, if our claimed formula mn = 2n − 1 is true for n − 1 instead of
n, then it is true for n as well. In particular:

• If m0 = 20 − 1, then m1 = 21 − 1. So we get m1 = 21 − 1 (since m0 =
20 − 1).

• If m1 = 21 − 1, then m2 = 22 − 1. So we get m2 = 22 − 1 (since m1 =
21 − 1).

• If m2 = 22 − 1, then m3 = 23 − 1. So we get m3 = 23 − 1 (since m2 =
22 − 1).

• .........

• If m1006 = 21006 − 1, then m1007 = 21007 − 1. So we get m1007 = 21007 − 1.

• .........

Using this kind of reasoning, for any given n ≥ 0, you can prove that mn =
2n − 1 by n such steps (starting with m0 = 20 − 1, then moving on to show
m1 = 21 − 1, then to show m2 = 22 − 1, and so on, until you get to mn).
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Common sense dictates that this should constitute a proof of mn = 2n − 1
for each n ≥ 0. To make this formal, we have to state a principle (an axiom)
that underlies this kind of reasoning. This is the Principle of Mathematical
Induction:

Theorem 1.1.5 (Principle of Mathematical Induction). Let b be an integer.
Let P (n) be a mathematical statement defined for each integer n ≥ b.
(For example, P (n) can be “n + 1 > n” or “n is even” or “n is prime” or

“there exists a prime number larger than n”. Not every statement needs to
be true. So P (n) is a statement that depends on n; in logic, such a statement
is called a predicate.)

Assume the following:

1. The statement P (b) holds (i.e., P (n) holds for n = b).

2. For each integer n ≥ b, the implication P (n) =⇒ P (n + 1) holds (i.e.,
if P (n) holds, then P (n + 1) holds as well).

Then, the statement P (n) holds for every integer n ≥ b.

Let me recall the meaning of the “=⇒” symbol: An implication A =⇒ B
holds whenever B is true or A is false, but not in the remaining case (i.e., when
A is true but B is false). Thus, for example, “0 = 1 =⇒ 16 is prime” is true.
The truth table of implication is as follows:

A B A =⇒ B
true true true
true false false
false true true
false false true

.

Next time, we will apply the Principle of Mathematical Induction to prove
that

mn = 2n − 1 for all n ≥ 0.

1.2. The Principle of Mathematical Induction

Repeating:

Theorem 1.2.1 (Principle of Mathematical Induction). Let b be an integer.
Let P (n) be a mathematical statement for each integer n ≥ b.
Assume the following:

1. The statement P (b) holds (i.e., P (n) holds for n = b).
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2. For each integer n ≥ b, the implication P (n) =⇒ P (n + 1) holds (i.e.,
if P (n) holds, then so does P (n + 1)).

Then, P (n) holds for each integer n ≥ b.

Before we say more about the role and meaning of this principle, let me show

how to use it to prove our mn
?
= 2n − 1 conjecture from last time:

Theorem 1.2.2 (explicit answer to Tower of Hanoi). For each integer n, we
let mn be the # of moves needed to win the Tower of Hanoi game (or ∞ if it
cannot be won). Then,

mn = 2n − 1 for each integer n ≥ 0.

Proof. We denote the statement “mn = 2n − 1” by P (n). Thus, we must prove
that P (n) holds for each integer n ≥ 0.

According to the Principle of Mathematical Induction (applied to b = 0), it
suffices to show that

1. the statement P (0) holds;

2. for each integer n ≥ 0, the implication P (n) =⇒ P (n + 1) holds.

To prove these two claims will be our two goals; we call them Goal 1 and
Goal 2. Let us see if we can achieve them.

Goal 1 is easy: The statement P (0) is just saying that m0 = 20 − 1, and this is
true since both sides are 0.

Let us now work towards Goal 2. Let n ≥ 0 be an integer. We must prove the
implication P (n) =⇒ P (n + 1). To prove this, we assume that P (n) holds, and
we set out to prove that P (n + 1) holds.

Our assumption says that P (n) holds, i.e., that mn = 2n − 1. In particular, mn
is an integer, so that the Hanoi game for n disks is winnable.

We need to prove that P (n + 1) holds, i.e., that mn+1
?
= 2n+1 − 1.

The last proposition we showed says that mn = 2mn−1 + 1 if n ≥ 1.
But we can also apply this proposition to n + 1 instead of n (since the n in

the proposition was an arbitrary positive integer; it does not have to coincide
with our current n). Thus, we get

mn+1 = 2mn + 1.

Thus,

mn+1 = 2 mn︸︷︷︸
=2n−1

+1 = 2 (2n − 1) + 1 = 2 · 2n − 2 + 1

= 2 · 2n − 1 = 2n+1 − 1,
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which is exactly the statement P (n + 1) we wanted to prove. So goal 2 is
achieved.

Now we have achieved both goals. Hence, the Principle of Mathematical
Induction yields that P (n) holds for each integer n ≥ 0. In other words, mn =
2n − 1 for each integer n ≥ 0. This proves the theorem.

What has really happened here? How did this proof work?
Let us take a look at the structure of this proof.
Our goal was to show that P (n) holds for each n ≥ 0.
In other words, our goal was to prove the infinite chain of statements

P (0) , P (1) , P (2) , P (3) , . . . .

We have proved that P (0) holds; that was Goal 1.
We have then proved that P (n) =⇒ P (n + 1) for each n. In other words, we

have proved that P (0) =⇒ P (1) and P (1) =⇒ P (2) and P (2) =⇒ P (3) and
so on.

Combining P (0) with P (0) =⇒ P (1), we obtain P (1).
Combining P (1) with P (1) =⇒ P (2), we obtain P (2).
Combining P (2) with P (2) =⇒ P (3), we obtain P (3).
Etc. Continuing this way, you can obtain P (n) for each n ≥ 0, although

you need more and more steps the larger n becomes. Common sense tells
you that this should qualify as a proof of P (n) for all n. The Principle of
Mathematical Induction simply formalizes this common sense. So, if you want
to use this reasoning in a mathematical proof, you have to use the Principle of
Mathematical Induction.

Some metaphors:

• You can think of a proof by the Principle of Mathematical Induction as
a daisy chain of lamps, which stand for P (0) , P (1) , P (2) , . . .. Goal 1
turns the first lamp on. Goal 2 ensures that each lamp, when turned on,
also turns the next lamp on.

• You can also think of it as a sequence of dominos arranged in a row, at
sufficiently close distances so that tipping over one will kick down the
next. After you tip over the first domino, all the others will eventually fall
down.

I called the Principle of Mathematical Induction a theorem, but really it is
an axiom of mathematics. Some authors do prove it, but they do so relying on
some other axioms that formalize the same intuition.
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1.3. Some more proofs by induction

A proof that uses the Principle of Mathematical Induction (such as the proof
we gave above) is called a proof by induction or an inductive proof.

Let us see some more proofs by induction.

1.3.1. The sum of the first n positive integers

Theorem 1.3.1 (“Little Gauss formula”). For every integer n ≥ 0, we have

1 + 2 + · · ·+ n =
n (n + 1)

2
.

The LHS (= left hand side) here is understood to be the sum of the first n
positive integers. For n = 0, this sum is an empty sum (i.e., has no addends),
so its value is 0 by definition.

First proof of the Little Gauss formula. We define

sn := 1 + 2 + · · ·+ n for each n ≥ 0.

Then, we must prove that sn =
n (n + 1)

2
for each n ≥ 0.

Let us denote the statement “sn =
n (n + 1)

2
” by P (n). So we need to prove

that P (n) holds for each n ≥ 0.
According to the Principle of Mathematical Induction, it suffices to show that

1. the statement P (0) holds;

2. for each n ≥ 0, the implication P (n) =⇒ P (n + 1) holds.

For Goal 1, we must show that s0 =
0 (0 + 1)

2
, but this is clear since both

sides are 0.
Now to Goal 2. We let n ≥ 0 be an integer, and we want to prove the

implication P (n) =⇒ P (n + 1). So we assume that P (n) holds, and we set out
to prove P (n + 1).

By assumption, P (n) holds. In other words,

sn =
n (n + 1)

2
.

We must prove P (n + 1); in other words, we must prove that

sn+1
?
=

(n + 1) ((n + 1) + 1)
2

.
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To do so, we observe that

sn+1 = 1 + 2 + · · ·+ (n + 1) = (1 + 2 + · · ·+ n)︸ ︷︷ ︸
=sn=

n (n + 1)
2

+ (n + 1)

=
n (n + 1)

2
+ (n + 1) = (n + 1)

(n
2
+ 1
)
= (n + 1) · n + 2

2

=
(n + 1) (n + 2)

2
=

(n + 1) ((n + 1) + 1)
2

.

In other words, P (n + 1) holds. This proves the implication P (n) =⇒ P (n + 1).
We have now achieved both goals. So the Principle of Mathematical Induc-

tion yields that P (n) holds for each n ≥ 0, which is exactly what the theorem
claims.

There is a non-inductive proof (supposedly how Gauss figured it out):

Second proof of the Little Gauss formula. We have

2 · (1 + 2 + · · ·+ n)
= (1 + 2 + · · ·+ n) + (1 + 2 + · · ·+ n)
= (1 + 2 + · · ·+ n) + (n + (n − 1) + · · ·+ 1)
= (1 + n)︸ ︷︷ ︸

=n+1

+ (2 + (n − 1))︸ ︷︷ ︸
=n+1

+ · · ·+ (n + 1)︸ ︷︷ ︸
=n+1

= (n + 1) + (n + 1) + · · ·+ (n + 1)︸ ︷︷ ︸
n times

= n · (n + 1) ,

so that 1 + 2 + · · ·+ n =
n · (n + 1)

2
, qed.

1.3.2. The sum of the squares of the first n positive integers

Theorem 1.3.2. For each integer n ≥ 0, we have

12 + 22 + · · ·+ n2 =
n (n + 1) (2n + 1)

6
.

Proof. The following proof is a verbatim copy of the first proof of Little Gauss,
just with some necessary changes made.

We define
sn := 12 + 22 + · · ·+ n2 for each n ≥ 0.

Then, we must prove that sn =
n (n + 1) (2n + 1)

6
for each n ≥ 0.
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Let us denote the statement “sn =
n (n + 1) (2n + 1)

6
” by P (n). So we need

to prove that P (n) holds for each n ≥ 0.
According to the Principle of Mathematical Induction, it suffices to show that

1. the statement P (0) holds;

2. for each n ≥ 0, the implication P (n) =⇒ P (n + 1) holds.

For Goal 1, we must show that s0 =
0 (0 + 1) (2 · 0 + 1)

6
, but this is clear since

both sides are 0.
Now to Goal 2. We let n ≥ 0 be an integer, and we want to prove the

implication P (n) =⇒ P (n + 1). So we assume that P (n) holds, and we set out
to prove P (n + 1).

By assumption, P (n) holds. In other words,

sn =
n (n + 1) (2n + 1)

6
.

We must prove P (n + 1); in other words, we must prove that

sn+1
?
=

(n + 1) ((n + 1) + 1) (2 (n + 1) + 1)
6

.

To do so, we observe that

sn+1 = 12 + 22 + · · ·+ (n + 1)2 =
(

12 + 22 + · · ·+ n2
)

︸ ︷︷ ︸
=sn=

n (n + 1) (2n + 1)
6

+ (n + 1)2

=
n (n + 1) (2n + 1)

6
+ (n + 1)2

= (n + 1) ·
(

n (2n + 1)
6

+ (n + 1)
)

= (n + 1) · 1
6
(n (2n + 1) + 6 (n + 1))︸ ︷︷ ︸

=2n2+7n+1
=((n+1)+1)(2(n+1)+1)

= (n + 1) · 1
6
((n + 1) + 1) (2 (n + 1) + 1)

=
(n + 1) ((n + 1) + 1) (2 (n + 1) + 1)

6
.

In other words, P (n + 1) holds. This proves the implication P (n) =⇒ P (n + 1).
We have now achieved both goals. So the Principle of Mathematical Induc-

tion yields that P (n) holds for each n ≥ 0, which is exactly what the theorem
claims.
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As we said, this proof was an almost-verbatim copy of the first proof of Little
Gauss. In contrast, the nice second proof of Little Gauss cannot be extended to
12 + 22 + · · ·+ n2.

Exercise 1.3.1. Prove that

13 + 23 + · · ·+ n3 =

(
n (n + 1)

2

)2

for each integer n ≥ 0.

1.4. Notations for an induction proof

Here is some standard terminology that is commonly used in proofs by induc-
tion. Let’s say that you are proving a statement of the form P (n) for every
integer n ≥ b (where b is some fixed integer).

• The n is called the induction variable; you say that you induct on n. This
variable doesn’t have to be called n. Your statement might just as well be

proving “for every integer a ≥ 0, we have 1 + 2 + · · · + a =
a (a + 1)

2
”,

and then you can prove it by inducting on a.

• The proof of P (b) (that is, Goal 1 in our above proofs) is called the induc-
tion base or the base case. In our above examples, this was always the
proof of P (0), but in general b can be another integer. For example, if you
are proving the statement “every integer n ≥ 4 satisfies 2n ≥ n2”, then b
will have to be 4, so your induction base consists in proving that 24 ≥ 42.

• The proof of “P (n) =⇒ P (n + 1) for each n ≥ b” (that is, Goal 2 in our
above proofs) is called the induction step. For example, in the last proof,
this was the part where we assumed that

sn =
n (n + 1) (2n + 1)

6
and proved that

sn+1 =
(n + 1) ((n + 1) + 1) (2 (n + 1) + 1)

6
.

In the induction step, the assumption that P (n) holds is called the induc-
tion hypothesis or the induction assumption, and the claim that P (n + 1)
holds is called the induction goal. The induction step is complete when
the induction goal is reached (i.e., proved).

As an example, let us rewrite our above proof of the Hanoi theorem using
this language:
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Theorem 1.4.1 (explicit answer to Tower of Hanoi). For each integer n, we
let mn be the # of moves needed to win the Tower of Hanoi game (or ∞ if it
cannot be won). Then,

mn = 2n − 1 for each integer n ≥ 0.

Rewritten proof. We induct on n.
Base case: The theorem holds for n = 0, since both m0 and 20 − 1 are 0.
Induction step: Let n ≥ 0 be an integer. We assume that the theorem holds for

n (this is what we previously called P (n)). We will now show that the theorem
holds for n + 1 as well (this is what we previously called P (n + 1)).

We have assumed that the theorem holds for n. In other words, mn = 2n − 1.
This is our induction hypothesis.

We must prove that the theorem holds for n + 1. In other words, we must

prove that mn+1
?
= 2n+1 − 1. This is our induction goal.

To prove this, we apply the previous proposition (the one that says mn =
2mn−1 + 1) to n + 1 instead of n (we can do this, since mn = 2n − 1 is not ∞),
and obtain

mn+1 = 2mn + 1 = 2 (2n − 1) + 1 = 2 · 2n − 2 + 1

= 2 · 2n − 1 = 2n+1 − 1.

Thus, the induction goal is reached, so the induction is complete. Hence, the
theorem is proved.

1.5. The Fibonacci numbers

1.5.1. Definition

Our next applications of induction will be some properties of the Fibonacci
sequence. This sequence is defined recursively – i.e., a given entry is not de-
fined directly, but rather is defined in terms of the previous entries. Here is the
definition:

Definition 1.5.1. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of
nonnegative integers defined recursively by setting

f0 = 0, f1 = 1,
fn = fn−1 + fn−2 for each n ≥ 2.
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In other words, the Fibonacci sequence starts with the two entries 0 and 1,
and then every next entry is the sum of the two previous entries.

The entries of this sequence are called the Fibonacci numbers. Here are the
first few:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.

As we see, a recursive definition is a perfectly valid way to define (e.g.) a
sequence of numbers.

1.5.2. The sum of the first n positive Fibonacci numbers

Theorem 1.5.2. For any integer n ≥ 0, we have

f1 + f2 + · · ·+ fn = fn+2 − 1.

For example, for n = 8, this is saying that 1 + 1 + 2 + 3 + 5 + 8 + 21 = 55 − 1.

Proof. We induct on n.
Base case: For n = 0, the theorem claims that f1 + f2 + · · ·+ f0 = f0+2 − 1.

The left hand side is an empty sum, thus equals 0. The right hand side is
f2 − 1 = 1 − 1 = 0. So the theorem holds for n = 0.

Induction step: Let n ≥ 0 be an integer. Assume that the theorem holds for n.
We must prove that the theorem holds for n + 1.

So we assumed that f1 + f2 + · · ·+ fn = fn+2 − 1.

We must prove that f1 + f2 + · · ·+ fn+1
?
= fn+1+2 − 1.

We have

f1 + f2 + · · ·+ fn+1 = ( f1 + f2 + · · ·+ fn)︸ ︷︷ ︸
= fn+2−1

(by our induction hypothesis)

+ fn+1

= ( fn+2 − 1) + fn+1 = fn+2 + fn+1︸ ︷︷ ︸
= fn+3

(by the definition
of the Fibonacci

sequence)

−1

= fn+3 − 1 = fn+1+2 − 1.

This completes the induction step. Thus, the theorem is proved.

1.6. Some more examples of induction

Let us see some more examples of proofs by induction.
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Theorem 1.6.1. For any integer n ≥ 0, we have

20 + 21 + · · ·+ 2n−1 = 2n − 1.

Proof. We induct on n.
Base case: For n = 0, the theorem says that an empty sum equals 20 − 1 = 0,

which is true.
Induction step: Let n be an integer ≥ 0. Assume that the theorem holds for n,

i.e., that we have
20 + 21 + · · ·+ 2n−1 = 2n − 1.

We must prove that the theorem also holds for n + 1, i.e., that we have

20 + 21 + · · ·+ 2(n+1)−1 = 2n+1 − 1.

But

20 + 21 + · · ·+ 2(n+1)−1

= 20 + 21 + · · ·+ 2n

=
(

20 + 21 + · · ·+ 2n−1
)

︸ ︷︷ ︸
=2n−1

(by the induction hypothesis)

+2n

= 2n − 1 + 2n = 2 · 2n︸ ︷︷ ︸
=2n+1

−1 = 2n+1 − 1,

which is precisely what we want. Thus, the theorem holds for n + 1, so the
induction step is complete. The theorem is proved.

The theorem we just proved can be generalized:

Theorem 1.6.2. Let x and y be any two numbers. Then, for any integer n ≥ 0,
we have

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn.

Here, the big sum in the parentheses is the sum of all products xiyj where i
and j are nonnegative integers satisfying i + j = n − 1.

For example:

• For n = 2, this theorem says that

(x − y) (x + y) = x2 − y2.
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• For n = 3, this theorem says that

(x − y)
(

x2 + xy + y2
)
= x3 − y3.

• For n = 4, this theorem says that

(x − y)
(

x3 + x2y + xy2 + y3
)
= x4 − y4.

• For x = 2 and y = 1, this theorem says that

(2 − 1)
(

2n−1 + 2n−21 + 2n−312 + · · ·+ 221n−3 + 2 · 1n−2 + 1n−1
)
= 2n − 1n.

Since any power of 1 is 1, and since 2 − 1 = 1, this simplifies to

2n−1 + 2n−2 + 2n−3 + · · ·+ 22 + 2 + 1 = 2n − 1.

In other words,
20 + 21 + · · ·+ 2n−1 = 2n − 1.

This is the previous theorem.

Let us now prove the generalized theorem:

Proof. We induct on n.
Base case: For n = 0, the claim

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn

is saying that (x − y) (an empty sum) = x0 − y0, which is true because both
sides are 0.

Induction step: Let n ≥ 0 be an integer. Assume that the theorem is true for n.
That is, assume that

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn.

We must prove that the theorem is true for n + 1 as well. In other words, we
must prove that

(x − y)
(

xn + xn−1y + xn−2y2 + · · ·+ x2yn−2 + xyn−1 + yn
)
= xn+1 − yn+1.
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We begin by extracting the yn addend from the long sum in the second pair
of parentheses on the LHS. We thus obtain

(x − y)
(

xn + xn−1y + xn−2y2 + · · ·+ x2yn−2 + xyn−1 + yn
)

= (x − y)
(

xn + xn−1y + xn−2y2 + · · ·+ x2yn−2 + xyn−1
)

︸ ︷︷ ︸
=x(xn−1+xn−2y+xn−3y2+···+xyn−2+yn−1)

+ (x − y) yn

= (x − y) x
(

xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1
)
+ (x − y) yn

= x (x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1
)

︸ ︷︷ ︸
=xn−yn

(by the induction hypothesis)

+ (x − y) yn

= x (xn − yn) + (x − y) yn = xn+1 − xyn + xyn − yn+1 = xn+1 − yn+1,

which is precisely the induction goal. So the induction step is complete and the
theorem proved.

Corollary 1.6.3. Let q be a number distinct from 1. Let n ≥ 0 be an integer.
Then,

q0 + q1 + q2 + · · ·+ qn−1 =
qn − 1
q − 1

.

Proof. Apply the above theorem to x = q and y = 1. We get

(q − 1)
(

qn−1 + qn−21 + qn−312 + · · ·+ q21n−3 + q · 1n−2 + 1n−1
)
= qn − 1n.

Simplifying this, we find

(q − 1)
(

qn−1 + qn−2 + qn−3 + · · ·+ q2 + q + 1
)
= qn − 1.

Thus,

qn−1 + qn−2 + qn−3 + · · ·+ q2 + q + 1 =
qn − 1
q − 1

.

But the LHS is q0 + q1 + q2 + · · ·+ qn−1, written in reverse.

1.7. How not to use induction

Induction proofs can be slippery:

Theorem 1.7.1 (Fake theorem). In any set of n ≥ 1 horses, all the horses have
the same color.
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Proof. We induct on n.
Base case: The theorem holds for n = 1, since a single horse has only one

color.
Induction step: Let n ≥ 1 be an integer. We assume that the theorem holds for

n, i.e., that any n horses have the same color.
We must prove that it holds for n + 1 as well, i.e., that any n + 1 horses have

the same color.
So consider n + 1 horses H1, H2, . . . , Hn+1.
By our IH (= induction hypothesis), the first n horses H1, H2, . . . , Hn have the

same color.
Again by our IH, the last n horses H2, H3, . . . , Hn+1 have the same color.
Now, consider the first horse H1 and the last horse Hn+1. They both have

the same color as the “middle horses” H2, H3, . . . , Hn (by the preceding two
paragraphs). So all n + 1 horses have the same color. “Qed.”

What went wrong?
There is an easy way to debug a wrong proof if you know that the theorem

is wrong: You just pick an example where the theorem fails, and see what the
proof is saying about that example. The simplest example where our present
theorem fails is the case n = 2. This is the very smallest instance of our induc-
tion step. So something must be wrong in the induction step for n = 1 (since
the theorem is true for 1 horse and false for 2 horses). Here, we are arguing
that the first horse H1 and the last horse Hn+1 = H2 have the same color as the
“middle horses” H2, H3, . . . , H1. But there are no middle horses, so it makes no
sense to compare colors with them. In particular, we cannot conclude that H1
and H2 have the same color.

The mistake we made is really a logical mistake: Normally, a = b and b = c
implies a = c. But a = b1 = b2 = · · · = bn and c = b1 = b2 = · · · = bn does not
imply a = c when n = 0.

Let me stress how one simple mistake has brought down the whole proof.
The induction step would work for all n ̸= 1. For an induction proof to
work, the implication P (n) =⇒ P (n + 1) must be proved for every n. If it
fails for a single n, the whole chain breaks down. For example, if we have
a statement P (n) for each n ≥ 0, and we have proved the base case P (0)
and the implication P (n) =⇒ P (n + 1) for all n ̸= 4, then we can conclude
that P (0) , P (1) , P (2) , P (3) , P (4) hold, but we cannot guarantee any of
P (5) , P (6) , P (7) , . . ..

1.8. More on the Fibonacci numbers

Recall the Fibonacci sequence ( f0, f1, f2, . . .), given by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for each n ≥ 2.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.

Let us prove some further properties of this sequence now.

1.8.1. The addition theorem

Theorem 1.8.1 (addition theorem for Fibonacci numbers). We have

fn+m+1 = fn+1 fm+1 + fn fm for all integers n, m ≥ 0.

Proof. Can we induct on two variables at the same time? Yes, if you “nest” one
induction in the other, but we’d rather not do it.

It is better to pick one variable and induct on it, when that works. Let us
induct on n. To that purpose, for every integer n ≥ 0, we define the statement
P (n) to say

“for every integer m ≥ 0, we have fn+m+1 = fn+1 fm+1 + fn fm”.

(Don’t forget the “for every integer m ≥ 0” part here! If we only stated P (n)
for a single value of m, then the induction step below would not work.)

We shall now prove this statement P (n) for all n ≥ 0 by induction on n.
Base case: We must prove P (0). In other words, we must prove that

“for every integer m ≥ 0, we have f0+m+1 = f0+1 fm+1 + f0 fm”.

But this is true, since

f0+1︸︷︷︸
= f1=1

fm+1 + f0︸︷︷︸
=0

fm = 1 fm+1 + 0 fm = fm+1 = f0+m+1.

Induction step: Let n ≥ 0 be an integer. We assume that P (n) holds. We must
show that P (n + 1) holds.

Our induction hypothesis says that P (n) holds, i.e., that

“for every integer m ≥ 0, we have fn+m+1 = fn+1 fm+1 + fn fm”.

In other words,

“for every integer p ≥ 0, we have fn+p+1 = fn+1 fp+1 + fn fp”.

We must prove that P (n + 1) holds, i.e., that

“for every integer m ≥ 0, we have fn+1+m+1 = fn+1+1 fm+1 + fn+1 fm”.
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To prove this, we let m ≥ 0 be an integer. Then,

fn+1+1︸ ︷︷ ︸
= fn+2

= fn+1+ fn
(by the definition of

the Fibonacci sequence)

fm+1 + fn+1 fm

= ( fn+1 + fn) fm+1 + fn+1 fm

= fn+1 fm+1 + fn fm+1 + fn+1 fm

= fn+1 ( fm+1 + fm)︸ ︷︷ ︸
= fm+2

(by the definition of
the Fibonacci sequence)

+ fn fm+1

= fn+1 fm+2 + fn fm+1.

But our induction hypothesis says that

“for every integer p ≥ 0, we have fn+p+1 = fn+1 fp+1 + fn fp”.

We can apply this to p = m + 1. Thus, we obtain

fn+m+1+1 = fn+1 fm+1+1 + fn fm+1 = fn+1 fm+2 + fn fm+1.

Comparing this with

fn+1+1 fm+1 + fn+1 fm = fn+1 fm+2 + fn fm+1,

we find
fn+m+1+1 = fn+1+1 fm+1 + fn+1 fm.

In other words,
fn+1+m+1 = fn+1+1 fm+1 + fn+1 fm.

This completes the induction step, and so the theorem is proved.

See HW1 for more about the Fibonacci sequence and a generalization of the
above theorem to more general recursive sequences.

1.8.2. Divisibility of Fibonacci numbers

Our next theorem involves divisibility of integers. We will study this in detail
in a later chapter (§3.1), but for now let me just show the definition:

Definition 1.8.2. Let a and b be two integers. We say that a divides b (and
we write a | b) if there exists an integer c such that b = ac. Equivalently, we
say that b is divisible by a in this case.

For example, we have 2 | 4 and 3 | 12 and 10 | 30 and 0 | 0 and 5 | 0, but we
don’t have 2 | 3 or 0 | 1.

Now we have the following property of Fibonacci numbers:
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Theorem 1.8.3. If a and b are two nonnegative integers such that a | b, then
fa | fb.

For example, 3 | 9 implies f3 | f9, which is true ( f3 = 2 and f9 = 34).
For another example, 6 | 12 implies f6 | f12, which is true as well.

Proof of the theorem. It is reasonable to try induction. Alas, inducting on a does
not work, since the condition a | b in the induction hypothesis is completely
unrelated to the condition a + 1 | b in the induction step. Inducting on b suffers
from the same problem, since the conditions a | b and a | b + 1 are also fairly
unrelated.

So we should induct on something else. On what? On a new variable we in-
troduce. Namely, recall that a | b means “b = ac for some integer c”. Moreover,
for a, b ≥ 0 we can pick c ≥ 0. So we can restate our theorem as follows:

Restated theorem: For any integers a, c ≥ 0, we have fa | fac.

We shall now prove this restated theorem by induction on c. In other words,
for each c ≥ 0, we shall prove the statement

P (c) := (“for any integer a ≥ 0, we have fa | fac”) .

Base case: We must prove P (0). This is saying that

(“for any integer a ≥ 0, we have fa | fa·0”) .

But this is true, since fa·0 = f0 = 0 is divisible by every integer. So the base
case is done.

Induction step: Let c ≥ 0 be any integer. We assume that P (c) holds, i.e., that

“for any integer a ≥ 0, we have fa | fac” holds.

We must prove that P (c + 1) holds, i.e., that

“for any integer a ≥ 0, we have fa | fa(c+1)” holds.

Let a ≥ 0 be any integer. Then, the induction hypothesis (i.e., our statement
P (c)) shows that fa | fac. In other words, fac = fa · p for some integer p.
Consider this p. Now,

fa(c+1) = fac+a = fac+(a−1)+1

= fac+1 f(a−1)+1︸ ︷︷ ︸
= fa

+ fac︸︷︷︸
= fa·p

fa−1

(
by the addition theorem,

applied to n = ac and m = a − 1

)

= fac+1 fa + fa · p fa−1 = fa · ( fac+1 + p fa−1)︸ ︷︷ ︸
an integer

.
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Thus, fa | fa(c+1). Thus, we have shown that for any integer a ≥ 0, we have
fa | fa(c+1). In other words, we have proved P (c + 1). This completes our
induction step, and thus the proof.

Right?
I claim that there is a minor but nontrivial mistake in the above proof. Again,

our use of induction is not the problem. Recall the addition theorem: It says
that

fn+m+1 = fn+1 fm+1 + fn fm for all integers n, m ≥ 0.

We have applied this theorem to n = ac and m = a − 1. Is this allowed? Not
if a = 0, because in this case m = a − 1 = 0 − 1 = −1 is not ≥ 0. Fortunately,
this problem occurs only in the a = 0 case, and this case is trivial (since fa | fac
for a = 0 is just saying that f0 | f0, which is obvious). Nevertheless, strictly
speaking, this case needs to be accounted for. So we have to replace our above
induction step by the following:

Induction step (corrected): Let c ≥ 0 be any integer. We assume that P (c) holds,
i.e., that

“for any integer a ≥ 0, we have fa | fac” holds.

We must prove that P (c + 1) holds, i.e., that

“for any integer a ≥ 0, we have fa | fa(c+1)” holds.

Let a ≥ 0 be any integer. Then, the induction hypothesis (i.e., our statement
P (c)) shows that fa | fac. In other words, fac = fa · p for some integer p.
Consider this p.

We are in one of the following two cases:
Case 1: We have a = 0.
Case 2: We have a ̸= 0.
Consider Case 1. In this case, a = 0. Hence, a (c + 1) = 0 (c + 1) = 0. Thus,

fa | fa(c+1) (since fa = f0 and fa(c+1) = f0 are just the same number). Thus, our
goal (to prove fa | fa(c+1)) is achieved in Case 1.

Now, consider Case 2. In this case, a ̸= 0. Hence, a ≥ 1 (since a is a
nonnegative integer). Hence, a − 1 ≥ 0. Of course, ac ≥ 0. Now,

fa(c+1) = fac+a = fac+(a−1)+1

= fac+1 f(a−1)+1︸ ︷︷ ︸
= fa

+ fac︸︷︷︸
= fa·p

fa−1

(
by the addition theorem,

applied to n = ac and m = a − 1

)

= fac+1 fa + fa · p fa−1 = fa · ( fac+1 + p fa−1)︸ ︷︷ ︸
an integer

.

Thus, fa | fa(c+1). Thus, we have shown that for any integer a ≥ 0, we have
fa | fa(c+1). So we have proved fa | fa(c+1) in Case 2.

Now, our goal (showing that fa | fa(c+1)) is reached in both Case 1 and Case
2. The induction step is therefore complete.
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1.8.3. Binet’s formula

Is there an explicit formula for fn, that is, a formula that computes fn directly,
without requiring the previous entries?

Yes, known as Binet’s formula:

Theorem 1.8.4 (Binet’s formula). Let

φ =
1 +

√
5

2
≈ 1.618 . . . and ψ =

1 −
√

5
2

≈ −0.618 . . . .

Then,

fn =
φn − ψn
√

5
for each n ≥ 0.

Some remarks:

• Why on earth would you expect a formula for the Fibonacci numbers
(integers!) to include irrational numbers like φ and ψ ?

(Eigenvalues of matrices provide an explanation, but it will remain a
mystery for this course. Just one hint: φ and ψ are the roots of the
quadratic equation x2 = x + 1, which is “similar” to the Fibonacci re-
currence fn = fn−1 + fn−2.)

• Binet’s formula can be used to compute f1 000 000 for example reasonably
fast.

• As n grows large, ψn approaches 0 whereas φn grows exponentially. Hence,
fn grows exponentially as well (by Binet’s formula), with growth rate
φ ≈ 1.618 . . ..

• The number φ is known as the golden ratio. The number ψ is known as
its conjugate.

Proof of Binet’s formula, first attempt. We induct on n.

Base case: For n = 0, the formula says that f0 =
φ0 − ψ0
√

5
, which is indeed true

since both sides are 0.
Induction step: Fix an integer n ≥ 0. Assume (as the IH) that the theorem

holds for n, i.e., that we have fn =
φn − ψn
√

5
.

We must prove that the theorem holds for n + 1 as well, i.e., that we have

fn+1 =
φn+1 − ψn+1

√
5

.
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For n = 0, this is easy. For n ≥ 1, we have

fn+1 = fn + fn−1

=
φn − ψn
√

5
+ fn−1 (by the IH)

=????.

We are stuck here, since the IH tells us nothing about fn−1. Metaphorically,
the n-th domino is not strong enough to kick over the (n + 1)-st domino; the
induction step does not work.

Next time, we will see how to “strengthen” the induction principle to make
it work for this theorem. (=⇒ strong induction)

1.9. Strong induction

1.9.1. Reminder on regular induction

Recall the original principle of induction:

Theorem 1.9.1 (Principle of Induction). Let b be an integer. Let P (n) be a
statement defined for each integer n ≥ b. Assume that:

1. “Base case”: The statement P (b) holds.

2. “Induction step”: For each integer n ≥ b, the implication P (n) =⇒
P (n + 1) holds.

Then, the statement P (n) holds for every integer n ≥ b.

We can restate this principle a bit by renaming the n in the induction step as
n − 1 (so that the implication P (n) =⇒ P (n + 1) becomes P (n − 1) =⇒ P (n)).
So it takes the following form:

Theorem 1.9.2 (Principle of Induction, restated). Let b be an integer. Let
P (n) be a statement defined for each integer n ≥ b. Assume that:

1. “Base case”: The statement P (b) holds.

2. “Induction step”: For each integer n > b, the implication P (n − 1) =⇒
P (n) holds.

Then, the statement P (n) holds for every integer n ≥ b.
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The idea behind this principle (in either form) is that the base case gives us
P (b) whereas the induction step gives us the implications

P (b) =⇒ P (b + 1) ,
P (b + 1) =⇒ P (b + 2) ,
P (b + 2) =⇒ P (b + 3) ,

. . . ,

and we can climb this “ladder” to reach any P (n) for any n ≥ b. In the domino
metaphor, this is saying that each P (n) domino is kicked over by the P (n − 1)
domino.

1.9.2. Strong induction

Now imagine that P (n − 1) alone is not sufficient to topple P (n), but the com-
bined momentum of the first dominos P (b) , P (b + 1) , . . . , P (n − 1) is. In
other words, imagine that we prove the implications

P (b) =⇒ P (b + 1) ,
(P (b) AND P (b + 1)) =⇒ P (b + 2) ,

(P (b) AND P (b + 1) AND P (b + 2)) =⇒ P (b + 3) ,
. . . .

This would still be enough to yield P (n) for all n ≥ b.
This induction principle is known as strong induction. Explicitly, it says the

following:

Theorem 1.9.3 (Principle of Strong Induction). Let b be an integer. Let P (n)
be a statement for each n ≥ b. Assume that:

1. “Base case”: The statement P (b) holds.

2. “Induction step”: For each integer n > b, the implication

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (n − 1)) =⇒ P (n)

holds.

Then, the statement P (n) holds for each integer n ≥ b.

Proofs using this principle are called proofs by strong induction (or strong
induction proofs). They differ from proofs by (regular) induction in that in the
induction step, instead of assuming P (n − 1) as the induction hypothesis, you
assume the conjunction

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (n − 1))
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as the induction hypothesis. This gives you a lot more to work with.
(We will later see a slightly nicer form of strong induction, which doesn’t

even require a base case.)

Before we see a proof using strong induction, let me explain why it works:
Let us say you have proved a statement P (n) for all n ≥ 0 by strong induc-

tion. Thus:

• In the base case, you have proved P (0).

• The induction step yields P (0) =⇒ P (1). Thus, you get P (1) (since you
have P (0)).

• The induction step yields (P (0) AND P (1)) =⇒ P (2). Thus, you get
P (2) (since you have P (0) and P (1)).

• The induction step yields (P (0) AND P (1) AND P (2)) =⇒ P (3). Thus,
you get P (3) (since you have P (0) and P (1) and P (2)).

• And so on.

Actually, the strong induction principle can be derived from the regular in-
duction principle by a simple trick (see references in the notes).

1.9.3. Example: Proof of Binet’s formula

Let us now prove Binet’s formula by strong induction:

Proof of Binet’s formula. We strongly induct on n (i.e., we proceed by strong in-
duction on n).

Base case: Same as before: We check that the theorem holds for n = 0.
Induction step: Let n > 0 be an integer. Assume (as the induction hypothesis)

that Binet’s formula holds for 0, for 1, for 2, . . ., for n − 1 instead of n. In other
words, we assume that

fk =
φk − ψk
√

5
for each k ∈ {0, 1, . . . , n − 1} .

Now we must prove that Binet’s formula holds for n. In other words, we

must prove that fn =
φn − ψn
√

5
.

If n = 1, then this is easy to check directly. ( f1 = 1 and
φ1 − ψ1
√

5
=

1 +
√

5
2

− 1 −
√

5
2√

5
=

1). So from now on, we assume that n ̸= 1. Hence, n ≥ 2.
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The recursive definition of the Fibonacci sequence yields

fn = fn−1 + fn−2 =
φn−1 − ψn−1

√
5

+
φn−2 − ψn−2

√
5

(since we can apply our induction hypothesis to k = n − 1, obtaining fn−1 =
φn−1 − ψn−1

√
5

, and also to k = n − 2, obtaining fn−2 =
φn−2 − ψn−2

√
5

). Thus,

fn =
φn−1 − ψn−1

√
5

+
φn−2 − ψn−2

√
5

=
1√
5

(
φn−1 + φn−2

)
︸ ︷︷ ︸

=φn−2(φ+1)
=φn−2 φ2

=φn

(the equality φ+1=φ2

can be checked directly)

− 1√
5

(
ψn−1 + ψn−2

)
︸ ︷︷ ︸

=ψn−2(ψ+1)
=ψn−2ψ2

=ψn

(similarly)

=
1√
5

φn − 1√
5

ψn =
φn − ψn
√

5
.

In other words, Binet’s formula holds for n. This completes the induction step.

To recap: We were able to prove Binet’s formula using strong induction but
not using regular induction, since the recursive equation fn = fn−1 + fn−2 ref-
erenced the two previous entries of the Fibonacci sequence (rather than only
the single one fn−1), and we needed to have an induction hypothesis that tells
us something about both of them (not just about fn−1). In other words, we
needed an induction that has a longer memory than just “the statement for
n − 1”. Strong induction does the trick.

Note that we have had to handle the two cases n = 0 and n = 1 by hand. The
n = 0 case was our base case. The n = 1 case was part of the induction step, but
still had to be proved manually because we could not go down to n − 2 when
n = 1. In the domino metaphor, if each domino is kicked over by the previous
two, then we have to kick over the first two dominos by hand.

1.9.4. Baseless strong induction

You can actually reformulate the principle of strong induction in a form that
does not have a de-jure base case at all:

Theorem 1.9.4 (Principle of Strong Induction, restated). Let b be an integer.
Let P (n) be a statement for each n ≥ b. Assume that:
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1. “Induction step”: For each integer n ≥ b, the implication

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (n − 1)) =⇒ P (n)

holds.

Then, the statement P (n) holds for each integer n ≥ b.

How does this restated principle do its job without a base case? Easy: We
have just repackaged the base case into the induction step. Indeed, the induc-
tion step now says “n ≥ b” instead of “n > b”, so that it includes the n = b
case. In the n = b case, the implication

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (n − 1)) =⇒ P (n)

says

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (b − 1))︸ ︷︷ ︸
a conjunction of 0 statements,

i.e., automatically true

=⇒ P (b) ,

i.e., it says that P (b) is unconditionally true. But this is precisely what the base
case would be proving.

We have thus not magically removed the need for a base case; we just have
folded it into the induction step. This new version of strong induction is slightly
cleaner, but in practice its use often boils down to the same thing.

1.9.5. Example: Prime factorizations exist

Another example of a strong induction proof comes from elementary number
theory. We recall:

Definition 1.9.5. A prime (or prime number) means an integer p > 1 whose
only positive divisors are 1 and p. (A divisor of an integer b means an integer
a such that a | b.)

So the primes (in increasing order) are

2, 3, 5, 7, 11, 13, 17, 23, 29, . . . .

There are infinitely many of them, as you are going to show some time soon.

Theorem 1.9.6. Every positive integer is a product of finitely many primes.

Here and in the following, I understand an empty product (i.e., a product of
no numbers whatsoever) to be 1. Thus, the theorem holds for 1, since 1 is a
product of no primes.

Here are some more interesting examples:



Math 221 Winter 2024, version March 14, 2024 page 31

• 2023 = 7 · 17 · 17 is a product of three primes.

• 2024 = 2 · 2 · 2 · 11 · 23 is a product of five primes.

• 2025 = 3 · 3 · 3 · 3 · 5 · 5 is a product of six primes.

• 2 = 2 is a product of one prime (itself).

How do we prove the theorem in general?

Proof. We must prove the statement

P (n) = (“n is a product of finitely many primes”)

for each integer n ≥ 1.
We shall prove this by strong induction on n. (We use the original variant,

with a base case.)
Base case: P (1) is true, since 1 is a product of finitely many primes (of 0

primes, as we saw).
Induction step: Let n > 1. We must prove the implication

(P (1) AND P (2) AND · · · AND P (n − 1)) =⇒ P (n) .

So we assume that P (1) AND P (2) AND · · · AND P (n − 1) holds. We must
prove that P (n) holds.

In other words, we must prove that n is a product of finitely many primes.
We are in one of the following two cases:
Case 1: The only positive divisors of n are 1 and n.
Case 2: There is a positive divisor d of n that is neither 1 nor n.
Consider Case 1 first. In this case, n itself is a prime (by the definition of a

prime), and thus is a product of finitely many primes (namely, of 1 prime). So
P (n) holds in Case 1.

Now, consider Case 2. In this case, there is a positive divisor d of n that is
neither 1 nor n. Consider this d. Since d is a positive divisor of n, we have
1 ≤ d ≤ n (strictly speaking, this needs proof (see later), but we take this for
granted). Hence, 1 < d < n (since d is neither 1 nor n). This shows that d is
one of the numbers 1, 2, . . . , n − 1. Therefore, P (d) holds (since we assumed
that P (1) AND P (2) AND · · · AND P (n − 1) holds). In other words, d is a
product of finitely many primes. Thus, we can write d as

d = p1p2 · · · pk for some primes p1, p2, . . . , pk.

Consider these primes p1, p2, . . . , pk.
Since d is a divisor of n, the fraction

n
d

is an integer. Moreover, this integer
n
d

is positive (since d and n are positive) and is < n (since d > 1). Hence,
n
d

is one of the numbers 1, 2, . . . , n − 1. Hence, P
(n

d

)
holds (since we assumed
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that P (1) AND P (2) AND · · · AND P (n − 1) holds). In other words,
n
d

is a

product of finitely many primes. Thus, we can write
n
d

as

n
d
= q1q2 · · · qℓ for some primes q1, q2, . . . , qℓ.

Consider these primes q1, q2, . . . , qℓ.
Now,

n = d · n
d
= p1p2 · · · pk · q1q2 · · · qℓ.

Hence, n is a product of finitely many primes. In other words, P (n) is true.
Thus, the induction step is complete, and the theorem is proved.

The above proof just formalizes the standard method of factoring a positive
integer n into a product of prime: We search for a positive divisor d that is
neither 1 nor n. If such a d does not exist, then n itself is a prime. If it does,
then we are reduced to the simpler problems of factoring d and

n
d

, and just
need to multiply the resulting factorizations.

1.9.6. Example: Paying with 3-cent and 5-cent coins

Here is another example of how to use strong induction:

Exercise 1.9.1. Assume that you have 3-cent coins and 5-cent coins (each in
infinite supply). What denominations can you pay using these coins?

Let’s make a table:

0 cents yes
1 cents no
2 cents no
3 cents yes
4 cents no
5 cents yes
6 cents yes: 3 + 3
7 cents no
8 cents yes: 3 + 5
9 cents yes: 3 + 3 + 3

10 cents yes: 5 + 5
11 cents yes: 3 + 3 + 5
12 cents yes: 3 + 3 + 3 + 3
13 cents yes: 3 + 5 + 5

. . . . . .

Experimentally, we seem to observe that any denomination ≥ 8 cents can be
paid.
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How can we prove this? It suffices to prove that 8, 9 and 10 cents can be paid,
because then (by adding a 3-cent coin) you can also pay 11, 12 and 13 cents,
therefore also 14, 15 and 16 cents (by adding another 3-cent coin), and so on.
But we know how to pay 8, 9 and 10 cents.

Let us formalize this argument as an induction proof.
We define N to be the set of all nonnegative integers:

N = {0, 1, 2, . . .} .

Proposition 1.9.7. For any integer n ≥ 8, we can pay n cents with 3-cent and
5-cent coins. In other words, any integer n ≥ 8 can be written as n = 3a + 5b
with a, b ∈ N.

Proof. We proceed by strong induction on n:
Base case: For n = 8, the claim is true, since 8 = 3 · 1 + 5 · 1.
Induction step: Fix an integer n > 8. Assume that the proposition is already

proved for the integers 8, 9, . . . , n − 1. We must prove that it also holds for n.
In other words, we must prove that we can pay n cents with 3-cent and 5-cent
coins.

Since n > 8, we are in one of the following three cases:
Case 1: We have n = 9.
Case 2: We have n = 10.
Case 3: We have n ≥ 11.
In Case 1, we are done, since n = 9 = 3 · 3 + 0 · 5 (that is, n cents can be paid

with three 3-cent coins).
In Case 2, we are done, since n = 10 = 0 · 3+ 2 · 5 (that is, n cents can be paid

with two 5-cent coins).
Now consider Case 3. In this case, n ≥ 11. Hence, n − 3 ≥ 8. This yields

that n − 3 is one of the numbers 8, 9, . . . , n − 1. Hence, the induction hypothesis
(applied to n − 3) yields that n − 3 can be paid with 3-cent and 5-cent coins, i.e.,
that we can write n − 3 as n − 3 = 3c + 5d with c, d ∈ N. Using these c, d ∈ N,
we therefore have

n = 3 + 3c + 5d
= 3 (c + 1) + 5d,

which shows that n cents can also be paid with 3-cent and 5-cent coins. This
shows that the proposition is true for n, and thus we are done.

Note that the above proof had one “de-jure base case” (the case n = 8) but
also two “de-facto base cases” (the cases n = 9 and n = 10, which were formally
part of the induction step but still had to be treated by hand because we could
not apply the induction hypothesis to n − 3 in those cases).
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2. Sums and products

2.1. Finite sums

Previously, we have encountered sums such as

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1.

Such sums can be tricky to decipher: What exactly does the “· · · ” mean? This
is not a good notation when sums get more complicated, and certainly not a
rigorous notation. So let us introduce a rigorous one:

Definition 2.1.1. Let u and v be two integers. Let au, au+1, . . . , av be some
numbers. Then,

v

∑
k=u

ak

is defined to be the sum

au + au+1 + · · ·+ av.

It is called the sum of the numbers ak where k ranges from u to v. When
v < u, this sum is called empty and defined to be 0.

The above notation is called sum notation or sigma notation.
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Examples:

11

∑
k=6

k = 6 + 7 + 8 + 9 + 10 + 11 = 51;

11

∑
k=6

1
k
=

1
6
+

1
7
+

1
8
+

1
9
+

1
10

+
1

11
;

11

∑
k=6

kk = 66 + 77 + 88 + 99 + 1010 + 1111;

11

∑
k=6

3 = 3 + 3 + 3 + 3 + 3 + 3 = 18;

6

∑
k=6

k = 6;

4

∑
k=6

k = (empty sum) = 0;

5

∑
k=6

k = (empty sum) = 0;

n−1

∑
k=0

qk = q0 + q1 + · · ·+ qn−1 (for any n ∈ N and any number q) ;

n−1

∑
k=0

xkyn−1−k = x0yn−1 + x1yn−2 + x2yn−3 + · · ·+ xn−1y0

= yn−1 + xyn−2 + x2yn−3 + · · ·+ xn−1

= xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1

(for any n ∈ N and any numbers x and y) .

Thus, our theorem from a few classes ago can be restated as follows:

Theorem 2.1.2. Let x and y be any two numbers. Then, for any integer n ≥ 0,
we have

(x − y)

(
n−1

∑
k=0

xkyn−1−k

)
= xn − yn.

The variable k is not set in stone; you can just as well use any other variable
(as long as it doesn’t have a different meaning already). For instance, you can

rewrite
v
∑

k=u
ak as

v
∑

i=u
ai or

v
∑

x=u
ax or

v
∑

⋆=u
a⋆ or whatnot. But don’t write

v
∑

u=u
au.

[The summation sign has much in common with the integral sign; you can

think of
v
∑

k=u
ak as a discrete analogue of

v∫
u

f (x) dx. There are some differences:
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For example,
u∫

u
f (x) dx = 0 whereas

u
∑

k=u
ak = au. Also,

u−1∫
u

f (x) dx ̸= 0 usually

but
u−1
∑

k=u
ak = 0.

In Python,
v
∑

k=u
ak is written sum(a(k) for k in range(u, v+1)).]

Here are some more examples: For any n ∈ N, we have

n

∑
k=1

k = 1 + 2 + · · ·+ n =
n (n + 1)

2
(by Little Gauss) ;

n

∑
k=1

k2 = 12 + 22 + · · ·+ n2 =
n (n + 1) (2n + 1)

6
;

n

∑
k=1

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n · 1 = n;

n

∑
k=1

(2k − 1) = 1 + 3 + 5 + 7 + · · ·+ (2n − 1)

= (the sum of the first n odd positive integers) .

Let us actually compute this last sum. We will use the following “laws of
summation”:

• We have
v

∑
k=u

(ak − bk) =
v

∑
k=u

ak −
v

∑
k=u

bk

for any integers u, v and any numbers ak, bk. Indeed, if you rewrite this
without sigma notation, you see it become

(au − bu) + (au+1 − bu+1) + · · ·+ (av − bv)

= (au + au+1 + · · ·+ av)− (bu + bu+1 + · · ·+ bv) .

• We have
v

∑
k=u

λak = λ
v

∑
k=u

ak

for any integers u, v and any numbers λ, ak. Indeed, this is saying that

λau + λau+1 + · · ·+ λav = λ (au + au+1 + · · ·+ av) .

Rules like these are dime a dozen and you should be able to tell whether
something is a valid rule by rewriting it without sigma notation.
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Let us now compute the last sum we wrote down:

n

∑
k=1

(2k − 1) =
n

∑
k=1

2k︸ ︷︷ ︸
=2

n
∑

k=1
k

−
n

∑
k=1

1︸︷︷︸
=n

= 2
n

∑
k=1

k︸︷︷︸
=

n (n + 1)
2

−n

= 2 · n (n + 1)
2

− n = n (n + 1)− n = n2.

See the whiteboard for a different, “geometric” proof of this equality. We will
see (towards the end of this course) a combinatorial formalization of this proof.

As another illustration of finite sum notation and its uses, let us rewrite
Gauss’s proof of the Little Gauss formula

n

∑
k=1

k = 1 + 2 + · · ·+ n =
n (n + 1)

2

using finite sum notation. We will need two new rules this time:

• We have
v

∑
k=u

(ak + bk) =
v

∑
k=u

ak +
v

∑
k=u

bk

for any integers u, v and any numbers ak, bk.

• We have
v

∑
k=u

ak =
v

∑
k=u

au+v−k

for any integers u, v and any numbers ak. Indeed, restating this without
finite sum notation, it takes the form

au + au+1 + · · ·+ av = av + av−1 + · · ·+ au,

which is just saying that a finite sum does not change if you write it in
reverse. This rule is called “substituting u + v − k for k in the sum” or
“turning the sum upside down” or “reversing the sum”.

• For any integers u ≤ v and any number λ, we have

v

∑
k=u

λ = (v − u + 1) λ.
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Now, Gauss’s proof of his formula looks as follows:

2
n

∑
k=1

k =
n

∑
k=1

k +
n

∑
k=1

k

=
n

∑
k=1

k +
n

∑
k=1

(n + 1 − k)
(

here, we substituted n + 1 − k
for k in the second sum

)
=

n

∑
k=1

(k + (n + 1 − k))︸ ︷︷ ︸
=n+1

=
n

∑
k=1

(n + 1)

= n · (n + 1) ,

so
n
∑

k=1
k =

n · (n + 1)
2

, qed.

We have now found closed-form expressions (i.e., expressions with no ∑
signs or “· · · ”s) for several sums. Not every sum has such an expression. For

example,
n
∑

k=1

1
k

cannot be simplified; neither can
n
∑

k=1
kk.

Some more terminology:

The notation
v
∑

k=u
ak is called sigma notation or finite sum notation. The

symbol ∑ itself is called the summation sign. The numbers u and v are called
the lower limit and the upper limit of the summation. The variable k is called
the summation index or the running index, and is said to range (or run) from
u to v. The numbers ak are called the addends of the finite sum.

Here are two more rules for finite sums:

• “Splitting-off rule”: For any integers u ≤ v and any numbers au, au+1, . . . , av,
we have

v

∑
k=u

ak = au +
v

∑
k=u+1

ak (here we “split off” the first addend)

= av +
v−1

∑
k=u

ak (here we “split off” the last addend) .

This is very useful for induction proofs.

• More generally, any finite sum
v
∑

k=u
ak can be split at any point: We have

v

∑
k=u

ak =
w

∑
k=u

ak +
v

∑
k=w+1

ak
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for any integers u ≤ w ≤ v and any numbers ak.

Without the summation sign, this would say

au + au+1 + · · ·+ av

= (au + au+1 + · · ·+ aw) + (aw+1 + aw+2 + · · ·+ av) .

Finite sum notation can be extended somewhat. For example, using some
common sense, you should be able to guess that

∑
k∈{1,2,...,n} is even

k = 2 + 4 + 6 + · · ·+ m,

where m is the largest even element of {1, 2, . . . , n}. See the references in the
notes for a more detailed explanation of this notation.

See also the notes (end of §2.1) for a bunch of exercises, some of which will
be on the HW.

2.2. Finite products

Finite products are the analogue of finite sums using multiplication instead of
addition.

Theorem 2.2.1. Let u and v be two integers. Let au, au+1, . . . , av be any num-
bers. Then,

v

∏
k=u

ak

is defined to be the product

auau+1 · · · av.

It is called the product of the numbers ak where k ranges from u to v. When
v < u, this product is called empty and defined to be 1.

For example:

11

∏
k=6

k = 6 · 7 · 8 · 9 · 10 · 11 = 332 640;

11

∏
k=6

1
k
=

1
6
· 1

7
· 1

8
· 1

9
· 1

10
· 1

11
=

1
332 640

;

n

∏
k=1

a = aa · · · a︸ ︷︷ ︸
n times

= an (for any number a) ;

n

∏
k=1

ak = a1a2 · · · an = a1+2+···+n = an(n+1)/2 (for any number a) .
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In a finite product
v

∏
k=u

ak, the k is called the product index or the running

index, and the symbol ∏ is called the product sign. The numbers ak are called
the factors of the product. Other terminology is analogous to the terminology
for sums. Let me only state the “splitting-off” rule for products:

• “Splitting-off rule”: For any integers u ≤ v and any numbers au, au+1, . . . , av,
we have

v

∏
k=u

ak = au ·
v

∏
k=u+1

ak (here we “split off” the first factor)

= av ·
v−1

∏
k=u

ak (here we “split off” the last factor) .

This is very useful for induction proofs.

2.3. Factorials

Recall that N = {0, 1, 2, . . .}.

Definition 2.3.1. For any n ∈ N, we define the positive integer n! (called the
factorial of n, and often pronounced “n factorial”) to be

n! :=
n

∏
k=1

k = 1 · 2 · · · · · n.

This is the product of the first n positive integers.

For example,
6! = 1 · 2 · 3 · 4 · 5 · 6 = 720.

Proposition 2.3.2 (recursion of the factorials). For any positive integer n, we
have

n! = (n − 1)! · n.

Proof. We have

n! = 1 · 2 · · · · · n = (1 · 2 · · · · · (n − 1))︸ ︷︷ ︸
=(n−1)!

· n = (n − 1)! · n.

Six exercises on factorials and products can be found in §2.3 of the notes.
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2.4. Binomial coefficients: Definition

We shall now define one of the most important families of numbers in mathe-
matics:

Definition 2.4.1. Let n and k be any numbers. Then, we define a number(
n
k

)
(pronounced “n choose k”) as follows:

• If k ∈ N, then we set(
n
k

)
:=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

(where is the numerator is the product of k consecutive “integers”, the

largest of which is n; you can also write it as
k−1
∏
i=0

(n − i)).

• If k /∈ N, then we set (
n
k

)
:= 0.

The number
(

n
k

)
is called the binomial coefficient of n and k (and is

pronounced “n choose k”). Do not mistake it for a vector.

Example 2.4.2. For any number n, we have(
n
3

)
=

n (n − 1) (n − 2)
3!

=
n (n − 1) (n − 2)

6
;(

n
2

)
=

n (n − 1)
2

;(
n
1

)
=

n
1
= n;(

n
0

)
=

(empty product)
0!

=
1
1
= 1;(

n
2.5

)
= 0 (since 2.5 /∈ N) ;(

n
−1

)
= 0 (since − 1 /∈ N) .
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For any k ∈ N, we have(
0
k

)
=

0 (0 − 1) (0 − 2) · · · (0 − k + 1)
k!

=

{
0, if k > 0;
1, if k = 0;(

−1
k

)
=

(−1) (−2) (−3) · · · (−k)
k!

=
(−1)k · 1 · 2 · · · · · k

1 · 2 · · · · · k
= (−1)k .

Let us tabulate the values of
(

n
k

)
for nonnegative integers n and k:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 1 0 0 0 0 0 0

n = 1 1 1 0 0 0 0 0

n = 2 1 2 1 0 0 0 0

n = 3 1 3 3 1 0 0 0

n = 4 1 4 6 4 1 0 0

n = 5 1 5 10 10 5 1 0

n = 6 1 6 15 20 15 6 1

.

The first pattern we spot here is the following:

Proposition 2.4.3. Let n ∈ N and k > n. Then,
(

n
k

)
= 0.

Proof. If k /∈ N, then this is clear by definition. Otherwise, by definition,(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

=
0
k!

,

since one of the factors in the numerator is n − n = 0. Thus,
(

n
k

)
= 0.

For example,
(

2
4

)
=

2 · 1 · 0 · (−1)
4!

= 0.

Warning: If n /∈ N, then k > n does not imply
(

n
k

)
= 0. For intsance,

(
1.5
3

)
=

1.5 · 0.5 · (−0.5)
3!

̸= 0.
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The above proposition explains why our table has so many 0’s. So a better

way to tabulate the binomial coefficients (at least the ones of the form
(

n
k

)
with

n, k ∈ N) is as follows:

k=0
↙

n = 0 → 1
k=1
↙

n = 1 → 1 1
k=2
↙

n = 2 → 1 2 1
k=3
↙

n = 3 → 1 3 3 1
k=4
↙

n = 4 → 1 4 6 4 1
k=5
↙

n = 5 → 1 5 10 10 5 1
k=6
↙

n = 6 → 1 6 15 20 15 6 1
k=7
↙

n = 7 → 1 7 21 35 35 21 7 1

n = 8 → 1 8 28 56 70 56 28 8 1

This is known as Pascal’s triangle and has many wondrous properties. In
particular, we observe:

• Pascal’s identity, aka the recurrence of the binomial coefficients: For
any numbers n and k, we have(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

• Symmetry of binomial coefficients: For any n ∈ N and any k, we have(
n
k

)
=

(
n

n − k

)
.

• We have
(

n
n

)
= 1 for all n ∈ N.

• Integrality of binomial coefficients: For any n ∈ Z and any k, we have(
n
k

)
∈ Z.

We shall now prove all of these and more.
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2.5. Binomial coefficients: Properties

We begin with the most important property of BCs (= binomial coefficients):

Theorem 2.5.1 (Pascal’s identity). For any numbers n and k, we have(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

For example, for n = 7 and k = 3, this is saying that
(

7
3

)
=

(
6
2

)
+

(
6
3

)
.

Explicitly, this is saying that 35 = 15 + 20.
But the theorem also holds for non-integer or negative n’s and k’s.

Proof of Pascal’s identity. Let n and k be two numbers. We are in one of the
following three cases:

Case 1: The number k is a positive integer.
Case 2: We have k = 0.
Case 3: None of the above.
Let us first consider Case 1. Here, k is a positive integer, so that both k and

k − 1 belong to N. Thus, the definition of BCs yields(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

;(
n − 1
k − 1

)
=

(n − 1) (n − 2) (n − 3) · · · ((n − 1)− (k − 1) + 1)
(k − 1)!

=
(n − 1) (n − 2) (n − 3) · · · (n − k + 1)

(k − 1)!
;(

n − 1
k

)
=

(n − 1) (n − 2) (n − 3) · · · ((n − 1)− k + 1)
k!

=
(n − 1) (n − 2) (n − 3) · · · (n − k)

k!
.

Setting a := (n − 1) (n − 2) · · · (n − k + 1), we can simplify these equalities to(
n
k

)
=

na
k!

;(
n − 1
k − 1

)
=

a
(k − 1)!

;(
n − 1

k

)
=

a (n − k)
k!

.

But the claim that we are trying to prove is(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.
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Using the above three equalities, this can be rewritten as

na
k!

=
a

(k − 1)!
+

a (n − k)
k!

.

Multiplying this by k!, we transform it into

na = a · k!
(k − 1)!

+ a (n − k) .

Since
k!

(k − 1)!
= k (by the factorial recurrence k! = (k − 1)! · k), this simplifies

to
na = a · k + a (n − k) ,

which is clearly true. Thus, our claim is proved in Case 1.
Let us next consider Case 2. In this case, k = 0. Our claim(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
thus rewrites as (

n
0

)
︸︷︷︸
=1

=

(
n − 1
0 − 1

)
︸ ︷︷ ︸

=0
(since 0−1/∈N)

+

(
n − 1

0

)
︸ ︷︷ ︸

=1

,

which is true.
Finally, consider Case 3. In this case, k /∈ N. Hence, k − 1 /∈ N. Thus, our

claim (
n
k

)
︸︷︷︸
=0

=

(
n − 1
k − 1

)
︸ ︷︷ ︸

=0

+

(
n − 1

k

)
︸ ︷︷ ︸

=0

is clearly true.
So we are done in all three cases, and the theorem is proved.

2.5.1. The factorial formula

Binomial coefficients
(

n
k

)
make sense for arbitrary numbers n and k. However,

in the particular case when n ∈ N and k ∈ {0, 1, . . . , n} (this is the case that

Pascal’s triangle shows), there is a particularly simple formula for
(

n
k

)
:

Theorem 2.5.2 (factorial formula). Let n ∈ N and k ∈ {0, 1, . . . , n}. Then,(
n
k

)
=

n!
k! · (n − k)!

.
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Proof. The definition of
(

n
k

)
yields

(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

.

So

k! ·
(

n
k

)
= n (n − 1) (n − 2) · · · (n − k + 1)

= (n − k + 1) (n − k + 2) (n − k + 3) · · · n

=
1 · 2 · · · · · n

1 · 2 · · · · · (n − k)

 here, we added new
factors to our product,

only to divide them back out


=

n!
(n − k)!

.

Dividing by k!, we transform this into(
n
k

)
=

n!
(n − k)!

/k! =
n!

k! · (n − k)!
.

Corollary 2.5.3. For any n ∈ N, we have
(

n
n

)
= 1.

Proof. By the factorial formula,(
n
n

)
=

n!
n! · (n − n)!

=
1

(n − n)!
=

1
0!

=
1
1
= 1.

Warning: Neither the theorem nor the corollary holds if we don’t require
what we required (that is, n ∈ N in both cases, and k ∈ {0, 1, . . . , n} for the

theorem). For example,
(
−1
−1

)
= 0, not 1. So if you want to compute

(
1.7
3

)
,

you have to use the definition, not the factorial formula.

2.5.2. The symmetry of binomial coefficients

Theorem 2.5.4 (symmetry of BCs). Let n ∈ N, and let k be any number.
Then, (

n
k

)
=

(
n

n − k

)
.
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Proof. We are in one of the following four cases:
Case 1: We have k ∈ {0, 1, . . . , n}.
Case 2: We have k < 0.
Case 3: We have k > n.
Case 4: The number k is not an integer.
Consider Case 1. We have k ∈ {0, 1, . . . , n}, so that n− k ∈ {0, 1, . . . , n}. Thus,

by the factorial formula,(
n
k

)
=

n!
k! · (n − k)!

and(
n

n − k

)
=

n!
(n − k)! · (n − (n − k))!

=
n!

(n − k)! · k!
,

which are the same number. So the theorem is proved in Case 1.

Now consider Case 2. Here we have k < 0. Hence, k /∈ N and thus
(

n
k

)
= 0

by definition. However, n − k > n (since k < 0), so that
(

n
n − k

)
= 0 (by our

first proposition on BCs). So we must prove 0 = 0, which is obvious.
Case 3 is similar to Case 2 (it’s the same case with the roles of k and n − k

swapped).
Case 4 is trivial (0 = 0).

Warning: The symmetry of BCs does not hold for negative (or non-integer)
n.

2.5.3. Pascal’s triangle consists of integers

We defined
(

n
k

)
as a fraction, and yet:

Theorem 2.5.5. For any n ∈ N and any number k, we have
(

n
k

)
∈ N.

Proof. We induct on n.
Base case: The theorem holds for n = 0, since(

0
k

)
=

{
1, if k = 0;
0, if k ̸= 0

∈ N.

Induction step: We make our induction step from n − 1 to n (instead of, as
usual, from n to n + 1). So we fix a positive integer n, and we assume (as the
IH) that the theorem holds for n − 1 instead of n. In other words, we assume
that (

n − 1
k

)
∈ N for all numbers k.
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Our goal is to prove that the theorem also holds for n. In other words, we must
prove that (

n
k

)
∈ N for all numbers k.

But Pascal’s identity yields(
n
k

)
=

(
n − 1
k − 1

)
︸ ︷︷ ︸

∈N
(by the IH)

+

(
n − 1

k

)
︸ ︷︷ ︸

∈N
(by the IH)

∈ N.

So the induction step is complete, and the theorem is proved.

Wouldn’t it be nicer to have a more explanatory proof of the theorem, rather
than just an induction proof that tells you that the theorem is true? Such a
proof indeed exists:

Theorem 2.5.6 (combinatorial interpretation of BCs). Let n ∈ N, and let k be
a number. Let A be any n-element set (i.e., a set with n elements, such as
{1, 2, . . . , n}). Then,(

n
k

)
is the number of k-element subsets of A.

Example 2.5.7. Let n = 4 and k = 2 and A = {1, 2, 3, 4}. Then, the 2-element
subsets of A are

{1, 2}︸ ︷︷ ︸
={2,1}
={1,1,2}

, {3, 4} , {1, 3} , {1, 4} , {2, 4} , {2, 3} .

So there are 6 of them. This agrees with the theorem, since
(

4
2

)
= 6.

We will prove the theorem later on (Chapter 4), as we learn more about finite
sets and counting. Note that it explains the word “choose” in “n choose k”.

The theorem implies that
(

n
k

)
∈ N for all n ∈ N and all numbers k. Of

course, it does not say anything about negative or non-integer n’s.

2.5.4. Upper negation
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Theorem 2.5.8 (upper negation formula). For any numbers n and k ∈ Z, we
have (

−n
k

)
= (−1)k

(
n + k − 1

k

)
.

Proof. If k /∈ N, then this is saying 0 = (−1)k · 0, which is clear.
So let us consider the case when k ∈ N. In this case, the definition of BCs

yields (
−n
k

)
=

(−n) (−n − 1) (−n − 2) · · · (−n − k + 1)
k!

= (−1)k · n (n + 1) (n + 2) · · · (n + k − 1)
k!

and (
n + k − 1

k

)
=

(n + k − 1) (n + k − 2) (n + k − 3) · · · n
k!

=
n (n + 1) (n + 2) · · · (n + k − 1)

k!
.

Comparing these equalities, we find
(
−n
k

)
= (−1)k ·

(
n + k − 1

k

)
, qed.

Corollary 2.5.9. For any n ∈ Z and any number k, we have
(

n
k

)
∈ Z.

Proof. If n ≥ 0, then this has already been proved above.

If k /∈ N, then this is clear since
(

n
k

)
= 0.

In the remaining case, use the upper negation formula. Details left to the
reader.

2.5.5. Finding Fibonacci numbers in Pascal’s triangle

Theorem 2.5.10. For any n ∈ N, the Fibonacci number fn+1 is

fn+1 =

(
n − 0

0

)
+

(
n − 1

1

)
+

(
n − 2

2

)
+ · · ·+

(
n − n

n

)
=

n

∑
k=0

(
n − k

k

)
.

For example, for n = 7, this is saying that

f8 = 1 + 6 + 10 + 4 + 0 + 0 + 0 = 21.

We will prove this later (Chapter 6 on enumerative combinatorics).
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2.6. The binomial formula

The reason why BCs are called BCs is the binomial formula:

Theorem 2.6.1 (binomial formula, aka binomial theorem). Let a and b be any
numbers, and let n ∈ N. Then,

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k

=

(
n
0

)
a0bn +

(
n
1

)
a1bn−1 +

(
n
2

)
a2bn−2 + · · ·+

(
n
n

)
anb0

=
n

∑
k=0

(
n
k

)
an−kbk.

Example 2.6.2. For n = 4, this says

(a + b)4 =

(
4
0

)
a0b4 +

(
4
1

)
a1b3 +

(
4
2

)
a2b2 +

(
4
3

)
a3b1 +

(
4
4

)
a4b0

= 1a0b4 + 4a1b3 + 6a2b2 + 4a3b1 + 1a4b0

= b4 + 4ab3 + 6a2b2 + 4a3b + a4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4.

Similarly, for n = 2, this says

(a + b)2 = a2 + 2ab + b2.

Proof of the binomial formula. It suffices to prove the first formula, i.e.,

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

To prove this, we induct on n.

Base case: For n = 0, this formula is saying that (a + b)0 =
0
∑

k=0

(
0
k

)
akb0−k,

which boils down to 1 = 1.
Induction step: Let n ∈ N. We assume (as the IH) that the formula holds for

n. In other words, we assume that

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

We must now prove that it also holds for n + 1, i.e., that we have

(a + b)n+1 =
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.
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Indeed, we have

(a + b)n+1 = (a + b)n · (a + b)

=

(
n

∑
k=0

(
n
k

)
akbn−k

)
· (a + b) (by the IH)

=

(
n

∑
k=0

(
n
k

)
akbn−k

)
· a +

(
n

∑
k=0

(
n
k

)
akbn−k

)
· b

=
n

∑
k=0

(
n
k

)
akbn−ka︸ ︷︷ ︸
=ak+1bn−k

+
n

∑
k=0

(
n
k

)
ak bn−kb︸ ︷︷ ︸

=bn−k+1

=
n

∑
k=0

(
n
k

)
ak+1bn−k +

n

∑
k=0

(
n
k

)
akbn−k+1.

On the other hand,
n+1

∑
k=0

(
n + 1

k

)
︸ ︷︷ ︸

=

(
n

k − 1

)
+

(
n
k

)
(by Pascal’s identity)

akbn+1−k

=
n+1

∑
k=0

((
n

k − 1

)
+

(
n
k

))
akbn+1−k

=
n+1

∑
k=0

((
n

k − 1

)
akbn+1−k +

(
n
k

)
akbn+1−k

)
=

n+1

∑
k=0

(
n

k − 1

)
akbn+1−k +

n+1

∑
k=0

(
n
k

)
akbn+1−k.

So we need to prove that
n

∑
k=0

(
n
k

)
ak+1bn−k +

n

∑
k=0

(
n
k

)
akbn−k+1

=
n+1

∑
k=0

(
n

k − 1

)
akbn+1−k +

n+1

∑
k=0

(
n
k

)
akbn+1−k.

Part of this is easy: We have
n

∑
k=0

(
n
k

)
akbn−k+1 =

n+1

∑
k=0

(
n
k

)
akbn+1−k,

because n − k + 1 = n + 1 − k and because the only addend on the RHS that is

missing from the LHS is
(

n
n + 1

)
︸ ︷︷ ︸

=0
(since n+1>n)

an+1bn+1−(n+1) = 0.
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Remains the other part: We must prove that

n

∑
k=0

(
n
k

)
ak+1bn−k =

n+1

∑
k=0

(
n

k − 1

)
akbn+1−k.

The sum on the RHS starts at k = 0, but its very first addend (the k = 0) addend

is
(

n
−1

)
︸ ︷︷ ︸

=0

a0bn+1−0 = 0, so that we can just as well have it start at k = 1. So we

must prove that

n

∑
k=0

(
n
k

)
ak+1bn−k =

n+1

∑
k=1

(
n

k − 1

)
akbn+1−k.

But these sums are equal, because both of them are(
n
0

)
a1bn +

(
n
1

)
a2bn−1 +

(
n
2

)
a3bn−2 + · · ·+

(
n
n

)
an+1b0.

More formally, this argument is an instance of an important summation rule
known as substitution. In its simplest form, this rule says that

v

∑
k=u

ck =
v+δ

∑
k=u+δ

ck−δ

for any integers u, v, δ and any numbers cu, cu+1, . . . , cv. This is the discrete
analogue of the formula∫ v

u
f (x) dx =

∫ v+δ

u+δ
f (x − δ) dx.

When we use the above formula
v

∑
k=u

ck =
v+δ

∑
k=u+δ

ck−δ

to rewrite a sum of the form
v
∑

k=u
ck as

v+δ

∑
k=u+δ

ck−δ, we say that we are substituting

k− δ for k in the sum. Thus, substituting k− 1 for k in the sum
n
∑

k=0

(
n
k

)
ak+1bn−k,

we obtain
n

∑
k=0

(
n
k

)
ak+1bn−k =

n+1

∑
k=0+1

(
n

k − 1

)
ak−1+1bn−(k−1)

=
n+1

∑
k=1

(
n

k − 1

)
akbn+1−k,
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which is exactly the formula that we needed.
Altogether, we now have

(a + b)n+1 =
n

∑
k=0

(
n
k

)
ak+1bn−k

︸ ︷︷ ︸
=

n+1
∑

k=1

(
n

k − 1

)
akbn+1−k

=
n+1
∑

k=0

(
n

k − 1

)
akbn+1−k

+
n

∑
k=0

(
n
k

)
akbn−k+1

︸ ︷︷ ︸
=

n+1
∑

k=0

(
n
k

)
akbn+1−k

=
n+1

∑
k=0

(
n

k − 1

)
akbn+1−k +

n+1

∑
k=0

(
n
k

)
akbn+1−k

=
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.

This means that the binomial formula holds for n + 1. This completes the
induction step and, with it, the proof.

Corollary 2.6.3. Let n ∈ N. Then,

n

∑
k=0

(
n
k

)
= 2n.

Proof. We have

2n = (1 + 1)n =
n

∑
k=0

(
n
k

)
1k1n−k︸ ︷︷ ︸

=1

(by the binomial formula)

=
n

∑
k=0

(
n
k

)
.

3. Elementary number theory

Number theory means the study of integers and similar objects. Crucial roles
are played by divisibility and by prime numbers.
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3.1. Divisibility

3.1.1. Definition

We begin by defining the most important concept in number theory:

Definition 3.1.1. Let a and b be two integers.
We write a | b (and we say that “a divides b”, or “b is divisible by a”, or

“b is a multiple of a”, or “a is a divisor of b”) if there exists an integer c such
that b = ac.

We write a ∤ b if we don’t have a | b.

Example 3.1.2. (a) We have 4 | 12, because 12 = 4 · 3.
(b) We have 4 ∤ 11, because there is no integer c such that 11 = 4c.
(c) We have 1 | b for every integer b, since b = 1 · b.
(d) We have a | a for every integer a, since a = a · 1. In particular, 0 | 0.
(e) We have a | 0 for every integer a, since 0 = a · 0.
(f) An integer b satisfies 0 | b if and only if b = 0.

The well-known concepts of even and odd integers are particular cases:

Definition 3.1.3. (a) An integer n is even if 2 | n.
(b) An integer n is odd if 2 ∤ n.

You probably know that

1. the sum of two even integers is even;

2. an even plus an odd integer is odd;

3. the sum of two odd integers is even.

The first claim here is obvious (2a+ 2b = 2 (a + b)), but the third claim is not.
We need to understand divisibility better to prove it.

3.1.2. Basic properties

Let me use the notation abs x for the absolute value |x| where x ∈ R.

Proposition 3.1.4. Let a and b be two integers. Then:
(a) We have a | b if and only if abs a | abs b.
(b) If a | b and b ̸= 0, then abs a ≤ abs b.
(c) If a | b and b | a, then abs a = abs b.

(d) Assume that a ̸= 0. Then, a | b if and only if
b
a
∈ Z.
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Proof. (a) This is just saying that the divisibility a | b does not depend on the
signs of a and b. In other words, it says that we can replace a and b by abs a
and abs b without changing this divisibility.

To prove this, it suffices to show the following two claims:

1. If a | b, then −a | b.

2. If a | b, then a | −b.

Claim 1 is easy: If a | b, then b = ac for some integer c, and therefore
b = ac = (−a) (−c), so that −a | b.

Claim 2 is also easy: If a | b, then b = ac for some integer c, and therefore
−b = −ac = a (−c), so that a | −b.

Having proved Claims 1 and 2, we see that the divisibility a | b does not
become false if we flip the sign of a or of b. Thus, it does not become true either
(since in that case, by flipping the sign again, we could recover a | b).

So a | b does not depend on the signs of a and b, and we have proved part
(a).

(b) Let a | b and b ̸= 0. We must prove that abs a ≤ abs b.
Set x = abs a and y = abs b. Then, from a | b, we obtain x | y (by part (a)).

Hence, y = xz for some integer z. Consider this z.
From b ̸= 0, we get y > 0, so xz = y > 0. Hence, z > 0 (since x ≥ 0).

Therefore, z ≥ 1 (since z is an integer). Now,

y = xz = x︸︷︷︸
≥0

(z − 1)︸ ︷︷ ︸
≥0

(since z≥1)

+x ≥ x.

In other words, abs b ≥ abs a. Equivalently, abs a ≤ abs b. This proves part (b).
(c) Let a | b and b | a. We must prove that abs a = abs b.
If a = 0, then this is easy (since a = 0 and a | b easily implies b = 0).
If b = 0, then this is also easy (for the same reason).
Now consider the case when neither a nor b is 0. Hence, part (b) of our

proposition yields abs a ≤ abs b. But the same reasoning (with a and b trading
roles) yields abs b ≤ abs a. Combining these inequalities, we obtain abs a =
abs b. So part (c) is proved.

(d) Assume that a | b. Then, b = ac for some integer c. This integer c must

then satisfy c =
b
a

(since b = ac and a ̸= 0). Therefore,
b
a
= c ∈ Z.

Conversely, if
b
a
∈ Z, then b = ac for some integer c (namely, for c =

b
a

).

So each of the two statements a | b and
b
a
∈ Z implies the other. This proves

that they are equivalent.
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Theorem 3.1.5 (rules for divisibility). (a) We have a | a for each a ∈ Z. (This
is called reflexivity of divisibility.)

(b) If a, b, c ∈ Z satisfy a | b and b | c, then a | c. (This is called transitivity
of divisibility.)

(c) If a1, a2, b1, b2 satisfy a1 | b1 and a2 | b2, then a1a2 | b1b2. (This is called
multiplying two divisibilities.)

(d) If d, a, b ∈ Z satisfy d | a and d | b, then d | a + b. (In other words, a
sum of two multiples of d is a multiple of d.)

Proof. (a) We have a = a · 1.
(b) Let a, b, c ∈ Z satisfy a | b and b | c.
Since a | b, there exists an integer x such that b = ax.
Since b | c, there exists an integer y such that c = by.
Consider these x and y.
We have

c = b︸︷︷︸
=ax

y = axy.

Therefore, there exists an integer z such that c = az (namely, z = xy). In other
words, a | c.

(c) Let a1, a2, b1, b2 satisfy a1 | b1 and a2 | b2.
Since a1 | b1, there exists an integer c1 such that b1 = a1c1.
Since a2 | b2, there exists an integer c2 such that b2 = a2c2.
Consider these c1 and c2. Now,

b1b2 = (a1c1) (a2c2) = (a1a2) (c1c2) .

This shows that a1a2 | b1b2 (since c1c2 is an integer).
(d) Let d, a, b ∈ Z satisfy d | a and d | b.
Since d | a, there exists an integer x such that a = dx.
Since d | b, there exists an integer y such that b = dy.
Consider these x and y. Now,

a + b = dx + dy = d (x + y) .

This shows that d | a + b.

Part (b) of the above theorem allows us to chain divisibilities together. Cor-
respondingly, two statements of the form a | b and b | c are commonly written
together as “a | b | c”, and automatically imply a | c. Likewise, the statement

a1 | a2 | · · · | ak

means that each of the numbers a1, a2, . . . , ak divides the next (i.e., that ai | ai+1
for each i), and such a chain of divisibilities automatically entails a1 | ak (this is
proved by induction on k). For instance, 3 | 6 | 18.
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Exercise 3.1.1. Let a, b ∈ Z satisfy a | b. Prove that ak | bk for each k ∈ N.

3.1.3. Divisibility criteria

How can you spot divisibilities between actual numbers? For small values of
a, there is a bunch of known divisibility criteria that characterize the integers
divisible by a. Here are some:

Theorem 3.1.6. Let b ∈ N. Write b in decimal notation. Then:
(a) We have 2 | b if and only if the last digit of b is 0 or 2 or 4 or 6 or 8.
(b) We have 5 | b if and only if the last digit of b is 0 or 5.
(c) We have 10 | b if and only if the last digit of b is 0.
(d) We have 3 | b if and only if the sum of the digits of b is divisible by 3.
(e) We have 9 | b if and only if the sum of the digits of b is divisible by 9.

Example 3.1.7. Is the number 25473 divisible by 3 ? Its sum of digits is
2 + 5 + 4 + 7 + 3 = 21 is divisible by 3, so (by part (d) above) the number
25473 is divisible by 3 as well.

Is it divisible by 9 ? No (by part (e) above), since 21 is not divisible by 9.

How would you prove the above theorem?
Part (c) is easy:

• If 10 | b, then the last digit of b is 0 because multiplying an integer by 10
simply inserts a 0 at its end.

• If the last digit of b is 0, then b = 10b′, where b′ is b without its last digit.

Parts (a) and (b) are somewhat trickier, and parts (d) and (e) significantly
so. To find simple proofs for them, we now introduce another relation between
integers: congruence modulo n.

3.2. Congruence modulo n

3.2.1. Definition

Definition 3.2.1. Let n, a, b ∈ Z. We say that a is congruent to b modulo n if
and only if n | a − b.

The notation for this is “a ≡ b mod n”.
The notation for “a is not congruent to b modulo n” is “a ̸≡ b mod n”.

(LaTeX: “a \equiv b \mod n”.)



Math 221 Winter 2024, version March 14, 2024 page 58

Example 3.2.2. (a) Is 3 ≡ 7 mod 2 ? Yes, since 2 | 3− 7 (because 3− 7 = −4 =
2 · (−2)).

(b) Is 3 ≡ 6 mod 2 ? No, since 2 ∤ 3 − 6.
(c) We have a ≡ b mod 1 for any integers a and b. This is because 1 | a − b.
(d) Two integers a and b satisfy a ≡ b mod 0 if and only if a = b.
(e) For any integers a and b, we have a + b ≡ a − b mod 2, since (a + b)−

(a − b) = 2b is a multiple of 2.

The word “modulo” means something like “with respect to” or “as seen by”.
The statement “a is congruent to b modulo n” can be rewritten as “a equals b
up to a multiple of n”, because we have

a ≡ b mod n if and only if a = b + nc for some c ∈ Z.

What does it mean for two integers a and b to be congruent modulo 2 ?
It means that they are either both even or both odd (i.e., they have the same
parity). Strictly speaking, we don’t know this yet; we will prove this in the next
section.

3.2.2. Basic properties

Proposition 3.2.3. Let n, a ∈ Z. Then, a ≡ 0 mod n if and only if n | a.

Proof. By the definition of congruence, we have

(a ≡ 0 mod n) ⇐⇒ (n | a − 0) ⇐⇒ (n | a) .

Proposition 3.2.4. Let n ∈ Z. Then:
(a) We have a ≡ a mod n for every a ∈ Z. (This is called reflexivity of

congruence.)
(b) If a, b ∈ Z satisfy a ≡ b mod n, then b ≡ a mod n. (This is called

symmetry of congruence.)
(c) If a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

(This is called transitivity of congruence.)
(d) If a1, a2, b1, b2 ∈ Z satisfy

a1 ≡ b1 mod n and a2 ≡ b2 mod n,

then

a1 + a2 ≡ b1 + b2 mod n;
a1 − a2 ≡ b1 − b2 mod n;

a1a2 ≡ b1b2 mod n.
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(In other words, two congruences modulo n can be added, subtracted and
multiplied.)

(e) Let m ∈ Z be such that m | n. If a, b ∈ Z satisfy a ≡ b mod n, then
a ≡ b mod m.

Proof. (a) For every a ∈ Z, we have n | a − a (since a − a = 0 = n · 0). Thus,
a ≡ a mod n.

(b) Let a, b ∈ Z satisfy a ≡ b mod n. We must prove that b ≡ a mod n.
From a ≡ b mod n, we obtain n | a − b. As we know, divisibilities do not

care about signs, so this yields n | − (a − b). But this means n | b − a. In other
words, b ≡ a mod n.

(c) Let a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n. We must prove that
a ≡ c mod n.

From a ≡ b mod n, we see that n | a − b. Similarly, n | b − c. Hence, both
a − b and b − c are multiples of n. Their sum (a − b) + (b − c) must therefore
be a multiple of n. But this sum is a − c. So we know that n | a − c. In other
words, a ≡ c mod n.

(d) Let a1, a2, b1, b2 ∈ Z satisfy

a1 ≡ b1 mod n and a2 ≡ b2 mod n.

We must prove that

a1 + a2 ≡ b1 + b2 mod n;
a1 − a2 ≡ b1 − b2 mod n;

a1a2 ≡ b1b2 mod n.

From a1 ≡ b1 mod n, we obtain n | a1 − b1. In other words, a1 − b1 = nc1 for
some integer c1.

Similarly, a2 − b2 = nc2 for some integer c2.
Consider these c1 and c2. From a1 − b1 = nc1, we get a1 = b1 + nc1. Similarly,

a2 = b2 + nc2.
Hence,

a1 + a2 = (b1 + nc1) + (b2 + nc2)

= (b1 + b2) + n (c1 + c2) ,

showing that (a1 + a2) − (b1 + b2) = n (c1 + c2) is a multiple of n, and thus
a1 + a2 ≡ b1 + b2 mod n.

Similarly,

a1 − a2 = (b1 + nc1)− (b2 + nc2)

= (b1 − b2) + n (c1 − c2) ,

showing that (a1 − a2) − (b1 − b2) = n (c1 − c2) is a multiple of n, and thus
a1 − a2 ≡ b1 − b2 mod n.



Math 221 Winter 2024, version March 14, 2024 page 60

Finally,

a1a2 = (b1 + nc1) (b2 + nc2)

= b1b2 + b1nc2 + nc1b2 + nc1nc2

= b1b2 + n (b1c2 + c1b2 + nc1c2) ,

showing that a1a2 − b1b2 = n (b1c2 + c1b2 + nc1c2) is a multiple of n, and thus
a1a2 ≡ b1b2 mod n.

So we have proved part (d).
(e) Let a, b ∈ Z satisfy a ≡ b mod n. Thus, n | a − b. Hence, m | n | a −

b, so that m | a − b (by the transitivity of divisibility). In other words, a ≡
b mod m.

Part (b) of the above proposition shows that congruences can be turned
around (unlike divisibilities).

Part (c) shows that congruences can be chained together. Such chains of
congruences look like chains of divisibilities: The statement

a1 ≡ a2 ≡ · · · ≡ ak mod n

means that each of the numbers a1, a2, . . . , ak is congruent to the next modulo
n (i.e., that ai ≡ ai+1 mod n for each i ∈ {1, 2, . . . , k − 1}). Such a statement
automatically entails a1 ≡ ak mod n, and even better, that ai ≡ aj mod n for all
i, j.

Remark 3.2.5. Don’t get overly enthusiastic about part (d). It allows you to
add, subtract and multiply congruences modulo n, but it does not allow you
to divide them or to take one to the other’s power. So

a1 ≡ b1 mod n and a2 ≡ b2 mod n

do not imply a1/a2 ≡ b1/b2 mod n or aa2
1 ≡ bb2

1 mod n (even if all of these
numbers are integers).

Also note that congruences modulo different n’s cannot be combined. For
example, a1 ≡ b1 mod 2 and a2 ≡ b2 mod 3, then nothing follows about a1a2
and b1b2.

However, congruences can be taken to the k-th power for a fixed k ∈ N:

Exercise 3.2.1. Let n, a, b ∈ Z such that a ≡ b mod n. Prove that ak ≡ bk mod n
for any k ∈ N.

3.2.3. Proving the divisibility criteria

Now let us prove part (e) of our theorem about divisibility criteria, restating it
as follows:
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Proposition 3.2.6. Let m ∈ N. Let s be the sum of the digits of m written in
decimal. (For instance, if m = 308, then s = 3 + 0 + 8 = 11.)

Then, 9 | m if and only if 9 | s.

Proof. Let m have decimal representation mdmd−1 · · ·m0 (where md is the lead-
ing digit). Thus,

m = md · 10d + md−1 · 10d−1 + · · ·+ m0 · 100;
s = md + md−1 + · · ·+ m0.

However, 10 ≡ 1 mod 9 (since 10 − 1 = 9 is a multiple of 9). Hence, by the
preceding exercise, we get

10k ≡ 1k mod 9 for each k ∈ N.

Multiplying this congruence with the obvious congruence mk ≡ mk mod 9,
we obtain

mk · 10k ≡ mk · 1k mod 9 for each k ∈ {0, 1, . . . , d} .

In other words,

mk · 10k ≡ mk mod 9 for each k ∈ {0, 1, . . . , d} .

Now, adding these congruences together for all k ∈ {0, 1, . . . , d}, we obtain

md · 10d + md−1 · 10d−1 + · · ·+ m0 · 100

≡ md + md−1 + · · ·+ m0 mod 9.

In other words,
m ≡ s mod 9.

Turning this congruence around, we get s ≡ m mod 9.
Now, if 9 | m, then m ≡ 0 mod 9, so that s ≡ m ≡ 0 mod 9, hence s ≡ 0 mod 9,

so that 9 | s.
Conversely, if 9 | s, then s ≡ 0 mod 9, hence m ≡ s ≡ 0 mod 9, so that

m ≡ 0 mod 9, and thus 9 | m.
Altogether, this shows that 9 | m if and only if 9 | s.

The analogue of this proposition for 3 instead of 9 (i.e., part (d) of the above
divisibility criteria theorem) is proved similarly, now using 10 ≡ 1 mod 3 (which
follows from 10 ≡ 1 mod 9).

See Exercise 3.2.3 in the notes for a divisibility-by-11 criterion.

3.3. Division with remainder

3.3.1. The theorem
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Theorem 3.3.1 (division-with-remainder theorem). Let n be an integer. Let d
be a positive integer. Then, there exists a unique pair (q, r) of integers

q ∈ Z and r ∈ {0, 1, . . . , d − 1}

such that
n = qd + r.

We will prove this soon; first some notations:

Definition 3.3.2. Let n be an integer. Let d be a positive integer. Consider the
pair (q, r) whose existence and uniqueness is claimed by the theorem we just
stated. Then:

• The number q is called the quotient of the division of n by d, and is
denoted n//d. (LaTeX: \sslash, but I just use //.)

• The number r is called the remainder of the division of n by d, and is
denoted n%d. (LaTeX: \%.)

• The pair (q, r) is called the quo-rem pair of n and d.

For now, we do not yet know that (q, r) exists and is unique, so we will
be using indefinite articles (“a quotient”, “a remainder”, “a quo-rem pair”)
until we have proved this.

Example 3.3.3. What are 8//5 and 8%5 ? We have

8︸︷︷︸
=n

= 1︸︷︷︸
=q

· 5︸︷︷︸
=d

+ 3︸︷︷︸
=r∈{0,1,2,3,4}

,

so 8//5 = 1 and 8%5 = 3.

Example 3.3.4. What are 23//5 and 23%5 ? We have 23//5 = 4 and 23%5 =
3.

Example 3.3.5. What are (−7) //5 and (−7)%5 ? We have

−7︸︷︷︸
=n

= (−2)︸ ︷︷ ︸
=q

· 5︸︷︷︸
=d

+ 3︸︷︷︸
=r∈{0,1,2,3,4}

,

so (−7) //5 = −2 and (−7)%5 = 3.

So our theorem is saying that for any integer n and any positive integer d,
there is a unique quo-rem pair of n and d. Let us now prove this.
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3.3.2. Proof

Proof. We need to prove two things: that a quo-rem pair of n and d exists, and
that it is unique. Let us start with the uniqueness.

Proof of the uniqueness part: Fix an integer n and a positive integer d. We must
show that there is at most one quo-rem pair (q, r) of n and d.

We shall prove this by contradiction. So we assume that (q1, r1) and (q2, r2)
are two distinct quo-rem pairs of n and d. How do we get a contradiction?

Since (q1, r1) is a quo-rem pair of n and d, we have

q1 ∈ Z and r1 ∈ {0, 1, . . . , d − 1} and
n = q1d + r1.

Since (q2, r2) is a quo-rem pair of n and d, we have

q2 ∈ Z and r2 ∈ {0, 1, . . . , d − 1} and
n = q2d + r2.

Subtracting the equalities n = q1d + r1 and n = q2d + r2, we obtain

0 = (q1d + r1)− (q2d + r2) = (r1 − r2) + (q1 − q2) d.

Hence,
r1 − r2 = − (q1 − q2) d = (q2 − q1) d.

Now, we are in one of the following three cases:
Case 1: We have q1 < q2.
Case 2: We have q1 = q2.
Case 3: We have q1 > q2.
Consider Case 1. In this case, q1 < q2, so that q2 − q1 > 0. Hence, q2 − q1 ≥ 1.

Thus, (q2 − q1) d ≥ 1d = d. Thus, we get

r1 − r2 = (q2 − q1) d ≥ d,

which contradicts
r1 − r2︸︷︷︸

≥0

≤ r1 ≤ d − 1 < d.

So we found a contradiction in Case 1.
Consider Case 2. In this case, q1 = q2. Now,

r1 − r2 = (q2 − q1) d = 0 (since q1 = q2) ,

so r1 = r2. Combining this with q1 = q2, we obtain (q1, r1) = (q2, r2). So
our two quo-rem pairs (q1, r1) and (q2, r2) are identical, which contradicts our
assumption that they are distinct. Again a contradiction.

Consider Case 3. In this case, q1 > q2, so that q2 < q1. So this is just Case 1,
with the roles of (q1, r1) and (q2, r2) switched.
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So we found a contradiction in each case. Thus, we always have a contradic-
tion, and the proof of uniqueness is complete.

Now, let us come to the existence part. We want to prove it by strong in-
duction on n, but there is a difficulty: We don’t know where to start; n is
just supposed to be an integer, not a nonnegative integer. But this is not un-
surmountable! We can first prove the claim for n ≥ 0, and then extend it to
negative n’s.

So let us first prove the n ≥ 0 case (i.e., the n ∈ N case):

Lemma 3.3.6. Let n ∈ N, and let d be a positive integer. Then, there exists a
quo-rem pair of n and d.

Proof of the lemma. Fix d. We apply strong induction on n (without a base case):
Induction step: Let n ∈ N. Assume (as the IH) that the lemma is proved for

all nonnegative integers smaller than n instead of n. In other words, assume
that for each nonnegative integer k < n, there exists a quo-rem pair of k and d.
We must prove that the lemma also holds for n, i.e., that there exists a quo-rem
pair of n and d.

If n < d, then such a pair can be explicitly constructed: it is (0, n) (since n < d
enntails n ∈ {0, 1, . . . , d − 1}).

Otherwise, n ≥ d, so that n − d ∈ N. Hence, we can apply the IH to n − d
instead of n (since n − d < n). This yields that there exists a quo-rem pair (q, r)
of n − d and d. Consider this pair. Now I claim that (q + 1, r) is a quo-rem pair
of n and d. This is because

n − d = qd + r =⇒ n = d + qd + r = (q + 1) d + r.

This shows that n and d have a quo-rem pair. This completes our induction
step, and thus the lemma is proved.

It remains to show that the quo-rem pair of n and d also exists when n is
negative. One way to do this is by strong induction on −n (since −n will be
positive).

Another way is by deducing the negative case from the positive case. Here
is how this goes: Let n be a negative integer. Then, the product (1 − d)︸ ︷︷ ︸

≤0

n︸︷︷︸
<0

is

nonnegative, so we can apply the lemma to this product (1 − d) n instead of n.
We obtain a quo-rem pair (q, r) of (1 − d) n and d. This quo-rem pair satisfies

(1 − d) n = qd + r, that is,
n − dn = qd + r, that is,

n = dn + qd + r = (n + q) d + r.

This shows that (n + q, r) is a quo-rem pair of n and d.
The proof of the theorem is finally complete.
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3.3.3. An application: even and odd integers

Recall that an integer n is even if 2 | n and is odd if 2 ∤ n. Now we claim the
following:

Proposition 3.3.7. Let n be an integer.
(a) The integer n is even if and only if there exists some k ∈ Z such that

n = 2k.
(b) The integer n is odd if and only if there exists some k ∈ Z such that

n = 2k + 1.

Proof. (a) is a consequence of the definitions of “even” and “divisible”.
(b) This is an “if and only if” statement, so we need to prove both directions:

(n is odd) =⇒ (there exists some k ∈ Z such that n = 2k + 1)

and

(n is odd) ⇐= (there exists some k ∈ Z such that n = 2k + 1) .

Proof of the =⇒ direction: Assume that n is odd. By the preceding theorem,
there exists a quo-rem pair (q, r) of n and 2. Consider this pair. It satisfies
q ∈ Z and r ∈ {0, 1} and n = 2q + r. If r were 0, then this would imply
n = 2q + r︸︷︷︸

=0

= 2q, which would make n even, not odd. But n is odd. So r

cannot be 0. Hence, r = 1 (since r ∈ {0, 1}). Thus, n = 2q + r︸︷︷︸
=1

= 2q + 1. So

there exists some k ∈ Z such that n = 2k + 1 (namely, k = q). This proves the
=⇒ direction.

Proof of the ⇐= direction: Assume that there exists some k ∈ Z such that
n = 2k + 1. Consider this k.

We must prove that n is odd. In other words, we must prove that 2 ∤ n. In
other words, we must prove that n cannot be written as 2c for any c ∈ Z.

Assume the contrary. So n = 2c for some c ∈ Z. Consider this c. Now, we
have n = 2k + 1 but also n = 2c = 2c + 0. This means that both pairs (k, 1) and
(c, 0) are quo-rem pairs of n and 2. But our theorem says that the quo-rem pair
of n and 2 is unique. Hence, (k, 1) = (c, 0). This is absurd, since 1 ̸= 0. This
contradiction completes our proof.

Corollary 3.3.8. (a) The sum of any two even integers is even.
(b) The sum of any even integer with any odd integer is odd.
(c) The sum of any two odd integers is even.

Proof. (c) By the previous proposition, any two odd integers can be written as
2k + 1 and 2ℓ+ 1 for some k, ℓ ∈ Z. Thus their sum is (2k + 1) + (2ℓ+ 1) =
2k + 2ℓ+ 2 = 2 (k + ℓ+ 1), which is even.

(a), (b) are similar.
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Remark 3.3.9. Part (c) of this corollary is specific to the number 2. It is not
true that the sum of any two integers not divisible by 3 is divisible by 3.

3.3.4. Basic properties of quotients and remainders

Proposition 3.3.10. Let n ∈ Z, and let d be a positive integer. Then:
(a) We have n%d ∈ {0, 1, . . . , d − 1} and n%d ≡ n mod d.
(b) We have d | n if and only if n%d = 0.
(c) If c ∈ {0, 1, . . . , d − 1} satisfies c ≡ n mod d, then c = n%d.
(d) We have n = (n//d) d + (n%d).
(e) If n ∈ N, then n//d ∈ N.

Parts (a) and (c) of this proposition show that the remainder n%d is character-
ized as the unique element of {0, 1, . . . , d − 1} that is congruent to n modulo
d.

Proof. We set
q := n//d and r := n%d.

Then, (q, r) is a quo-rem pair of n and d. In other words,

n = qd + r, q ∈ Z and r ∈ {0, 1, . . . , d − 1} .

(d) We have n = q︸︷︷︸
=n//d

d + r︸︷︷︸
=n%d

= (n//d) d + (n%d).

(a) We have n%d = r ∈ {0, 1, . . . , d − 1}. Moreover, n%d ≡ n mod d since

n%d︸︷︷︸
=r

− n︸︷︷︸
=qd+r

= r − (qd + r) = −qd is a multiple of d.

(c) Let c ∈ {0, 1, . . . , d − 1} satisfy c ≡ n mod d. We must show that c = n%d.
Since c ≡ n mod d, we have d | c − n. In other words, c − n = ds for some

integer s. Using this s, we have

n = c − ds = (−s) d + c.

This shows that (−s, c) is a quo-rem pair of n and d. But (q, r) is also a quo-rem
pair of n and d. Since the quo-rem pair of n and d is unique, this entails that
(−s, c) = (q, r). In particular, c = r = n%d, qed.

(b) This is an “if and only if” statement. Let us prove its two directions
separately:
=⇒: Assume that d | n. We must prove that n%d = 0.
From d | n, we obtain n ≡ 0 mod d, so that 0 ≡ n mod d. Also, 0 ∈

{0, 1, . . . , d − 1}. Hence, part (c) (applied to c = 0) yields 0 = n%d, so that
n%d = 0.
⇐=: Assume that n%d = 0. We must prove that d | n.
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We have n = qd + r︸︷︷︸
=n%d=0

= qd, so that d | n.

(e) This can be proved by strong induction on n (just as we proved the lemma
above) or by some inequality chasing (show that q > −1, and conclude that q ≥
0 because q is an integer). See the notes (Proposition 3.3.11 (e)) for details.

Corollary 3.3.11. Let n ∈ Z. Then:
(a) The integer n is even if and only if n%2 = 0.
(b) The integer n is odd if and only if n%2 = 1.

Proof. Easy using the above (see notes).

Quotients and remainders are closely related to the so-called floor function:

Definition 3.3.12. The integer part (aka floor) of a real number x is defined
to be the largest integer that is ≤ x. It is denoted by ⌊x⌋.

For example, ⌊3.8⌋ = 3 and ⌊π⌋ = 3 and ⌊5⌋ = 5 and ⌊−π⌋ = −4.

Proposition 3.3.13 (“explicit formulas” for quotient and remainder). Let n ∈
Z, and let d be a positive integer. Then,

n//d =
⌊n

d

⌋
and n%d = n − d ·

⌊n
d

⌋
.

Proof. See the notes. (Again, some basic inequality chasing.)
Main idea: To prove that u = ⌊x⌋, it is sufficient (and necessary) to show that

u is an integer and that u ≤ x < u + 1.

3.3.5. Base-b representation of nonnegative integers

Division with remainder is the main ingredient in positional number systems –
i.e., base-b notation for integers.

What does this mean? For example,

3401 = 3 · 1000 + 4 · 100 + 0 · 10 + 1 · 1

= 3 · 103 + 4 · 102 + 0 · 101 + 1 · 100.

Thus, the fairly large number 3401 has been written using just four digits.
This can be done for any nonnegative integer, but it can also be done with the

10 replaced by any number b > 1. In other words, any n ∈ N can be written as
a sum of powers of b, where the coefficient in front of each power is a number
between 0 and b − 1.
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For example, let us do this for n = 3401 and b = 4. So we want to represent
3401 in the form

3401 = r646 + r545 + r444 + r343 + r242 + r141 + r040,

where each ri is a “base-4 digit” (i.e., an element of {0, 1, 2, 3}).
How do we find these digits ri ? Let’s start with r0. We want

3401 = r646 + r545 + r444 + r343 + r242 + r141 + r040

=
(

r645 + r544 + r443 + r342 + r241 + r140
)
· 4 + r0.

Since r0 ∈ {0, 1, 2, 3}, this equality entails that

r645 + r544 + r443 + r342 + r241 + r140 = 3401//4 = 850 and
r0 = 3401%4 = 1.

So we have found r0. Perform the same operation with the equation

r645 + r544 + r443 + r342 + r241 + r140 = 850

to find

r644 + r543 + r442 + r341 + r240 = 850//4 = 212 and
r1 = 850%4 = 2.

So we have found r1. Perform the same operation with the equation

r644 + r543 + r442 + r341 + r240 = 212

to find

r643 + r542 + r441 + r340 = 212//4 = 53 and
r2 = 212%4 = 0.

So we have found r2. Continuing along the same lines, we obtain r3 = 1 and
r4 = 1 and r5 = 3 and r6 = 0. Thus,

3401 = r6︸︷︷︸
=0

46 + r5︸︷︷︸
=3

45 + r4︸︷︷︸
=1

44 + r3︸︷︷︸
=1

43 + r2︸︷︷︸
=0

42 + r1︸︷︷︸
=2

41 + r0︸︷︷︸
=1

40.

In analogy to the decimal (i.e., base-10) representation, we can state this as
“the number 3401 written in base-4 is 0311021”. One usually omits leading
zeroes, so this simplifies to 311021.

The method we just used can be applied to any given integer b > 1 instead
of 4, and to any n ∈ N instead of 3401: To find the “base-b digits” of n, we
first divide n by b with remainder, then divide the resulting quotient again by b
with remainder, then divide the resulting quotient again by b with remainder,
and so on. The remainders obtained will be the base-b digits of n (from right
to left). Here is this method stated as a theorem:
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Theorem 3.3.14. Let b > 1 be an integer. Let n ∈ N. Then:
(a) We can write n in the form

n = rkbk + rk−1bk−1 + · · ·+ r1b1 + r0b0

with
k ∈ N and r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .

(b) If n < bk+1 for some k ∈ N, then we can write n in the form

n = rkbk + rk−1bk−1 + · · ·+ r1b1 + r0b0

with
r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .

(c) These r0, r1, . . . , rk are unique (when k is given). Moreover, they can be
explicitly computed by the formula

ri =
(

n//bi
)

%b for each i ∈ {0, 1, . . . , k} .

Proof. See the notes (Theorem 3.3.15).

3.3.6. Congruence in terms of remainders

There is a close connection between remainders and congruence:

Proposition 3.3.15. Let d be a positive integer. Let a and b be two integers.
Then, a ≡ b mod d if and only if a%d = b%d.

Proof. We know that a%d ∈ {0, 1, . . . , d − 1} and a%d ≡ a mod d.
Now, we must prove the equivalence

(a ≡ b mod d) ⇐⇒ (a%d = b%d) .

Let us prove its =⇒ and ⇐= implications separately:
=⇒: Assume that a ≡ b mod d. Then, a%d ≡ a ≡ b mod d. So a%d is a

number in {0, 1, . . . , d − 1} that is congruent to b modulo d. But the only such
number is b%d. Consequently, a%d = b%d. This proves the =⇒ direction.
⇐=: Assume that a%d = b%d. We have shown that a%d ≡ a mod d. Similarly,

b%d ≡ b mod d. Combining these, we find

a ≡ a%d = b%d ≡ b mod d.

So a ≡ b mod d. This proves the ⇐= direction.
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Corollary 3.3.16. Let a and b be two integers. Then, a ≡ b mod 2 if and only
if the numbers a and b are both even or both odd.

3.3.7. The birthday lemma

If you have lived for exactly n days, then you are n//365 years and n%365 days
old, assuming that there are no leapyears. On any regular day, the number
n//365 remains unchanged, whereas the number n%365 increases by 1. On a
birthday, n//365 increases by 1, whereas the number n%365 is reset to 0. Let
us state this in full generality:

Proposition 3.3.17 (birthday lemma). Let n ∈ Z, and let d be a positive inte-
ger. Then:

(a) If d | n, then

n//d = ((n − 1) //d) + 1 and
n%d = 0 and (n − 1)%d = d − 1.

(b) If d ∤ n, then

n//d = (n − 1) //d and
n%d = ((n − 1)%d) + 1.

Proof. Easy; see the notes.

Note that the quotient equalities in the above proposition can be rewritten as⌊n
d

⌋
=

⌊
n − 1

d

⌋
+ 1︸ ︷︷ ︸

when d|n

, resp.
⌊n

d

⌋
=

⌊
n − 1

d

⌋
︸ ︷︷ ︸

when d∤n

.

3.4. Greatest common divisors

3.4.1. Definition

Definition 3.4.1. Let a and b be two integers.
(a) The common divisors of a and b are the integers that divide a and

simultaneously divide b.
(b) The greatest common divisor of a and b is the largest among the com-

mon divisors of a and b, unless a = b = 0. In the case a = b = 0, we define it
to be 0 instead.

We denote the greatest common divisor of a and b by gcd (a, b), and we
refer to it as the gcd of a and b.

Examples:
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• What is gcd (4, 6) ?

The divisors of 4 are −4,−2,−1, 1, 2, 4.

The divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6.

The common divisors of 4 and 6 are −2,−1, 1, 2.

So gcd (4, 6) = 2.

• What is gcd (0, 5) ?

The divisors of 0 are all the integers.

The divisors of 5 are −5,−1, 1, 5.

So the common divisors of 0 and 5 are just the divisors of 5, and the
greatest of them is 5.

Thus, gcd (0, 5) = 5.

• What is gcd (0, 0) ?

By definition, gcd (0, 0) = 0, although every integer is a common divisor
of 0 and 0.

This method for computing gcds is not a good one when the numbers become
large. We will soon see a better one. But first, we need to learn a few things
about gcds. Let us start with the very basics. First, we observe that gcd (a, b) is
always well-defined, because

• if a = b = 0, then it is defined to be 0;

• if a ̸= 0, then every divisor of a is ≤ |a|, so that a has only finitely many
divisors;

• if b ̸= 0, then every divisor of b is ≤ |b|, so that b has only finitely many
divisors;

• in either case, a and b have at least one common divisor (namely, 1), so
we are not taking the maximum of an empty set.

(Details in the notes.)

3.4.2. Basic properties

Proposition 3.4.2. We have gcd (a, b) ∈ N for any a, b ∈ Z.

Proof. If a = b = 0, then gcd (a, b) = 0 ∈ N.
In the remaining case, gcd (a, b) is literally the largest common divisor of

a and b. But if it was negative, then − gcd (a, b) would be a larger common
divisor of a and b, which would contradict this. So gcd (a, b) cannot be negative.
Thus, gcd (a, b) ∈ N.
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Proposition 3.4.3. We have gcd (a, 0) = gcd (0, a) = |a| for every a ∈ Z.

Proof. Every integer is a divisor of 0. So the common divisors of a and 0 are
just the divisors of a. But the largest divisor of a is |a| (unless a = 0, which case
is trivial anyway). So we are done.

Proposition 3.4.4. We have gcd (a, b) = gcd (b, a) for every a, b ∈ Z.

Proof. To be a common divisor of a and b is the same as being a common divisor
of b and a.

Proposition 3.4.5. Let a, b, c ∈ Z satisfy b ≡ c mod a. Then, gcd (a, b) =
gcd (a, c).

Proof. If a = 0, then b ≡ c mod a entails b = c, so this is obvious.
Now let us consider the case a ̸= 0. In this case, the gcds are literal largest

common divisors. We will show that the common divisors of a and b are pre-
cisely the common divisors of a and c. To do so, we must prove the following
two claims:

Claim 1: Each common divisor of a and b is a common divisor of a
and c.

Claim 2: Each common divisor of a and c is a common divisor of a
and b.

Proof of Claim 1. Let d be a common divisor of a and b. We must prove that d is
a common divisor of a and c. It suffices to show that d | c (since d | a follows
from the definition of d).

Recall that b ≡ c mod a, so that c ≡ b mod a. In other words, a | c − b. Hence,
d | a | c − b. But also d | b. Therefore, d | (c − b) + b (since the sum of two
multiples of d is again a multiple of d). In other words, d | c. This proves Claim
1.

Proof of Claim 2. This is just Claim 1 with the roles of b and c interchanged.
(Keep in mind that b ≡ c mod a implies c ≡ b mod a, so that b and c play equal
roles.)

Having proved Claim 1 and Claim 2, we see that the common divisors of a
and b are precisely the common divisors of a and c. Thus, gcd (a, b) = gcd (a, c).

Proposition 3.4.6. For any a, b, u ∈ Z, we have gcd (a, b) = gcd (a, ua + b).

Proof. Follows from the previous proposition, since b ≡ ua + b mod a.
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Proposition 3.4.7. We have gcd (a, b) = gcd (a, b%a) for any positive integer
a and any b ∈ Z.

Proof. Follows from two propositions ago (applied to c = b%a), since b%a ≡
b mod a.

Three more very easy facts:

Proposition 3.4.8. We have gcd (a, b) | a and gcd (a, b) | b for any a, b ∈ Z.

Proposition 3.4.9. We have gcd (−a, b) = gcd (a, b) and gcd (a,−b) =
gcd (a, b) for any a, b ∈ Z.

Proposition 3.4.10. If a, b ∈ Z satisfy a | b, then gcd (a, b) = |a|.

Corollary 3.4.11 (Euclidean recursion for the gcd). Let a ∈ Z. Let b be a
positive integer. Then,

gcd (a, b) = gcd (b, a%b) .

Proof. We have
gcd (a, b) = gcd (b, a) = gcd (b, a%b)

(by one of the propositions above, applied to b and a instead of a and b).

3.4.3. The Euclidean algorithm

By applying this corollary repeatedly, we can find gcds very quickly. For in-
stance,

gcd (30, 82) = gcd (82, 30%82) (by the corollary)
= gcd (82, 30)
= gcd (30, 82%30) (by the corollary)
= gcd (30, 22)
= gcd (22, 30%22) (by the corollary)
= gcd (22, 8)
= gcd (8, 22%8) (by the corollary)
= gcd (8, 6)
= gcd (6, 8%6) (by the corollary)
= gcd (6, 2)
= gcd (2, 6%2) (by the corollary)
= gcd (2, 0)
= |2| (by the proposition gcd (a, 0) = |a|)
= 2
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and

gcd (745, 239)
= gcd (239, 745%239) (by the corollary)
= gcd (239, 28)
= gcd (28, 239%28) (by the corollary)
= gcd (28, 15)
= gcd (15, 28%15) (by the corollary)
= gcd (15, 13)
= gcd (13, 15%13) (by the corollary)
= gcd (13, 2)
= gcd (2, 13%2) (by the corollary)
= gcd (2, 1)
= gcd (1, 2%1) (by the corollary)
= gcd (1, 0)
= |1| = 1.

These two computations are instances of a general algorithm for computing
gcd (a, b) for any two numbers a ∈ Z and b ∈ N. This algorithm proceeds as
follows:

• If b = 0, then the gcd is |a|.

• If b > 0, then we replace a and b by b and a%b, and recurse (i.e., we apply
the method again to b and a%b instead of a and b).

In Python, this looks as follows:
def gcd(a, b): # for b nonnegative

if b == 0:
return abs(a) # this is |a| in Python

return gcd(b, a%b)
This algorithm is known as the Euclidean algorithm. Let us convince our-

selves that it really terminates (i.e., does not get stuck in an infinite loop):

Proposition 3.4.12. Let a ∈ Z and b ∈ N. Then, the Euclidean algorithm
terminates after at most b steps.

Proof. In every step, we replace b by a%b. This decreases b by at least 1 (since
a%b ≤ b − 1). If we make b such decreases, b will thus become 0 or smaller.
But at that point, the algorithm must stop. So the algorithm cannot survive for
more than b steps.
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This is, of course, an overestimate of how long the algorithm will take. A
better bound for the running time is log2 (ab) + 2 (if a and b are positive). See
the notes for why this is a bound. This shows that the Euclidean algorithm
computes gcd (a, b) a lot faster than the naive “list all divisors of a and all
divisors of b” approach would do.

We can easily adapt the Euclidean algorithm to work for all b ∈ Z (not just
for b ∈ N):
def gcd(a, b):

if b < 0:
return gcd(a, -b)

if b == 0:
return abs(a) # this is |a| in Python

return gcd(b, a%b)

3.4.4. Bezout’s theorem and the extended Euclidean algorithm

The Euclidean algorithm can be adapted so that it computes not only gcd (a, b),
but also a way to express gcd (a, b) as an “integer linear combination” of a and
b (that is, as a multiple of a plus a multiple of b). This allows us to prove the
following theorme:

Theorem 3.4.13 (Bezout’s theorem for integers). Let a and b be two integers.
Then, there exist two integers x and y such that

gcd (a, b) = xa + yb.

We shall prove this in a moment. First, a notation:

Definition 3.4.14. Let a and b be two integers. Then, a Bezout pair for (a, b)
means a pair (x, y) of two integers such that gcd (a, b) = xa + yb.

So Bezout’s theorem says that any pair (a, b) of integers has a Bezout pair.
Examples:

• Can you find a Bezout pair for (4, 7) ? That would be a pair (x, y) of two
integers such that gcd (4, 7)︸ ︷︷ ︸

=1

= x · 4 + y · 7. For example, (2,−1) is such

a pair, since 1 = 2 · 4 + (−1) · 7. Note that this is a version of the coin
problem we have discussed a while ago, but now we allow change.

• Can you find a Bezout pair for (3, 8) ? For instance, (−5, 2) works; so
does (3,−1).

• Can you find a Bezout pair for (3, 3) ? For instance, (1, 0) or (0, 1).
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So Bezout’s theorem says that gcd (a, b) cents can be paid using a-cent coins
and b-cent coins if change is allowed. We will soon discuss the same problem
without change.

How can we prove Bezout’s theorem? First, we observe that if (x, y) is a
Bezout pair for (a, b), then (x,−y) is a Bezout pair for (a,−b) (since xa +
(−y) (−b) = xa + yb and gcd (a,−b) = gcd (a, b)). Thus, in proving the theo-
rem, we only need to deal with the case b ≥ 0. In other words, it suffices to
prove the following lemma:

Lemma 3.4.15. Let a ∈ Z and b ∈ N. Then, there exists a Bezout pair for
(a, b).

Proof. We strongly induct on b. We do not consider a as being fixed. Thus, the
statement that we will be proving is

P (b) := (for each a ∈ Z, there exists a Bezout pair for (a, b)) .

We must prove this statement P (b) for all b ∈ N. We shall do this by strong
induction on b:

Base case: Let us prove the statement P (0). This is saying that for each a ∈ Z,
there exists a Bezout pair for (a, 0), that is, a pair (x, y) of two integers such that
gcd (a, 0)︸ ︷︷ ︸
=|a|=±a

= xa + y0. This is easy: (x, y) = (±1, 0). So the base case is done.

Induction step: Let b be a positive integer. We must prove the implication

(P (0) AND P (1) AND P (2) AND · · · AND P (b − 1)) =⇒ P (b) .

So we assume (as the IH) that P (0) AND P (1) AND P (2) AND · · · AND
P (b − 1) holds. In other words, we assume that

(for each a ∈ Z, there exists a Bezout pair for (a, 0)) and
(for each a ∈ Z, there exists a Bezout pair for (a, 1)) and
(for each a ∈ Z, there exists a Bezout pair for (a, 2)) and
· · · and
(for each a ∈ Z, there exists a Bezout pair for (a, b − 1)) .

In yet other words, we assume that for each a ∈ Z and each d ∈ {0, 1, . . . , b − 1},
there exists a Bezout pair for (a, d).

Our goal is now to prove P (b). In other words, we must prove that for each
a ∈ Z, there exists a Bezout pair for (a, b).

So we fix a ∈ Z, and we set out to find a Bezout pair for (a, b).
The Euclidean recursion yields

gcd (a, b) = gcd (b, a%b) .
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Since a%b ∈ {0, 1, . . . , b − 1}, this allows us to apply the IH to b and a%b instead
of a and d. So we conclude that there exists a Bezout pair (u, v) for (b, a%b).
Consider this pair. Thus, u and v are integers and

gcd (b, a%b) = ub + v (a%b) .

Thus,

gcd (a, b) = gcd (b, a%b) = ub + v (a%b)︸ ︷︷ ︸
=a−(a//b)b

(since a=(a//b)b+(a%b))

= ub + v (a − (a//b) b)
= va + (u − v (a//b)) b.

This shows that (v, u − v (a//b)) is a Bezout pair for (a, b). So such a Bezout
pair does exist. This concludes the proof of P (b). So the induction step is
complete, and the lemma is proved.

As we said, the lemma entails the theorem.

The above inductive proof contains a recursive algorithm for finding a Bezout
pair for (a, b) whenever a ∈ Z and b ∈ N. This is known as the extended
Euclidean algorithm, and has the following form in Python:
def bezout_pair(a, b): # for b nonnegative

if b == 0:
return (sign(a), 0)

(u, v) = bezout_pair(b, a%b)
return (v, u - v * (a//b))

where
def sign(a):

if a < 0: return -1
if a == 0: return 0
if a > 0: return 1

To extend the above code to negative b, just add an extra “if b < 0” check
which flips the signs of b and of v.

3.4.5. The universal property of the gcd

Bezout’s theorem can be used to obtain the following important property of
gcds:

Theorem 3.4.16 (universal property of the gcd). Let a, b, m ∈ Z. Then, we
have the equivalence

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) .
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In other words, the common divisors of a and b are precisely the divisors of
gcd (a, b).

Proof of the universal property. The ⇐= direction is easy: If m | gcd (a, b), then
m | a (since m | gcd (a, b) | a) and m | b (similarly).

Now for the =⇒ direction: Assume that m | a and m | b. We must prove that
m | gcd (a, b).

Bezout’s theorem says that gcd (a, b) can be written as gcd (a, b) = xa + yb
for some integers x and y. Consider these x and y.

Now, xa is a multiple of m (since m | a | xa), and so is yb (since m | b | yb).
Hence, their sum xa+ yb is also a multiple of m. But this sum is gcd (a, b). Thus,
we see that gcd (a, b) is a multiple of m. In other words, m | gcd (a, b).

This universal property can in turn be used to prove many other properties
of gcds, for example:

Exercise 3.4.1. Let a1, a2, b1, b2 ∈ Z be integers satisfying a1 | b1 and a2 | b2.
Prove that gcd (a1, a2) | gcd (b1, b2).

3.4.6. Factoring out a common factor from a gcd

The following theorem “feels” obvious, but is not:

Theorem 3.4.17. Let s, a, b ∈ Z. Then,

gcd (sa, sb) = |s| · gcd (a, b) .

Proof. Let
g = gcd (a, b) and h = gcd (sa, sb) .

We must prove that h = |s| · g. Since h and g are nonnegative, this is equivalent
to proving that |h| = |sg| (since |h| = h and |g| = g and |sg| = |s| · |g| = |s| · g).
In order to do this, it suffices to show that h | sg and sg | h (because we proved
a fact a while ago that x | y and y | x, then |x| = |y|).

So let us show this.

• Proof of sg | h: We must prove sg | h. In other words, we must prove
sg | gcd (sa, sb). By the universal property of the gcd, this is equivalent to
proving that sg | sa and sg | sb. But sg | sa follows from g | a, whereas
sg | sb follows from g | b. So we are done with the proof of sg | h.

• Proof of h | sg: We have h = gcd (sa, sb) | sa. In other words, sa = hu for
some integer u. Similarly, sb = hv for some integer v. Consider these u
and v.

Bezout’s theorem shows that g = gcd (a, b) = xa + yb for some integers x
and y. Consider these x and y.
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Now,

sg = s (xa + yb) = sxa + syb = x sa︸︷︷︸
=hu

+y sb︸︷︷︸
=hv

= xhu + yhv = h (xu + yv) ,

which shows that h | sg.

(The notes also give an other proof – see the proof of Theorem 3.4.11.)

3.5. Coprime integers

3.5.1. Definition and examples

Greatest common divisors are at their most useful when they equal 1. This is
called “coprimality”:

Definition 3.5.1. Two integers a and b are said to be coprime (or relatively
prime) if gcd (a, b) = 1.

Remark 3.5.2. This is a symmetric relation: If a and b are coprime, then b
and a are coprime (since gcd (a, b) = gcd (b, a)).

Example 3.5.3. (a) An integer n is coprime to 2 if and only if n is odd. Indeed,
gcd (n, 2) is a nonnegative divisor of 2, so it is always either 1 or 2. If n is
even, then it is 2 (since 2 | n and 2 | 2 in this case). If n is odd, then it is 1
(since 2 ∤ n shows that it cannot be 2).

(b) An integer n is coprime to 3 if and only if n is not divisible by 3 (since
the only nonnegative divisors of 3 are 1 and 3).

(c) An integer n is coprime to 4 if and only if n is odd. (Indeed, the only
nonnegative divisors of 4 are 1, 2 and 4, so that gcd (n, 4) is always 1, 2 or 4.
If n is even, then it is 2 or 4, since 2 is a common divisor of n and 4. If n is
odd, then it has to be 1, since neither 2 nor 4 divides n.)

(d) An integer n is coprime to 5 if and only if n is not divisible by 5 (since
the only nonnegative divisors of 5 are 1 and 5).

(e) An integer n is coprime to 6 if and only if n is neither even nor divisible
by 3.

(Indeed, gcd (n, 6) is 1, 2, 3 or 6. If n is even, then it is ≥ 2, since 2 is a
common divisor of n and 6. If n is divisible by 3, then it is ≥ 3 for a similar
reason. If n is neither, then 2, 3 and 6 are out of the question, and therefore
gcd (n, 6) = 1.)

Informally, I think of coprimality as a sort of “unrelatedness” or “indepen-
dence” or “orthogonality” relation between numbers, as far as their divisors
are concerned.
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3.5.2. Three theorems about coprimality

The following three theorems make coprimality useful:

Theorem 3.5.4 (coprime divisors theorem). Let a, b, c ∈ Z satisfy a | c and
b | c. Assume that a and b are coprime. Then, ab | c.

(In other words, a product of two coprime divisors of c is again a divisor
of c.)

Proof. We have ab | ac (since b | c) and ba | bc (because a | c). In other words,
ab | ca and ab | cb. So ab | gcd (ca, cb) by the universal property of the gcd.
Thus,

ab | gcd (ca, cb) = |c| · gcd (a, b)︸ ︷︷ ︸
=1

(since a and b
are coprime)

(by the previous theorem)

= |c| .

Since divisibility does not depend on signs, this entails ab | c.

Example 3.5.5. We have 4 | 56 and 7 | 56. Since 4 and 7 are coprime, this
entails 4 · 7 | 56.

In contrast, 6 | 12 and 4 | 12 do not entail 6 · 4 | 12, since 6 and 4 are not
coprime.

Theorem 3.5.6 (coprime removal theorem). Let a, b, c ∈ Z satisfy a | bc. As-
sume that a is coprime to b. Then, a | c.

Proof. We have a | ca and a | bc = cb. Thus, by the universal property of the
gcd, we get

a | gcd (ca, cb) = |c| · gcd (a, b)︸ ︷︷ ︸
=1

(since a and b
are coprime)

= |c| ,

so that a | c.

Example 3.5.7. From 6 | 7 · 12, we conclude that 6 | 12, since 6 is coprime to
7.

However, from 6 | 12 · 7, we cannot conclude that 6 | 7, since 6 is not
coprime to 12.

Theorem 3.5.8 (coprime product theorem). Let a, b, c ∈ Z be such that each
of the numbers a and b is coprime to c. Then, ab is also coprime to c.
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Proof. Let g = gcd (ab, c). We must prove that g = 1.
We have g = gcd (ab, c) | ab and g = gcd (ab, c) | c | ac. Thus, the universal

property of the gcd yields

g | gcd (ab, ac) = |a| · gcd (b, c)︸ ︷︷ ︸
=1

= |a| .

Thus, g | a. Combining this with g | c, we obtain g | gcd (a, c) (by the universal
property again). In other words, g | 1 (since gcd (a, c) = 1). Since g is a
nonnegative integer, this entails that g = 1, and we are done.

(See the notes for more general versions of these three theorems.)

3.5.3. Reducing a fraction

Theorem 3.5.9. Let a and b be two integers that are not both 0. Let g =

gcd (a, b). Then, the integers
a
g

and
b
g

are coprime.

This theorem is important for understanding rational numbers. Indeed, a ratio
u
v

of two integers is said to be in reduced form if u and v are coprime. So

the theorem is saying that if we start with a ratio
a
b

of two integers, and can-

cel gcd (a, b) from its numerator and its denominator, then we get a ratio in
reduced form. Hence, any rational number can be brought to a reduced form.

Proof of the theorem. Easily, g > 0 (since it is the gcd of the integers a and b,
which are not both 0). Hence, |g| = g.

The numbers
a
g

and
b
g

are integers since g = gcd (a, b) | a and g = gcd (a, b) |
b. Moreover,

g = gcd (a, b) = gcd
(

g
a
g

, g
b
g

)
= |g| · gcd

(
a
g

,
b
g

)
= g · gcd

(
a
g

,
b
g

)
.

Cancelling g (since g > 0), we obtain 1 = gcd
(

a
g

,
b
g

)
. In other words,

a
g

and
b
g

are coprime.

3.6. Prime numbers

3.6.1. Definition

Here comes one of the most famous concepts in mathematics:
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Definition 3.6.1. An integer n > 1 is said to be prime (or a prime) if the only
positive divisors of n are 1 and n.

The first few primes (= prime numbers) are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.

It can be shown that there are infinitely many primes (see the HW).

3.6.2. The friend-or-foe lemma

The first property of primes we will prove is the friend-or-foe lemma:

Lemma 3.6.2 (friend-or-foe lemma). Let p be a prime. Let n ∈ Z. Then, n is
either divisible by p or coprime to p, but not both.

Proof. The only positive divisors of p are 1 and p (since p is prime). Thus,
gcd (n, p) must be either 1 or p (since gcd (n, p) is a positive divisor of p). So
we are in one of the following two cases:

Case 1: We have gcd (n, p) = 1.
Case 2: We have gcd (n, p) = p.
Consider Case 1. In this case, gcd (n, p) = 1, so that n is coprime to p. This

also shows that n is not divisible by p (because if it was, then p would be a
common divisor of n and p, so that gcd (n, p) would be ≥ p, contradicting
gcd (n, p) = 1). Hence, the lemma is proved in Case 1.

Now consider Case 2. In this case, we have gcd (n, p) = p > 1, so that n is
not coprime to p. Moreover, n is divisible by p (since p = gcd (n, p) | n). So the
lemma is proved in Case 2, too.

In contrast, for a non-prime number p > 1, there exist integers n that are
neither coprime to nor divisible by p. For instance, 2 is neither coprime to nor
divisible by 6.

3.6.3. Binomial coefficients and primes

One of many applications of the friend-or-foe lemma is a property of binomial
coefficients. Looking at Pascal’s triangle, we might observe that all entries in

the p-th row (i.e., all binomial coefficients
(

p
k

)
) except for the two 1’s at the

ends are divisible by p when p is a prime. This is indeed the case:

Theorem 3.6.3. Let p be a prime. Let k ∈ {1, 2, . . . , p − 1}. Then, p |
(

p
k

)
.
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Proof. Exercise 5 (a) on HW#3 says that

k
(

p
k

)
= p

(
p − 1
k − 1

)
︸ ︷︷ ︸
an integer

.

This shows that p | k
(

p
k

)
. If we can show that p is coprime to k, then this will

yield p |
(

p
k

)
(by the coprime removal theorem), and we will be done.

So let us show that p is coprime to k. The friend-or-foe lemma says that k is
either divisible by p or coprime to p. Since k cannot be divisible by p (because
k ∈ {1, 2, . . . , p − 1}), we conclude that k is coprime to p. That is, p is coprime
to k, exactly as desired.

3.6.4. Fermat’s little theorem

It is easy to see that every integer a satisfies a2 ≡ a mod 2. (Indeed, this is saying
that 2 | a2 − a = a (a − 1), which is true since one of a and a − 1 will always be
even.)

Likewise, every integer a satisfies a3 ≡ a mod 3 (since a3 − a = a
(
a2 − 1

)
=

(a + 1) a (a − 1) is divisible by 3).
This pattern breaks down for 4: Not every integer a satisfies a4 ≡ a mod 4

(for example, 2 does not).
However, the pattern reappears for 5: Every integer a satisfies a5 ≡ a mod 5.

(But this does not follow that easily from factoring the difference: a5 − a =
a (a − 1) (a + 1)

(
a2 + 1

)
. Nevertheless, there is a fully mechanical proof of this

congruence, just using the remainder a%5.)
The pattern breaks down again for 6, but reemerges for 7.
It seems that the pattern works for all primes. And it does:

Theorem 3.6.4 (Fermat’s Little Theorem). Let p be a prime. Let a ∈ Z. Then,

ap ≡ a mod p.

Proof. We induct on a. This will only cover the case a ≥ 0, so we will have to
use a separate argument for a < 0 afterwards.

Base case: The case ap ≡ a mod p clearly holds for a = 0 (since 0p = 0 and
thus 0p ≡ 0 mod p).

Induction step: Let a ∈ N. Assume (as the IH) that ap ≡ a mod p. We must
prove that (a + 1)p ≡ a + 1 mod p.
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The binomial formula yields

(a + 1)p =
p

∑
k=0

(
p
k

)
ak 1p−k︸︷︷︸

=1

=
p

∑
k=0

(
p
k

)
ak

=

(
p
0

)
︸︷︷︸
=1

a0︸︷︷︸
=1

+
p−1

∑
k=1

(
p
k

)
ak +

(
p
p

)
︸︷︷︸
=1

ap

= 1 +
p−1

∑
k=1

(
p
k

)
ak

︸ ︷︷ ︸
This sum is divisible by p,

since our previous theorem

shows that p|

(
p
k

)
for each k∈{1,2,...,p−1}

+ap

≡ 1 + ap︸︷︷︸
≡a mod p

(by the IH)

≡ 1 + a = a + 1 mod p.

(See the notes for some more details on this argument.)
So the induction is complete, and the theorem is proved for all a ≥ 0. It

remains to prove it for all a < 0.
So let a < 0 be an integer. We must show that ap ≡ a mod p.
Let b := a%p. Then, b ≥ 0, so that bp ≡ b mod p by the part of the theorem

that we already have proved. But b = a%p ≡ a mod p, so that bp ≡ ap mod p.
Therefore,

ap ≡ bp ≡ b ≡ a mod p.

So the theorem holds for our a as well. This completes the proof.

Curiosity: Fermat’s Little Theorem does not have a converse! There are
several non-prime numbers p such that every integer a satisfies ap ≡ a mod p.
For instance, 561 is such a p. The number 561 = 3 · 11 · 17 is not prime, but
every integer a satisfies a561 ≡ a mod 561. These are known as Carmichael
numbers.

3.6.5. Prime divisor separation theorem

You can think of the primes as “inseparable” positive integers: They cannot be
factored into two smaller positive integers.

But there is a deeper way in which this “inseparability” holds: If a prime p
divides a product ab, then p must divide one of the factors. Let us state this as
a theorem:
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Theorem 3.6.5 (prime divisor separation theorem). Let p be a prime. Let
a, b ∈ Z be such that p | ab. Then, p | a or p | b.

Proof. Let us prove this in the following equivalent form: “If p ∤ a, then p | b”.
Assume that p ∤ a. We must prove that p | b.
The friend-or-foe lemma yields that a is either divisible by p or coprime to p.

Since p ∤ a, this shows that a must be coprime to p. In other words, p is coprime
to a. Thus, by the coprime removal theorem, from p | ab we obtain p | b. Proof
complete.

Note that this theorem does not work for composite (= non-prime) numbers
instead of p. For instance, 4 | 2 · 6 but 4 ∤ 2 and 4 ∤ 6.

We can extend the theorem to products of several factors:

Corollary 3.6.6 (prime divisor separation theorem for k factors). Let p be a
prime. Let a1, a2, . . . , ak be integers such that p | a1a2 · · · ak. Then, p | ai for
some i ∈ {1, 2, . . . , k}.

(In words: If a prime divides a product of integers, then it divides at least
one factor.)

Proof. Induct on k. The base case (k = 0) is vacuously true (since p ∤ 1). In the
induction step from k to k + 1, observe that p | a1a2 · · · ak+1 = (a1a2 · · · ak) ak+1,
and use the theorem to conclude that p | a1a2 · · · ak or p | ak+1, but in the first
case we can use the induction hypothesis.

3.6.6. p-valuations: definition

We will need the following simple lemma:

Lemma 3.6.7. Let p be a prime. Let n be a nonzero integer. Then, there exists
a largest m ∈ N such that pm | n.

Proof. The relation pm | n means that
n

pm ∈ Z. In other words, it means that

we can divide n by p at least m times without getting a non-integer. So the
lemma claims that there is a largest number of times that we can divide n by
p without getting a non-integer. But this is true, because every time we divide
n by p, the value |n| decreases, which cannot keep happening forever without
violating integrality.

(Alternatively, any m ≥ |n| will satisfy pm ≥ p|n| > |n|, so that pm ∤ n.)

This lemma allows us to make the following definition:

Definition 3.6.8. Let p be a prime.
(a) Let n be a nonzero integer. Then, vp (n) shall denote the largest m ∈ N

such that pm | n. (We just showed that this largest m exists.) Thus, vp (n)
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is the largest number of times that you can divide n by p without getting a
non-integer.

This number vp (n) is called the p-valuation (or the p-adic valuation) of n.
(b) In order for vp (n) to be defined for all n, we also define vp (0) to be ∞.

This ∞ is a symbol, not an actual number, but we shall pretend that it behaves
like a number in some regards. In particular, we can use it in addition and
comparisons, following the rules

k + ∞ = ∞ + k = ∞ for all k ∈ Z;
∞ + ∞ = ∞;

k < ∞ and ∞ > k for all k ∈ Z;
max {∞, k} = max {k, ∞} = ∞ for all k ∈ Z ∪ {∞} ;
min {∞, k} = min {k, ∞} = k for all k ∈ Z ∪ {∞} .

Never subtract anything from ∞ (or ∞ from anything), because (e.g.) we
have 1 + ∞ = 0 + ∞ but 1 ̸= 0.

Thus, ∞ acts like a “mythical number that is larger than any actual num-
ber”. It acts its role well as long as we only take sums, minima and maxima.

Here are some examples:

v3 (99) = 2
(

since 32 | 99 but 33 ∤ 99
)

;

v3 (98) = 0
(

since 30 | 98 but 31 ∤ 98
)

;

v3 (96) = 1
(

since 31 | 96 but 32 ∤ 96
)

;

v3 (0) = ∞.

Here is another way to restate the definition of vp (n): If p is a prime and n is
a positive integer, then vp (n) is the number of zeroes at the end of the base-p
representation of n. For example, 344 is written 101011000 in base 2, so that
v2 (344) = 3.

Our definition of vp (n) can be generalized to any positive integer p > 1
instead of a prime. But the more interesting properties of vp (n) rely on p being
prime.

3.6.7. p-valuations: basic properties

Lemma 3.6.9. Let p be a prime. Let i ∈ N and n ∈ Z. Then, pi | n if and only
if vp (n) ≥ i.

Proof. If n = 0, then this is clear (since pi | 0 = n and vp (n) = vp (0) = ∞ ≥ i
in this case).
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Let us now deal with the remaining case (n ̸= 0). In this case, vp (n) is (by
definition) the largest m ∈ N such that pm | n. Hence, in this case, pi | pvp(n) | n
whenever i ≤ vp (n), whereas pi ∤ n whenever i > vp (n). Thus, pi | n if and
only if i ≤ vp (n). This proves the lemma.

Theorem 3.6.10 (basic properties of p-valuations). Let p be a prime. Then:
(a) We have vp (ab) = vp (a) + vp (b) for any a, b ∈ Z.
(b) We have vp (a + b) ≥ min

{
vp (a) , vp (b)

}
for any a, b ∈ Z.

(c) We have vp (1) = 0.
(d) We have vp (p) = 1.
(e) We have vp (q) = 0 for any prime q ̸= p.

Proof. (a) Let a, b ∈ Z. We must prove that vp (ab) = vp (a) + vp (b).
If a = 0, then this is saying that ∞ = ∞ + vp (b), which is obvious. Similarly

for b = 0. Thus, we only need to consider the case when a and b are both
nonzero.

In this case, let

n = vp (a) and m = vp (b) .

So pn | a but pn+1 ∤ a, and likewise pm | b but pm+1 ∤ b.
We want to prove that vp (ab) = n + m. In other words, we want to prove

that pn+m | ab but pn+m+1 ∤ ab.
From pn | a, we get a = pnx for some integer x. This integer x cannot

be divisible by p (since that would mean x = px′ for an integer x′, so that
a = pnx = pn px′ = pn+1x′, contradicting pn+1 ∤ a).

So we have written a = pnx for some integer x that is not divisible by p.
Similarly, we write b = pmy for some integer y that is not divisible by p.
Thus, ab = pnx · pmy = pn+mxy. So pn+m | ab.
Now why is pn+m+1 ∤ ab ? Because if we had pn+m+1 | ab, then we would

have pn+m p = pn+m+1 | ab = pn+mxy, so that (by cancelling pn+m) we would
find p | xy, which would yield (by the prime divisor separation theorem) that
p | x or p | y, contradicting the fact that neither x nor y is divisible by p.

So we have proved that pn+m | ab but pn+m+1 ∤ ab. Thus, vp (ab) = n + m =
vp (a) + vp (b), qed.

(b) Let a, b ∈ Z. We must prove that vp (a + b) ≥ min
{

vp (a) , vp (b)
}

.
If a = 0 or b = 0, this is easy. So we only care about the case when a, b ̸= 0.
Let k = min

{
vp (a) , vp (b)

}
. Then, both a and b are multiples of pk (why?).

Hence, a + b is a multiple of pk. Hence, by the lemma above, vp (a + b) ≥ k =
min

{
vp (a) , vp (b)

}
.

(c) This follows from p0 = 1 | 1 but p1 = p ∤ 1.
(d) This follows from p1 = p | p but p2 ∤ p.
(e) Let q ̸= p be a prime. Then, the only positive divisors of q are 1 and q. In

particular, p is not among them. So p ∤ q, that is, p1 ∤ q. But p0 = 1 | q. Thus,
vp (q) = 0.
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Corollary 3.6.11. Let p be a prime. Then,

vp (a1a2 · · · ak) = vp (a1) + vp (a2) + · · ·+ vp (ak)

for any k integers a1, a2, . . . , ak.

Proof. Induct on k. The base case uses vp (1) = 0. The step relies on part (a) of
the theorem.

3.6.8. Back to Hanoi

Proposition 3.6.12. Let n ∈ N. Recall our strategy for solving the Tower of
Hanoi puzzle with n disks.

Let k ∈ {1, 2, . . . , 2n − 1}. Then, the k-th move of our strategy moves the
(v2 (k) + 1)-th smallest disk.

In particular, every odd move moves the smallest disk (since v2 (k) = 0 when k
is odd).

For a proof, see the notes (§3.6.9).
The sequence

(v2 (1) , v2 (2) , v2 (3) , v2 (4) , . . .)
= (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . .)

is called the ruler sequence.

3.6.9. The p-valuation of n!

What is the p-valuation of a factorial n! ? There is a nice formula:

Theorem 3.6.13 (de Polignac’s formula). Let p be a prime. Let n ∈ N. Then,

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

=
(

n//p1
)
+
(

n//p2
)
+
(

n//p3
)
+ · · · .

Proof. First of all, the infinite sums do make sense, and are actually just finite
sums in disguise, meaning that only finitely many of their addends are nonzero.
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For instance, if p = 2 and n = 13, we have⌊
n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

=

⌊
13
21

⌋
+

⌊
13
22

⌋
+

⌊
13
23

⌋
+ · · ·

= ⌊6.5⌋︸ ︷︷ ︸
=6

+ ⌊3.25⌋︸ ︷︷ ︸
=3

+ ⌊1.625⌋︸ ︷︷ ︸
=1

+ ⌊0.8125⌋+ ⌊0.40625⌋+ · · ·︸ ︷︷ ︸
=0+0+0+···

= 6 + 3 + 1 + 0 + 0 + 0 + · · ·︸ ︷︷ ︸
Throw these away

= 6 + 3 + 1 = 10.

Moreover, we know that
⌊n

d

⌋
= n//d for any positive integer d. Thus, the

two sums ⌊
n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

and
(

n//p1
)
+
(

n//p2
)
+
(

n//p3
)
+ · · ·

are equal. So we only need to show that these two sums equal vp (n!). In other
words, we must prove that

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · .

We can do this by induction on n:
The base case (n = 0) is saying that vp (1) = 0 + 0 + 0 + · · · , which is true

since vp (1) = 0.
In the induction step, we proceed from n − 1 to n. So we fix a positive integer

n, and assume (as IH) that

vp ((n − 1)!) =
⌊

n − 1
p1

⌋
+

⌊
n − 1

p2

⌋
+

⌊
n − 1

p3

⌋
+ · · · .

Now we must prove that

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · .

Set k := vp (n). The factorial recursion says that n! = (n − 1)! · n. Hence,

vp (n!) = vp ((n − 1)! · n) = vp ((n − 1)!) + vp (n)︸ ︷︷ ︸
=k

= vp ((n − 1)!) + k.
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What about the RHSs? Recall the birthday lemma (Corollary 3.3.19 in the
notes), we have

⌊n
d

⌋
=


⌊

n − 1
d

⌋
+ 1, if d | n;⌊

n − 1
d

⌋
, if d ∤ n

for any positive integer d.

Thus, ⌊
n
pi

⌋
=

⌊
n − 1

pi

⌋
+ 1 for any i ≤ k, and⌊

n
pi

⌋
=

⌊
n − 1

pi

⌋
for any i > k.

Hence, ⌊
n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

=

(⌊
n − 1

p1

⌋
+ 1
)
+

(⌊
n − 1

p2

⌋
+ 1
)
+ · · ·+

(⌊
n − 1

pk

⌋
+ 1
)

+

⌊
n − 1
pk+1

⌋
+

⌊
n − 1
pk+2

⌋
+ · · ·

=

(⌊
n − 1

p1

⌋
+

⌊
n − 1

p2

⌋
+

⌊
n − 1

p3

⌋
+ · · ·

)
+ k.

Thus, the desired equality

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

follows from the IH

vp ((n − 1)!) =
⌊

n − 1
p1

⌋
+

⌊
n − 1

p2

⌋
+

⌊
n − 1

p3

⌋
+ · · ·

by adding a k to both sides.

An application of this lemma is to puzzle questions like “if you write 89!
in base-7, how many zeroes are there at the end?”. In fact, this question asks
for v7 (89!), and this can be computed by the formula we just proved. This
can still be used for base-10, even though 10 is not a prime, since v10 (m) =
min {v2 (m) , v5 (m)} for any m ∈ Z (why?).
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3.6.10. Prime factorization

We are now ready to prove one of the most important properties of primes: the
fact that every positive integer can be uniquely decomposed as a product of
primes. For instance,

200 = 2 · 100 = 2 · 2 · 50 = 2 · 2 · 5 · 10 = 2 · 2 · 5 · 5 · 2︸ ︷︷ ︸
a product of primes

.

The word “uniquely” means here that any two ways to decompose a given
n > 0 as a product of primes are equal up to reordering the factors. For
instance, 200 is also 2 · 2 · 2 · 5 · 5, which is the same product but for the order
of the primes.

Let us state this fact in full generality:

Definition 3.6.14. Let n be a positive integer. A prime factorization of n
means a finite list (p1, p2, . . . , pk) of primes (not necessarily distinct) such
that

n = p1p2 · · · pk.

For example, (2, 2, 5, 2, 5) and (5, 2, 2, 5, 2) are two prime factorizations of 200.
Now our claim is:

Theorem 3.6.15 (Fundamental Theorem of Arithmetic). Let n be a positive
integer. Then:

(a) There exists a prime factorization of n.
(b) This prime factorization is unique up to reordering its entries. In other

words, if (p1, p2, . . . , pk) and (q1, q2, . . . , qℓ) are two prime factorizations of
n, then (q1, q2, . . . , qℓ) can be obtained from (p1, p2, . . . , pk) by reordering the
entries.

(c) Let (p1, p2, . . . , pk) be a prime factorization of n. Let p be any prime.
Then, the number of times that p appears in the list (p1, p2, . . . , pk) is vp (n).

Proof. (a) We proved this as an example of strong induction.
(c) We have n = p1p2 · · · pk. Thus,

vp (n) = vp (p1p2 · · · pk)

= vp (p1) + vp (p2) + · · ·+ vp (pk) (by the last corollary above)

=

(
a sum of 0’s and 1’s, which contains as many 1’s

as there are pi’s equal to p

)
(
since vp (p) = 1 and vp (q) = 0 for any prime q ̸= p

)
= (the number of 1’s in this sum)

= (the number of pi’s equal to p)
= (the number of times p appears in (p1, p2, . . . , pk)) .
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(b) Let (p1, p2, . . . , pk) and (q1, q2, . . . , qℓ) be two prime factorizations of n.
Then, for any prime p, the number of times that p appears in (p1, p2, . . . , pk)
equals vp (n) (by part (c)), but the number of times that p appears in (q1, q2, . . . , qℓ)
also equals vp (n). Thus, p appears the same number of times in both lists.

So we have shown that the two lists contain each prime the same number of
times. So they have the same entries, just in a different order. Qed.

3.7. Least common multiples

We have studied greatest common divisors above. Least common multiples are
some kind of counterpart to them: Given two integers a, b, the gcd of a and b
is the (nonnegative) common divisor of a and b that is divisible by all common
divisors of a and b, whereas the lcm (= least common multiple) of a and b is the
(nonnegative) common multiple of a and b that divides all common multiples
of a and b. Let us explain this in more detail.

Definition 3.7.1. Let a and b be two integers.
(a) The common multiples of a and b are the integers that are divisible by

both a and b simultaneously.
(b) The least common multiple of a and b (aka the lowest common mul-

tiple, or just the lcm) of a and b is defined as follows:

• If a and b are nonzero, then it is the smallest positive common multiple
of a and b.

• Otherwise, it is 0.

It is denoted by lcm (a, b).

Examples:

• We have lcm (3, 4) = 12.

• We have lcm (6, 4) = 12.

• We have lcm (6, 8) = 24.

(The positive multiples of 8 are 8, 16, 24, . . .. You can check that the first
of these to be a multiple of 6 is 24.)

• We have lcm (3, 6) = 6.

• We have lcm (0, 3) = 0 by definition.

• We have lcm (3,−4) = 12. In fact, the multiples of −4 are precisely the
multiples of 4, since divisibility does not depend on the sign.
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Note that the lcm of two (or more) positive integers is important for working
fractions: If you have several fractions with integer denominators, then the lcm
of these denominators is exactly the least (= lowest) common denominator that
you can use to add these fractions together.

Let us study some basic properties of lcms:

Theorem 3.7.2. Let a and b be two integers. Then:
(a) The lcm of a and b exists.
(b) We have lcm (a, b) ∈ N.
(c) We have lcm (a, b) = lcm (b, a).
(d) We have a | lcm (a, b) and b | lcm (a, b).
(e) We have lcm (−a, b) = lcm (a, b) and lcm (a,−b) = lcm (a, b).

Proof. (a) If a or b is 0, then this is true by definition. Otherwise, |ab| is a positive
common multiple of a and b. So there is a smallest positive common multiple
of a and b. In other words, lcm (a, b) exists.

(b), (c), (d) Obvious from the definition.
(e) This is because divisibility does not care about the sign.

Now, a universal property. Recall the universal property of the gcd, which
says that

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) .

Here is an analogous property for the lcm:

Theorem 3.7.3 (universal property of the lcm). Let a, b, m ∈ Z. Then, we have
the equivalence

(a | m and b | m) ⇐⇒ (lcm (a, b) | m) .

Proof. ⇐=: If lcm (a, b) | m, then a | m (because a | lcm (a, b) | m) and similarly
b | m.
=⇒: Assume that a | m and b | m. We must prove that lcm (a, b) | m.
If one of a and b is 0, then this is easy (since a | m and b | m imply that m = 0

in this case, and thus m is divisible by lcm (a, b)).
So we only need to consider the case when a and b are nonzero. In this case,

set ℓ = lcm (a, b). Then, ℓ is the smallest positive common multiple of a and b
(by definition). Hence, ℓ is a positive integer and is a multiple of a and of b.
Our goal is to prove that ℓ | m.

Set q := m//ℓ and r := m%ℓ be the quotient and the remainder obtained
when dividing m by ℓ. Thus,

q ∈ Z and r ∈ {0, 1, . . . , ℓ− 1} and m = qℓ+ r.

Hence, r < ℓ.
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From m = qℓ+ r, we obtain r = m − qℓ. Since both m and ℓ are multiples
of a (since a | m and ℓ = lcm (a, b)), we thus concldue that r is a multiple of
a as well. Similarly, r is a multiple of b. So r is a common multiple of a and
b. If r was positive, then this would be absurd, since ℓ is the smallest positive
common multiple of a and b but r is smaller (r < ℓ). So r cannot be positive.
But r ∈ {0, 1, . . . , ℓ− 1}. Thus, r = 0. Hence, m%ℓ = r = 0, so that ℓ | m,
qed.

The gcd and the lcm of two integers are related to each other by the following
formula:

Theorem 3.7.4. Let a and b be two integers. Then,

gcd (a, b) · lcm (a, b) = |ab| .

Proof sketch. The case when a or b is 0 is easy. So let us consider the other

case. Here, argue that
ab

gcd (a, b)
is a common multiple of a and b, and thus

(by the universal property) is a multiple of lcm (a, b). Thus, ab is a multiple of
gcd (a, b) · lcm (a, b).

On the other hand, argue that
ab

lcm (a, b)
is an integer and divides gcd (a, b)

(since it divides each of a and b). Thus, ab divides gcd (a, b) · lcm (a, b).
Now recall that if two integers x and y are mutual multiples (i.e., we have

x | y and y | x), then |x| = |y|. Conclude.
(Details in a reference in the notes.)

Both gcds and lcms have easily computable p-valuations:

Theorem 3.7.5. Let p be a prime. Let a and b be two integers. Then,

vp (gcd (a, b)) = min
{

vp (a) , vp (b)
}

;

vp (lcm (a, b)) = max
{

vp (a) , vp (b)
}

.

Proof. Not hard using the properties of p-valuations and the universal proper-
ties of gcd and lcm. (See the notes for a reference.)

This theorem is useful for computing gcd (a, b) and lcm (a, b) if you know
the prime factorizations of two integers a and b. For example, knowing that
18 = 21 · 32 and 12 = 22 · 31, we obtain

gcd (18, 12) = 21 · 31 = 2 · 3 = 6 and

lcm (18, 12) = 22 · 32 = 36.
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If you don’t know the prime factorizations, it is easiest to compute gcd (a, b)
by the Euclidean algorithm and then compute lcm (a, b) by solving the equation

gcd (a, b) · lcm (a, b) = |ab| .

Gcds and lcms can also be defined for more than two numbers. Most of the
above properties still hold, except that the formula

gcd (a, b) · lcm (a, b) = |ab|

becomes more complicated (it is not gcd (a, b, c) · lcm (a, b, c) = |abc| but gcd (a, b, c) ·
lcm (bc, ca, ab) = |abc|). See most texts on elementary number theory, or my
2019 notes (referenced in the notes).

3.8. Sylvester’s xa + yb theorem (or the Chicken McNugget
theorem)

We make a little digression to state a theorem about the coin problem we have
discussed a while ago: What denominations can be paid using a-cent coins and
b-cent coins (without change).

For this little section, we let a and b be two positive integers.

Definition 3.8.1. (a) A Z-linear combination (or Z-LC) of a and b will mean
a number of the form

xa + yb with x, y ∈ Z.

In other words, it means a number of cents that can be paid using a-cent
coins and b-cent coins if you can get change.

(b) An N-linear combination (or N-LC) of a and b will mean a number of
the form

xa + yb with x, y ∈ N.

In other words, it means a number of cents that can be paid using a-cent
coins and b-cent coins if you cannot get change.

Back in the “strong induction” section, we showed that any integer n ≥ 8 is
an N-LC of 3 and 5. More concretely, the N-LCs of 3 and 5 are

0, 3, 5, 6, 8, 9, 10, . . .︸ ︷︷ ︸
all integers ≥8

.

This should make us wonder what we can say about the N-LCs of a and b in
the general case. We shall begin with describing the Z-LCs, since this is easier.
Any N-LC is a Z-LC. However, a Z-LC is not always an N-LC (for example, 1
is a Z-LC of 3 and 5, but not an N-LC).
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Proposition 3.8.2. The Z-LCs of a and b are exactly the multiples of gcd (a, b).

Proof idea. Any Z-LC of a and b is a multiple of gcd (a, b), since it can be written
as xa + yb and you can factor a gcd (a, b) out of this sum.

Conversely, any multiple of gcd (a, b) is a Z-LC of a and b, since Bezout’s
theorem yields that gcd (a, b) itself is one.

(See the notes for more details.)

What can we say about the N-LCs? A more complicated example:
The N-LCs of 5 and 9 are

0, 5, 9, 10, 14, 15, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, . . .︸ ︷︷ ︸
all integers ≥32

.

We do not expect to have an explicit way of describing them all. But we can
notice a few things: All integers ≥ some threshold are N-LCs of 5 and 9, and
moreover, exactly half the integers below this threshold are.

These patterns generalize! All you have to require is that a and b are coprime.
(This is not a very stringent requirement, because the non-coprime case can
be reduced to the coprime case by replacing a and b with a/ gcd (a, b) and
b/ gcd (a, b).) The result is:

Theorem 3.8.3 (Sylvester’s two-coin theorem). Assume that the two positive
integers a and b are coprime. Then:

(a) Every integer n > ab − a − b is an N-LC of a and b.
(b) The number ab − a − b is not an N-LC of a and b.
(c) Among the first (a − 1) (b − 1) nonnegative integers

0, 1, 2, . . . , ab − a − b,

exactly half are N-LCs of a and b.
(d) Let n ∈ Z. Then, exactly one of the two numbers n and ab − a − b is an

N-LC of a and b.

See the notes for a proof. (This theorem was found by J. J. Sylvester in 1884.)

3.9. An introduction to cryptography

This is a digression; this material is not examinable. Cryptography is a wide
field (not really a part of mathematics, but relying on a lot of mathematics) and
has its own courses here at Drexel. Let me briefly survey a couple highlights
from classical and modern cryptography.

Cryptography is the study of ciphers – i.e., ways to encrypt data. Data, for
us, is text.

We will see an ancient (Roman) as well as a modern (20th century) cipher.
Both rely on number theory. There are many more ciphers, and a bunch of
books discussing them, some referenced in the notes.
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3.9.1. Caesarian ciphers (alphabet rotation)

We start with an algorithm that was used by Julius Caesar to encrypt military
communications. We assume that our messages are written in the modern Latin
alphabet, all-uppercase.

The modern Latin alphabet has 26 letters: A, B, . . ., Z. We assign a number
to each letter:

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

.

Thus, each letter corresponds to a unique number in the set {0, 1, . . . , 25}. For
instance, F ∼ 5 and X ∼ 23. This method of encoding letters as numbers will
be called numerical encoding.

A word is just a finite list of letters, and thus can be encoded as a finite list
of numbers: e.g.,

KITTEN → (K, I, T, T, E, N) → (10, 8, 19, 19, 4, 13) .

Conversely, any list of numbers in {0, 1, . . . , 25} can be decoded into a word.
For instance, (17, 0, 19) → (R, A, T) → RAT.

With these bases covered, we can now formulate Caesar’s algorithm for en-
crypting a word. This is nowadays known as the Caesarian cipher ROT3:

Caesarian cipher ROT3: To encrypt a word, proceed as follows:

1. Encode the word as a finite list of numbers (a1, a2, . . . , an).

2. Replace each number ai by (ai + 3)%26.

3. Decode the resulting list back into a word.

For instance,

CRAZY → (2, 17, 0, 25, 24) → (5, 20, 3, 2, 1) → FUDCB.

In other words, the Caesarian cipher ROT3 simply shifts each letter by 3
forward, if you consider the letters of the alphabet as being wrapped around a
circle.

How can we decrypt a word encrypted using ROT3 ? By shifting each let-
ter by 3 backward, i.e., replacing each ai by (ai − 3)%26. We can denote this
operation by ROT−3.

More generally, we define ROTk for any integer k as follows:
Caesarian cipher ROTk: Let k be a fixed integer. To encrypt a word, proceed

as follows:
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1. Encode the word as a finite list of numbers (a1, a2, . . . , an).

2. Replace each number ai by (ai + k)%26.

3. Decode the resulting list back into a word.

In other words, ROTk shifts each letter by k steps forward. It is easy to see
that a word encrypted using ROTk can be decrypted back using ROT−k. This
relies on the following simple lemma:

Lemma 3.9.1. Let a, b ∈ {0, 1, . . . , 25} be such that b = (a + k)%26. Then,
a = (b − k)%26.

Proof. From b = (a + k)%26, we have b ≡ a + k mod 26. Hence, b − k ≡
a mod 26, that is, a ≡ b − k mod 26. Therefore, a = (b − k)%26 (since a ∈
{0, 1, . . . , 25}).

Some observations:

• The encryption method ROT0 does nothing: Each word is encrypted as
itself.

• The encryption method ROT26 also does nothing: Each word is encrypted
as itself.

• The encryption method ROT27 does the same as ROT1.

• More generally, if u ≡ v mod 26, then ROTu = ROTv.

• So the only Caesarian ciphers are

ROT0, ROT1, . . . , ROT25 .

Any other ROTk is just a copy of one of these. Of these 26 ciphers, only
25 are useful, since ROT0 does nothing.

• The cipher ROT13 is self-inverse: Decrypting a word encrypted using
ROT13 can be done using ROT13 again. Indeed, ROT13 is undone by
ROT−13, but ROT−13 = ROT13 because −13 ≡ 13 mod 26.

• Encoding a word using ROTa and then encoding the result using ROTb is
the same as encoding the original word using ROTa+b.



Math 221 Winter 2024, version March 14, 2024 page 99

3.9.2. Keys and ciphers

Ciphers such as ROTk are one-trick ponies: Once your enemy knows the method,
he will be able to decrypt anything you encrypt.

This is true to an extent even if the enemy does not know the k. Indeed, there
are only 26 Caesarian ciphers

ROT0, ROT1, . . . , ROT25 .

Thus, if your enemy finds a text you encrypted using some ROTk, he can just
try to decrypt it using

ROT−0, ROT−1, . . . , ROT−25,

and see which of the results gives a meaningful word/text.
In modern language, this is saying that Caesarian ciphers have too small a

key length.
Example: BPQA QA VWB BPM EIG
Try to apply every ROTk. You find that ROT18 gives “THIS IS NOT THE

WAY”, which is valid text. So the text was ROT−18-encrypted, i.e., ROT8-
encrypted.

So how can we create a cipher that is harder to break? We need a bigger key
size, and we need “more chaos” (e.g., don’t apply the same rule to each letter).
Here are some ciphers that are slightly better in some of these regards:

• Monoalphabetic substitution: Here we still do the same thing to each
letter, but the thing is no longer just a shift by k letters. Instead, we fix
any permutation of the alphabet (i.e., a rule that sends each letter to a
different letter) and we apply this permutation separately to each letter.
For instance, we can use the following permutation:

A B C D E F G H I J K L M

C Z X B N M P A D T S R Q

N O P Q R S T U V W X Y Z

K O E W Y U I J F L G H V

.

For example, the word KITTEN is then encrypted as SDIINK.

The key size of this encryption method is huge – it is the number of
all permutations of the alphabet, which is (as we will soon see) 26! =
403 291 461 126 605 635 584 000 000. You cannot just try all these keys man-
ually. But you can exploit certain patterns in the English language (or
whatever language the text is written it), such as frequencies of letters,
frequencies of two-letter combinations, and so on.
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• Viginere substitution: Now the key is a very long sequence

(b1, b2, b3, . . .)

of elements of {0, 1, . . . , 25} (or just of integers). To encrypt a word, we
first encode it as a tuple of integers (a1, a2, . . . , an), and then replace each
number ai by (ai + bi)%26; then, the resulting tuple is decoded back into
a word.

This is essentially a generalized Caesarian cipher, in which we let each let-
ter get a different key depending on its position. This cipher is completely
unbreakable, however it is very inconvenient: You need an infinitely long
key (or at least a key longer than the text you want to encrypt). Such keys
are historically known as codebooks. The codebook contains the num-
bers b1, b2, b3, . . ., and must be at least as long as the total text you want to
encrypt.

In many cases, this becomes impractical, so people have tried to “cheat”,
e.g., by using a periodic sequence (b1, b2, b3, . . .), the cipher becomes break-
able when the ciphertext is sufficiently long.

Many different algorithms have been found over the ages, usually striking
some balance between practicality (ease of use, simplicity, shortness of the key)
and security (unbreakability). See, e.g., Simon Singh’s “Code book” for some
history and examples.

3.9.3. The RSA cipher

All ciphers until the early 20th century are classical ciphers – they are supposed
to be encryptable and decryptable without the use of computers or particularly
complicated tools. The 20th century saw computers and thus a huge speedup
of computations. This made almost all classical ciphers breakable. In fact, some
of the oldest computers were built to break ciphers.

Modern ciphers are ciphers that require a computer to encrypt and decrypt.
No one knows for sure whether they are breakable, but at least in many cases
we have good reason to suspect that they are not, at least not on the hardware
we have currently. One such cipher is the RSA cipher, developed by Rivest,
Shamir and Adleman in the 1970s/80s.

Like any modern cipher, the RSA cipher works on digital data. It addresses
a fairly standard situation: Albert and Julia are communicating over a channel
(e.g., the Internet), but the channel may have eavesdroppers, so their commu-
nication is not private. Julia wants to send a secret message to Albert over the
channel – i.e., a message that eavesdroppers should not be able to decipher. But
Albert and Julia have not exchanged keys with each other in advance. If they
start exchanging keys now, the eavesdropper will obviously learn these keys as
well! Can Albert and Julia still communicate securely?
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Surprisingly, the answer is “yes”. Here is how this works (per the RSA ci-
pher):

Setup:

• Julia tells Albert that she wants to communicate and thus he should start
creating keys.

• Albert generates two distinct large and sufficiently random primes p and
q.

[How? There is a lot of skill involved in here. For example, there are
prime number tests – i.e., methods to check if a given number is prime.
What does “sufficiently random” mean? Not clear, but there are several
good ways to get something “practically random”.]

• Albert computes the positive integer m := pq. This number m (called the
modulus) he makes public (i.e., sends to Julia). Eavesdroppers will thus
learn m but will probably struggle finding p and q because it is hard to
factor numbers into primes.

• Albert also computes the positive integer ℓ := (p − 1) (q − 1), but keeps
it private.

• Albert randomly picks an e ∈ {2, 3, . . . , ℓ− 1} that is coprime to ℓ.

[Again, how? Actually, picking a bunch of numbers at random will
quickly give you one that is coprime to ℓ. Coprimality can be checked
quickly using the Euclidean algorithm.]

• Albert computes a positive integer d such that ed ≡ 1 mod ℓ.

[How? Bezout’s theorem (and the extended Euclidean algorithm) show
that 1 = gcd (e, ℓ) = xe + yℓ for some x, y ∈ Z. So 1 = xe + yℓ ≡ xe =
ex mod ℓ and therefore ex ≡ 1 mod ℓ. So we just take d = x.]

• Albert publishes the pair (e, m) as his public key.

• We assume that the message that Julia wants to send to Albert is an el-
ement of {0, 1, . . . , m − 1}. (If it is m or larger, we just break it up into
size-m chunks and encrypt each chunk separately.)

Encrypting a message:
If Julia wants to send a message a ∈ {0, 1, . . . , m − 1} to Albert, then she does

the following:
She computes ae%m and sends that to Albert.
So the encryption algorithm is just “take the e-th power and then take its

remainder when divided by m”.
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[In practice, you don’t have to compute ae to get to the remainder. Instead,
you can take powers “in {0, 1, . . . , m − 1}” by taking a remainder every time
you “overflow” this set. For instance, to compute a3%m, you can compute((

a2%m
)

a
)

%m. This way you never have to deal with integers larger than m2.
Even better, you can use binary exponentiation, for example a4 =

(
a2)2 and

a4%m =
(
a2%m

)2 %m.]

Decrypting a message:
Albert receives the remainder b = ae%m. To recover the original message a,

he just needs to take the d-th power and take its remainder upon division by
m. In other words,

a = bd%m.

Why does this work? Obviously, we need to prove the following proposition:

Proposition 3.9.2 (correctness of RSA). Let p and q be two distinct primes.
Let m = pq and ℓ = (p − 1) (q − 1). Let e be a positive integer coprime to m,
and let d be a positive integer such that ed ≡ 1 mod ℓ.

Let a and b be two numbers in {0, 1, . . . , m − 1} such that b = ae%m. Then,
a = bd%m.

This is not at all obvious! The RSA cipher might resemble a Caesarian cipher
in that we are using remainders, but it is different in that it takes powers instead
of adding/subtracting a fixed k.

To prove the proposition, we will need a lemma:

Lemma 3.9.3. Let p and q be two distinct primes. Let N be a positive integer
such that N ≡ 1 mod (p − 1) (q − 1). Then, for every integer a, we have

aN ≡ a mod pq.

Proof. Fermat’s little theorem says that ap ≡ a mod p and aq ≡ a mod q. Our
claim looks similar, but not quite the same.

We must prove that aN ≡ a mod pq. In other words, we must prove pq |
aN − a. But p and q are two distinct primes, and thus are coprime (why?), so
that pq | aN − a would follow from p | aN − a and q | aN − a (by the coprime
divisors theorem).

So we only need to prove p | aN − a and q | aN − a. We will only show
p | aN − a, since q | aN − a is analogous.

In other words, we must show that aN ≡ a mod p.
Recall that N ≡ 1 mod (p − 1) (q − 1), so that N ≡ 1 mod p − 1 (by the rule

that a ≡ b mod c always implies a ≡ b mod d whenever d | c). In other words,
p − 1 | N − 1, so that N − 1 = (p − 1) c for some integer c. Easily, c ≥ 0. Thus,

N = 1 + (p − 1) c,
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so

aN = a1+(p−1)c = a ap−1ap−1ap−1 · · · ap−1︸ ︷︷ ︸
c times

= aap−1︸ ︷︷ ︸
=ap≡a mod p
(by Fermat)

ap−1ap−1 · · · ap−1︸ ︷︷ ︸
c−1 times

≡ a ap−1ap−1 · · · ap−1︸ ︷︷ ︸
c−1 times

≡ a ap−1ap−1 · · · ap−1︸ ︷︷ ︸
c−2 times

≡ · · ·
≡ a mod p.

So p | aN − a, and this completes the proof of the lemma.

Example 3.9.4. Let us apply the lemma to p = 3 and q = 5 and N = 9. Then,
the lemma says that

a9 ≡ a mod 15 for every integer a.

Proof of the proposition. From b = ae%m ≡ ae mod m. Taking this congruence to
the d-th power, we obtain

bd ≡ (ae)d = aed mod m.

But ed ≡ 1 mod ℓ, that is, ed ≡ 1 mod (p − 1) (q − 1). Hence, the lemma (ap-
plied to N = ed) yields

aed ≡ a mod pq, that is, aed ≡ a mod m.

So
bd ≡ aed ≡ a mod m.

Therefore, bd%m = a%m = a (since a ∈ {0, 1, . . . , m − 1}), qed.

The above method lets Julia send secret messages to Albert. If Albert wants
to respond secretly, the two have to switch roles (i.e., now Julia must set up her
two primes p′ and q′, her m′, ℓ′, e′ and d′, publish her public key (e′, m′), and
let Albert encrypt his message using that public key).

The RSA cipher is not hard to implement in your favorite programming lan-
guage, provided that it has sufficiently big integers. But there are some practical
considerations:
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• You want sufficiently random primes. (Generally, any cipher requires
something sufficiently random that the eavesdroppers cannot guess.)

• Certain primes are bad choices of p and q, since they allow certain tricks
for computing d. You want to avoid such primes.

• You want to avoid certain practical “side channels”.

• You don’t want your a to be much smaller than m. If it is, pad it with
random bits.

The RSA cipher can be used not just for encrypting secret messages, but also
for authentification (i.e., proving that a message is really coming from you).

More modern technologies like elliptic curve cryptography are harder to get
wrong, but also more complicated. In a way, elliptic curve cryptography uses
“the same idea” but more complicated objects than remainders upon division
by m.

4. An informal introduction to enumeration

Enumeration is a fancy word for counting – i.e., answering questions of the
form “how many things of a certain type are there?”. Here are some counting
problems:

• How many ways are there to choose 3 odd integers between 0 and 20, if
the order matters (i.e., we count the choice 1, 3, 5 as different from 3, 1, 5)
? The answer is 1000.

• How many ways are there to choose 3 odd integers between 0 and 20, if
the order does not matter? The answer is 220.

• How many ways are there to choose 3 distinct odd integers between 0 and
20, if the order matters? The answer is 720.

• How many ways are there to choose 3 distinct odd integers between 0 and
20, if the order does not matter? The answer is 120.

• How many prime factorizations does 200 have? (We count different or-
derings as distinct.) The answer is 10.

• How many ways are there to tile a 2 × 15-rectangle with dominos (i.e.,
rectangles of size 1 × 2 or 2 × 1)? The answer is 987.

• How many addends do you get when you expand the product (a + b) (c + d + e) ( f + g)
? The answer is 12.
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• How many positive divisors does 24 have? These are 1, 2, 3, 4, 6, 8, 12, 24,
so the answer is 8.

In the rest of this quarter, we will solve some of these problems and some
more. First, we will solve some of these problems informally; then we will
make the concepts rigorous using the notion of a function, and come back to
solve the rest.

4.1. A refresher on sets

You have encountered sets in a prerequisite course, so this will be brief and
mostly introduce notations.

Informally, a set is a collection of objects. It knows which objects it contains
and which it does not.

That is, if S is a set and p is any object, then S can either contain p (in which
case we write p ∈ S) or not contain p (in which case we write p /∈ S). There is
no such thing as “containing p twice”.

The objects that a set S contains are called the elements of S; they are said to
belong to S (or lie in S, or be contained in S).

A set can be finite or infinite (i.e., contain finitely or infinitely many elements);
it can be empty (i.e., contain nothing) or nonempty (i.e., contain some element).

An example of a set is the set of all odd integers. It contains every odd integer
and nothing else. Generally, “the set of X” means the set that contains X and
nothing else.

A finite set can be written by listing all its elements. For example, the set of
all odd integers between 0 and 10 can be written as

{1, 3, 5, 7, 9} .

The braces { and } around the list are signalling that we are taking the set of
the elements listed between them. These braces are called “set braces”, and can
be used not only with lists inside.

Some more examples of finite sets are

{1, 2, 3, 4, 5} ,
{1, 2} ,
{1} (this is the set that only contains 1) ,
{} (the empty set, also denoted ∅) ,

{1, 2, . . . , 1000}
(

the “ . . . ” here is understood to
be clear from the context

)
.
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Some infinite sets can also be written in this form:

{1, 2, 3, . . .} (this is the set of all positive integers) ,
{0, 1, 2, . . .} (this is the set of all nonnegative integers) ,
{−1,−2,−3, . . .} (this is the set of all negative integers) ,
{. . . ,−2,−1, 0, 1, 2, . . .} (this is the set of all integers) .

Some others cannot. For example, it would be very hard to write the set of all
rational numbers this way.

Another way to describe a set is just by putting a description of its elements
in set braces. For example,

{all integers} (this is the set of all integers) ,
{all nonnegative integers} ,
{all integers between 3 and 9 inclusive} ,
{all real numbers} .

Often, you want to define a set that contains all things of a certain type that
satisfy a certain condition. For example, you might want the set of all integers
x such that x2 < 20. This is written as{

x is an integer | x2 < 20
}

.

The vertical bar | here should be read as “such that” (do not mistake it for the
identical-looking divisibility bar or absolute-value bracket). The part before this
bar tells you what types of things you are putting in the set (here, the integers
x); the part after this bar poses conditions under which they go into the set
(here, x2 < 20). The notation then signifies the set of all things of the former
type that satisfy the latter conditions. For instance,{

x is an integer | x2 < 20
}

= {all integers whose squares are smaller than 20}
= {−4,−3,−2,−1, 0, 1, 2, 3, 4} .

Sometimes, a colon : is written instead of |.
Some sets have standard names:

N = {all nonnegative integers} = {0, 1, 2, . . .} ;
Z = {all integers} = {. . . ,−2,−1, 0, 1, 2, . . .} ;
Q = {all rational numbers} ;
R = {all real numbers} ;
C = {all complex numbers} .
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For us, N and Z are the most useful.
Using these notations, we can rewrite{

x is an integer | x2 < 20
}

as
{

x ∈ Z | x2 < 20
}

.

Yet another way of defining sets is when you let a variable range over a given
set and collect certain derived quantities. For example,{

x2 + 2 | x ∈ {1, 3, 5, 7, 9}
}

means the set whose elements are the numbers x2 + 2 for all x ∈ {1, 3, 5, 7, 9}.
Thus, {

x2 + 2 | x ∈ {1, 3, 5, 7, 9}
}

=
{

12 + 2, 32 + 2, 52 + 2, 72 + 2, 92 + 2
}

= {3, 11, 27, 51, 83} .

In general, if S is a given set, then

{an expression | x ∈ S}

means the set whose elements are the values of the given expression for all
x ∈ S.

Some more examples:{
x + 1

x
| x ∈ {1, 2, 3, 4}

}
=

{
1 + 1

1
,

2 + 1
2

,
3 + 1

3
,

4 + 1
4

}
=

{
2,

3
2

,
4
3

,
5
4

}
.

Also, {
x2%5 | x ∈ N

}
=
{

02%5, 12%5, 22%5, 32%5, 42%5, . . .
}

= {0, 1, 4, 4, 1, 0, 1, . . .} .

The remainders x2%5 repeat every five steps (since each x ∈ Z satisfies x2 ≡
(x + 5)2 mod 5), and thus the only values are 0, 1 and 4. So{

x2%5 | x ∈ N
}
= {0, 1, 4} .
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Let me stress once again that a set knows neither the order of its elements,
nor “how often” they appear. In particular,

{1, 2} = {2, 1} = {1, 2, 1} = {1, 1, 2} = {2, 1, 2, 1, 2, 1} .

Sets can be combined and compared in many ways:

Definition 4.1.1. Let A and B be two sets.
(a) We say that A is a subset of B (and we write A ⊆ B) if every element

of A is an element of B.
(b) We say that A is a superset of B (and we write A ⊇ B) if every element

of B is an element of A. This is equivalent to B ⊆ A.
(c) We say that A = B if the sets A and B contain the exact same elements.

This is tantamount to saying that A ⊆ B and A ⊇ B.
(d) We define the union of A and B to be the set

A ∪ B := {all elements that are contained in A or B}
= {x | x ∈ A or x ∈ B} .

(The “or” is non-exclusive, as usual.)
(e) We define the intersection of A and B to be the set

A ∩ B := {all elements that are contained in both A and B}
= {x | x ∈ A and x ∈ B} .

(f) We define the set difference of A and B to be the set

A \ B := {all elements that are contained in A but not in B}
= {x | x ∈ A and x /∈ B} = {x ∈ A | x /∈ B} .

This is denoted by A − B by some authors.
(g) We say that A and B are disjoint if A ∩ B = ∅ (that is, A and B have

no element in common).

For example,

{2, 4, 6} ⊆ {1, 2, 3, 4, 5, 6} ,
{1, 2, 3, 4, 5, 6} ⊇ {2, 4, 6} ,

we don’t have {5, 6, 7} ⊆ {1, 2, 3, 4, 5, 6} ,
{1, 2, 3} = {3, 2, 1} ,

{1, 3, 5} ∪ {3, 6} = {1, 3, 5, 3, 6} = {1, 3, 5, 6} ,
{1, 3, 5} ∩ {3, 6} = {3} ,
{1, 2, 4} ∩ {3, 5} = ∅, so the sets {1, 2, 4} and {3, 5} are disjoint,
{1, 3, 5} \ {3, 6} = {1, 5} ,

Z \ N = {all negative integers} = {−1,−2,−3, . . .} .
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Definition 4.1.2. Several sets A1, A2, . . . , Ak are said to be disjoint if any two
of them are disjoint (not counting a set and itself), i.e., if we have

Ai ∩ Aj = ∅ for all i < j.

For example, the three sets {1, 5} , {2, 6} and {3} are disjoint, but the three
sets {1, 5} , {2, 6} and {3, 5} are not (since {1, 5} ∩ {3, 5} ̸= ∅).

4.2. Counting, informally

We will now see how the elements of a set can be counted. We will define
“counting” formally later (next week?), but for now let us use our common
sense and see what we can say.

For example, the set of all odd integers between 0 and 10 has 5 elements:
1, 3, 5, 7, 9.

More generally, I claim:

Proposition 4.2.1. Let n ∈ N. Then, there are exactly (n + 1) //2 =

⌊
n + 1

2

⌋
odd integers between 0 and n (inclusive).

Informal proof. The equality (n + 1) //2 =

⌊
n + 1

2

⌋
follows from something we

did long ago (n//d =
⌊n

d

⌋
). It remains to prove that there are exactly

⌊
n + 1

2

⌋
odd integers between 0 and n.

Let us prove this by induction on n:
Base case: We must prove this claim for n = 0. This is saying that there are

exactly
⌊

0 + 1
2

⌋
odd integers between 0 and 0. This is just saying 0 = 0.

Induction step: Let n be a positive integer. Assume (as the IH) that the claim is
true for n − 1. That is, assume that there are exactly

⌊n
2

⌋
odd integers between

0 and n − 1. In other words, assume that

(# of odd integers between 0 and n − 1) =
⌊n

2

⌋
.

(Here and in the following, the symbol “#” means “number”.)
Our goal is to prove that

(# of odd integers between 0 and n) =
⌊

n + 1
2

⌋
.

We are in one of the following two cases:
Case 1: The number n is even.
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Case 2: The number n is odd.
Consider Case 1. Here, n is even. Thus, n is not odd. Therefore, the odd

integers between 0 and n are precisely the odd integers between 0 and n − 1.
Hence,

(# of odd integers between 0 and n)
= (# of odd integers between 0 and n − 1)

=
⌊n

2

⌋
(by the IH)

=

⌊
n + 1

2

⌋
(since n is even) .

This proves the goal in Case 1.
Now consider Case 2. Here, n is odd. Thus, there is one more odd integer

between 0 and n than there is between 0 and n − 1. Hence,

(# of odd integers between 0 and n)
= (# of odd integers between 0 and n − 1) + 1

=
⌊n

2

⌋
+ 1 (by the IH)

=

⌊
n + 1

2

⌋
(since n is odd) .

This proves the goal in Case 2.
So the goal is proved in both cases, and the induction step is complete.

This proof was called “informal” because we don’t have a formal definition
of the size of a set (i.e., of what “the number of something” means). Once we
have such a definition, it will become a rigorous proof.

Incidentally, let me state an even simpler formula, which however is very
important:

Proposition 4.2.2. Let a, b ∈ Z be such that a ≤ b + 1.
Then, there are exactly b − a + 1 numbers in the set {a, a + 1, a + 2, . . . , b}.

In other words, there are precisely b − a + 1 integers between a and b (inclu-
sive).

Proof. Easy induction on b.

The hard part about this proposition is to remember the “+1”. It comes from
our choice of including both a and b.
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Convention 4.2.3. The symbol “#” means “number”.

4.3. Counting subsets

4.3.1. Counting them all

Now, let us count something less trivial than numbers.
How many subsets does the set {1, 2, 3} have? These subsets are

{1} , {1, 2} , {1, 2, 3} , {2, 3} ,
{2} , {1, 3} , {3} , {} .

(Note that every set A contains both A and {} as subsets.) So we have found 8
subsets of {1, 2, 3}. Are there more? No.

Likewise,

• the set {1, 2} has 4 subsets, namely {} , {1} , {2} , {1, 2};

• the set {1} has 2 subsets, namely {} and {1};

• the set {} has 1 subset, namely {};

• the set {1, 2, 3, 4} has 16 subsets.

The pattern here is hard to miss:

Theorem 4.3.1. Let n ∈ N. Then,

(# of subsets of {1, 2, . . . , n}) = 2n.

Informal proof. We induct on n.
Base case: For n = 0, the theorem says that (# of subsets of {}) = 20, which

is just saying that 1 = 1.
Induction step: We proceed from n − 1 to n. Thus, let n be a positive integer.

We assume (as IH) that the theorem holds for n − 1 instead of n, and we set out
to prove it for n.

So our IH says that

(# of subsets of {1, 2, . . . , n − 1}) = 2n−1.

Our goal is to show that

(# of subsets of {1, 2, . . . , n}) = 2n.

We define
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• a red set to be a subset of {1, 2, . . . , n} that contains n;

• a green set to be a subset of {1, 2, . . . , n} that does not contain n.

For instance, for n = 3, the sets {3} , {1, 3} , {2, 3} , {1, 2, 3} are red, while
the sets ∅, {1} , {2} , {1, 2} are green.

Each subset of {1, 2, . . . , n} is either red or green, but not both. Hence,

(# of subsets of {1, 2, . . . , n})
= (# of red sets) + (# of green sets) .

Thus it remains to count the red sets and the green sets.
Let’s count the green sets first: The green sets are just the subsets of {1, 2, . . . , n − 1}.

By the IH, there are 2n−1 of them. So

(# of green sets) = 2n−1.

Now to the red sets: I claim that they are just the green sets with an extra n
inserted into them. In more detail: Each green set can be turned into a red set
by inserting n into it. Conversely, each red set can be turned green by removing
n from it. Thus, each red set is uniquely paired with a green set and vice versa.
For example, for n = 3, this looks as follows:

green {} {1} {2} {1, 2}
red {3} {1, 3} {2, 3} {1, 2, 3} .

Thus, there are equally many green sets as there are red sets. In other words,

(# of red sets) = (# of green sets) = 2n−1.

Now,

(# of subsets of {1, 2, . . . , n})
= (# of red sets)︸ ︷︷ ︸

=2n−1

+ (# of green sets)︸ ︷︷ ︸
=2n−1

= 2n−1 + 2n−1 = 2 · 2n−1 = 2n.

This proves the goal. So the induction is complete.

More generally, we don’t have to only look at sets of the form {1, 2, . . . , n};
we have:

Theorem 4.3.2. Let n ∈ N. Let S be any n-element set. Then,

(# of subsets of S) = 2n.

Informal proof. Rename the n elements of S as 1, 2, . . . , n. Then, apply the pre-
ceding theorem.

For example,

(# of subsets of {cat, dog, rat}) = 23 = 8.
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4.3.2. Counting the subsets of a given size

Let us now refine our question, asking not for the # of all subsets of {1, 2, . . . , n},
but only of those with a given size k. Here, the size of a set means its # of
elements, i.e., how many distinct elements it contains. For example, the size of
the set

{
x2%5 | x ∈ N

}
is 3, since its only elements are 0, 1 and 4.

We denote the size of a set A by |A|.
Let us do an example: How many 2-element subsets does the set {1, 2, 3, 4}

have? Here are they:

{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} .

So their # is 6.
More generally, we can ask for the # of k-element subsets of a given n-element

set. The answer turns out to be the binomial coefficient
(

n
k

)
. Let us state this

as a theorem:

Theorem 4.3.3. Let n ∈ N, and let k be any number. Let S be an n-element
set. Then,

(# of k-element subsets of S) =
(

n
k

)
.

Informal proof. We induct on n (without fixing k). That is, we use induction on
n to prove the statement

P (n) :=

 “for any number k and any n-element set S,

we have (# of k-element subsets of S) =
(

n
k

)
”


for each n ∈ N.
Base case: We must prove P (0). Let k be any number, and let S be any 0-

element set. Thus, S = ∅. So S has only one subset, which is ∅ itself, and it is
a 0-element subset. Thus,

(# of k-element subsets of S) =

{
1, if k = 0;
0, else

=

(
0
k

)
.

So P (0) is proved.
Induction step: Let n be a positive integer. Assume (as the IH) that P (n − 1)

holds. We must prove that P (n) holds.
So we consider any number k and any n-element set S. We must prove that

(# of k-element subsets of S) ?
=

(
n
k

)
.
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We rename the n elements of S as 1, 2, . . . , n. So we must prove that

(# of k-element subsets of {1, 2, . . . , n}) ?
=

(
n
k

)
.

To prove this, we define

• a red set to be a k-element subset of {1, 2, . . . , n} that contains n;

• a green set to be a k-element subset of {1, 2, . . . , n} that does not contain
n.

For instance, for n = 5 and k = 2, the red sets are

{1, 5} , {2, 5} , {3, 5} , {4, 5} ,

whereas the green sets are

{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} .

Each k-element subset of {1, 2, . . . , n} is either red or green. Hence,

(# of k-element subsets of {1, 2, . . . , n})
= (# of red sets) + (# of green sets) .

The green sets are just the k-element subsets of {1, 2, . . . , n − 1}. So by the
IH, we have

(# of green sets) =
(

n − 1
k

)
(since {1, 2, . . . , n − 1} is an (n − 1)-element set).

Now to the red sets. If T is a red set, then T \ {n} is a (k − 1)-element subset
of {1, 2, . . . , n − 1}. Conversely, if U is a (k − 1)-element subset of {1, 2, . . . , n − 1},
then U ∪ {n} is a red set. This sets up a one-to-one correspondence between
the red sets and the (k − 1)-element subsets of {1, 2, . . . , n − 1}. As a result,

(# of red sets)
= (# of (k − 1) -element subsets of {1, 2, . . . , n − 1})

=

(
n − 1
k − 1

)
(by the IH) .

Combining what we have shown, we get

(# of k-element subsets of {1, 2, . . . , n})
= (# of red sets)︸ ︷︷ ︸

=

(
n − 1
k − 1

) + (# of green sets)︸ ︷︷ ︸
=

(
n − 1

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
=

(
n
k

)
(by Pascal’s recurrence) .

This proves P (n) and thus completes our induction.



Math 221 Winter 2024, version March 14, 2024 page 115

4.4. Tuples (aka lists)

4.4.1. Definition and disambiguation

Definition 4.4.1. A finite list (aka tuple) is a list consisting of finitely many
objects. The objects appear in this list in a specified order, and they don’t
have to be distinct.

A finite list is delimited using parentheses: i.e., the list that contains the
objects a1, a2, . . . , an is written (a1, a2, . . . , an).

“Specified order” means that the list has a well-defined first entry, a
well-defined second entry, and so on. Thus, two lists (a1, a2, . . . , an) and
(b1, b2, . . . , bm) are considered equal if and only if

• we have n = m, and

• we have ai = bi for each i ∈ {1, 2, . . . , n}.

For example:

• The lists (1, 2) and (2, 1) are not equal, though {1, 2} = {2, 1}.

• The lists (1, 2) and (1, 1, 2) are not equal, though {1, 2} = {1, 1, 2}.

• The lists (1, 1, 2) and (1, 2, 2) are not equal, though {1, 1, 2} = {1, 2, 2}.

Definition 4.4.2. (a) The length of a list (a1, a2, . . . , an) is the number n.
(b) A list of length 2 is called a pair (or ordered pair).
(c) A list of length 3 is called a triple.
(d) A list of length 4 is called a quadruple.
(e) A list of length n is called an n-tuple.

For example, (1, 3, 2, 2) is a list of length 4 (even though it has only 3 distinct
entries), thus a quadruple or a 4-tuple. Meanwhile, (5, 8) is a pair, i.e., a 2-tuple.

There is exactly one 0-tuple: the empty list ().
There are many 1-tuples: For any object o, we can form the 1-tuple (o).

4.4.2. Counting pairs

Now let us start counting lists. We begin with pairs:

• How many pairs (a, b) are there with a, b ∈ {1, 2, 3} ? There are nine:

(1, 1) , (1, 2) , (1, 3) ,
(2, 1) , (2, 2) , (2, 3) ,
(3, 1) , (3, 2) , (3, 3) .
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Here I have laid them out in a rectangular table with 3 rows and 3
columns, where the row determines the first entry of the pair, while the
column determines the second entry. Thus, their total # is 3 · 3 = 9.

• How many pairs (a, b) are there with a, b ∈ {1, 2, 3} and a < b ? There are
three:

(1, 2) , (1, 3) , (2, 3) .

• How many pairs (a, b) are there with a, b ∈ {1, 2, 3} and a = b ? Three
again:

(1, 1) , (2, 2) , (3, 3) .

• How many pairs (a, b) are there with a, b ∈ {1, 2, 3} and a > b ? Three
again:

(2, 1) , (3, 1) , (3, 2) .

Let us generalize this:

Proposition 4.4.3. Let n ∈ N. Then:
(a) The # of pairs (a, b) with a, b ∈ {1, 2, . . . , n} is n2.
(b) The # of pairs (a, b) with a, b ∈ {1, 2, . . . , n} and a < b is 1 + 2 + · · ·+

(n − 1).
(c) The # of pairs (a, b) with a, b ∈ {1, 2, . . . , n} and a = b is n.
(d) The # of pairs (a, b) with a, b ∈ {1, 2, . . . , n} and a > b is 1 + 2 + · · ·+

(n − 1).

Informal proof. (a) These pairs can be arranged in a table with n rows and n
columns (where the row determines the first entry and the column determines
the second entry):

(1, 1) , (1, 2) , · · · , (1, n) ,
(2, 1) , (2, 2) , · · · , (2, n) ,

...
... . . . ...

(n, 1) , (n, 2) , · · · , (n, n) .

So there are n2 of them.
(b) In this table, a pair (a, b) satisfies a < b if and only if it is placed above

the main diagonal. So we need to count the cells above the main diagonal. In
the first column, there are 0 of them; in the second, there is 1; in the third, there
is 2; and so on; in the last column, there are n − 1. So the total # is

0 + 1 + 2 + · · ·+ (n − 1) = 1 + 2 + · · ·+ (n − 1) .

(c) Now we are counting the cells of our table that are on the main diagonal.
There is 1 such cell in each column, so there are n such cells in total.

(d) We can prove this similarly to part (b).
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Alternatively, we can derive this from (b): The pairs (a, b) that satisfy a >
b are in one-to-one correspondence with the pairs (a, b) that satisfy a < b:
Namely, each former pair becomes a latter pair if we swap its entries, and vice
versa. Thus, the # of former pairs equals the # of latter pairs. But we already
know that the # of latter parts is 1 + 2 + · · ·+ (n − 1) (by part (b)). So the same
holds for the # of former pairs.

The proposition we just proved has a nice consequence: For any n ∈ N, we
have

n2 = (# of pairs (a, b) with a, b ∈ {1, 2, . . . , n})
= (# of pairs (a, b) with a, b ∈ {1, 2, . . . , n} and a < b)

+ (# of pairs (a, b) with a, b ∈ {1, 2, . . . , n} and a = b)
+ (# of pairs (a, b) with a, b ∈ {1, 2, . . . , n} and a > b)

= (1 + 2 + · · ·+ (n − 1)) + n + (1 + 2 + · · ·+ (n − 1))
= 2 · (1 + 2 + · · ·+ (n − 1)) + n
= 2 · (1 + 2 + · · ·+ n)− n.

Solving this for 1 + 2 + · · ·+ n, we obtain

1 + 2 + · · ·+ n =
n2 + n

2
=

n (n + 1)
2

.

This is the Little Gauss formula, which we proved long ago. Now we have
proved it again using counting.

Exercise 4.4.1. How many pairs (a, b) are there with a ∈ {1, 2, 3} and b ∈
{1, 2, 3, 4, 5} ?

Solution. By the same reasoning as in part (a) of the proposition above, there
are 15 such pairs, since these pairs can be arranged in a table with 3 rows and
5 columns.

The same reasoning can be generalized to give:

Theorem 4.4.4. Let n, m ∈ N. Let A be an n-element set. Let B be an m-
element set. Then,

(# of pairs (a, b) with a ∈ A and b ∈ B) = nm.

What about triples?
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Theorem 4.4.5. Let n, m, p ∈ N. Let A be an n-element set. Let B be an
m-element set. Let C be a p-element set. Then,

(# of triples (a, b, c) with a ∈ A and b ∈ B and c ∈ C) = nmp.

Proof. Re-encode each triple (a, b, c) as a pair ((a, b) , c) (a pair whose first entry
is itself a pair). This is a pair whose first entry comes from the set of all pairs
(a, b) with a ∈ A and b ∈ B, whereas its second entry comes from C. Let U be
the set of all pairs (a, b) with a ∈ A and b ∈ B. Then, this set U is an nm-element
set, since

(# of elements of U) = (# of pairs (a, b) with a ∈ A and b ∈ B)
= nm (by the previous theorem) .

Now, we have re-encoded each triple (a, b, c) as a pair ((a, b) , c) with (a, b) ∈
U and c ∈ C. So

(# of triples (a, b, c) with a ∈ A and b ∈ B and c ∈ C)
= (# of pairs ((a, b) , c) with (a, b) ∈ U and c ∈ C)
= (# of pairs (u, c) with u ∈ U and c ∈ C)
= (nm) p

(by the previous theorem, since U is an nm-element set, and C is a p-element
set). Rewriting (nm) p as nmp, we get precisely the claim.

4.4.3. Cartesian products

There is a general notation for sets of pairs:

Definition 4.4.6. Let A and B be two sets.
The set of all pairs (a, b) with a ∈ A and b ∈ B is denoted by A × B, and is

called the Cartesian product (or just product) of the sets A and B.

For instance, {3, 4} × {1, 7} is the set of all pairs (a, b) with a ∈ {3, 4} and
b ∈ {1, 7}. These pairs are

(3, 1) , (3, 7) , (4, 1) , (4, 7) .

A similar notation exists for sets of triples, quadruples or k-tuples:

Definition 4.4.7. Let A1, A2, . . . , Ak be k sets.
The set of all k-tuples (a1, a2, . . . , ak) with a1 ∈ A1 and a2 ∈ A2 and · · · and

ak ∈ Ak is denoted by
A1 × A2 × · · · × Ak,

and is called the Cartesian product (or just product) of the sets
A1, A2, . . . , Ak.
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For example, the set {1, 2} × {5} × {2, 7, 6} consists of all triples (a1, a2, a3)
with a1 ∈ {1, 2} and a2 ∈ {5} and a3 ∈ {2, 7, 6}. These triples are

(1, 5, 2) , (1, 5, 7) , (1, 5, 6) ,
(2, 5, 2) , (2, 5, 7) , (2, 5, 6) .

The word “Cartesian” in “Cartesian product” is a reference to Cartesian co-
ordinates. Descartes’s relevant insight was that (Euclidean) space can be de-
scribed as the Cartesian product R × R × R, meaning that each point in space
corresponds uniquely to a triple (x, y, z) of real numbers (its three coordinates
in a given coordinate system).

Using Cartesian products, we can rewrite our above two theorems as follows:

Theorem 4.4.8 (product rule for two sets). If A is an n-element set, and B is
an m-element set, then A × B is an nm-element set.

Theorem 4.4.9 (product rule for three sets). If A is an n-element set, if B is an
m-element set, and if C is a p-element set, then A × B × C is an nmp-element
set.

More generally:

Theorem 4.4.10 (product rule for k sets). Let A1, A2, . . . , Ak be k sets. If each
Ai is an ni-element set, then A1 × A2 × · · · × Ak is an n1n2 · · · nk-element set.

In other words, when you count k-tuples, with each entry coming from a
certain set, the total number is the product of the numbers of options for each
entry.

4.4.4. Counting strictly increasing tuples (informally)

Above we have shown that for any given n ∈ N, the # of pairs (a, b) of elements
of {1, 2, . . . , n} satisfying a < b is

1 + 2 + · · ·+ (n − 1) =
(n − 1) n

2
=

(
n
2

)
.

What is the # of triples (a, b, c) of elements of {1, 2, . . . , n} satisfying a <
b < c ? Each such triple determines a 3-element subset {a, b, c} of {1, 2, . . . , n}.
Conversely, any 3-element subset of {1, 2, . . . , n} becomes a triple (a, b, c) with
a < b < c if we list its elements in increasing order. Thus, the triples (a, b, c) of
elements of {1, 2, . . . , n} satisfying a < b < c are just the 3-element subsets of
{1, 2, . . . , n} in disguise (i.e., the former are in one-to-correspondence with the
latter). Hence,

(# of triples (a, b, c) of elements of {1, 2, . . . , n} satisfying a < b < c)
= (# of 3-element subsets of {1, 2, . . . , n})

=

(
n
3

)
(by a theorem from the previous section) .
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More generally, for any k ∈ N, we have

(# of k-tuples (a1, a2, . . . , ak) of elements of {1, 2, . . . , n} satisfying a1 < a2 < · · · < ak)

=

(
n
k

)
(by a similar argument) .

In comparison,

(# of k-tuples (a1, a2, . . . , ak) of elements of {1, 2, . . . , n})
= nn · · · n︸ ︷︷ ︸

k times

= nk.

Not all counting problems have answers this simple. For instance, it is not
hard to show that

(# of k-tuples (a1, a2, . . . , ak) of elements of {1, 2, . . . , n} with largest entry a1)

= 1k−1 + 2k−1 + 3k−1 + · · ·+ nk−1,

which cannot be simplified. For fixed k, there are closed formulas:

10 + 20 + 30 + · · ·+ n0 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n;

11 + 21 + 31 + · · ·+ n1 = 1 + 2 + · · ·+ n =
n (n + 1)

2
;

12 + 22 + 32 + · · ·+ n2 =
n (n + 1) (2n + 1)

6
;

13 + 23 + 33 + · · ·+ n3 =
n2 (n + 1)2

4
;

14 + 24 + 34 + · · ·+ n4 =
n (2n + 1) (n + 1)

(
3n + 3n2 − 1

)
30

;

. . . .

Such a closed-form expression for 1m + 2m + · · ·+ nm exists for any fixed m (see
reference in the notes), but there is no uniform formula that works for all n.

In the next two chapters, we will formalize the meaning of “counting”. To
do so, we first have to introduce functions (aka maps).

5. Maps (aka functions)

5.1. Functions, informally

One of the main notions in mathematics is that of a function, aka map, aka
mapping, aka transformation.
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Intuitively, a function is a “black box” that takes inputs and transforms them
into outputs. For example, the “ f (t) = t2” function takes a real number t and
outputs its square t2.

You can thus think of a function as a rule for producing an output from an
input. This gives the following provisional definition of a function:

Definition 5.1.1 (Informal definition of a function). Let X and Y be two sets.
A function from X to Y is (provisionally) a rule that transforms each element
of X into some element of Y.

This is kicking the can down the road: What is a “rule”? Nevertheless, this
“definition” gives the right intuition for a function, as long as it is correctly
understood. Let me clarify it:

• A function has to “work” for each element of X. It cannot decline to
operate on some elements! Thus, “take the reciprocal” is not a function
from R to R, since it could not work on 0 (since 0 has no reciprocal).
However, “take the reciprocal” is a function from R \ {0} to R.

• A function must not be ambiguous. Each input must produce exactly
one output. Thus, “take your number to some random power” is not a
function from R to R, since different powers give different results.

• We write “ f : X → Y” for “ f is a function from X to Y”.

• If a function is called f , then the result of applying it to a given input x is
denoted by f (x). (This is sometimes written f x.)

• Instead of saying “ f (x) = y”, we can say “ f transforms x into y” or “ f
sends x to y” or “ f maps x to y” or “ f takes the value y at x” or “y is the
value of f at x” or “y is the image of x under f ” or “applying f to x yields
y” or “ f takes x to y” or “ f : x 7→ y”.

For instance, if f is the “take a square” function from R to R, then f (2) =
22 = 4, so that f transforms 2 into 4, or sends 2 to 4, or takes the value 4
at 2, etc., or f : 2 7→ 4.

Do not confuse the → and 7→ arrows: The first is for sets, while the second
is for specific input/output pairs.

• As the above terminology suggests, the value of a function f at an input
x means the corresponding output f (x).

• When are two functions equal? In programming, functions are often
understood to be algorithms implemented in code, and two algorithms
might be different even when they compute the same output.

In mathematics, this is not how functions are viewed: In mathematics,
only the domain (= the set of all allowed inputs), the target (= the set of
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all allowed outputs) and the output values matter, not how they are com-
puted (actually, for some functions, there might not be a way to compute
the outputs).

So when are two functions considered to be equal?

Two functions f1 : X1 → Y1 and f2 : X2 → Y2 are said to be equal if and
only if

X1 = X2 and Y1 = Y2 and
f1 (x) = f2 (x) for all x ∈ X1.

Here is an example of two equal functions:

– the function f1 : R → R that sends each number x to x2;

– the function f2 : R → R that sends each number x to |x|2.

• If f : Y → Z and g : X → Y are functions, then f ◦ g (read as “ f after
g” or “the composition of f and g”) means the function from X to Z that
applies g first and then f . In other words, it is the function from X to Z
that sends each x ∈ X to f (g (x)).
For example, if f : R → R is the sin function, and g : R → R is the
“take the square” function, then f ◦ g is the function that takes each x to
sin
(
x2).

Note: In general, f ◦ g and g ◦ f are not the same! For example, if f : R →
R is the sin function, and g : R → R is the “take the square” function,
then g ◦ f is the function that takes each x to (sin x)2, which is not the
same as sin

(
x2).

• The notation

X → Y,
x 7→ (some expression involving x)

means “the function from X to Y that sends each element x of X to the
expression on the right hand side”. Here, the expression can be (for ex-

ample) x2 or
1

1 + x
or x3 − x15.

For instance,

R → R,

x 7→ x2

is the “take the square” function (i.e., the function from R to R that sends
each element x of R to x2). For another example,

R → R,

x 7→ x
sin x + 18
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is the function that takes the sine of the input, then adds 18, then divides
the input by the result.

For another example,

R → R,
x 7→ 2

is the constant function that sends each input to 2.

For yet another example,

Z → Q,
x 7→ 2x

is the function that takes each integer x to the power of 2 that has this
integer as its exponent. Here are some of its values:

x −2 −1 0 1 2

2x 1
4

1
2

1 2 4
.

• The notation

f : X → Y,
x 7→ (some expression involving x)

means that we take the function from X to Y that sends each x ∈ X to
the expression on the right hand side, and we call this function f . For
example, if we write

f : R → R,

x 7→ x2 + 1,

then f henceforth will denote the function from R to R that sends each x
to x2 + 1.

• If the set X is finite, then a function f : X → Y can be specified by simply
listing all its values. For example, I can define a function h : {1, 3, 5} → N

by

h (1) = 14,
h (2) = 19,
h (3) = 14.

The values here have been chosen at whim. A function needs not be
“natural” or “meaningful” in any way.
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• If f is a function from X to Y, then the sets X and Y are part of the
function. Thus,

g1 : Z → Q,
x 7→ 2x

and

g2 : N → Q,
x 7→ 2x

and

g3 : N → N,
x 7→ 2x

are three distinct functions! We distinguish between them, so that we
can later speak of the “domain” and the “target” of a function. Namely,
the domain of a function f : X → Y is defined to be the set X, whereas
the target of a function f : X → Y is defined to be the set Y. Thus, the
functions g1 and g2 have different domains (g1 has domain Z but g2 has
domain N), whereas the functions g2 and g3 have different targets (g2 has
target Q but g3 has target N).

At this point, we have a good idea of what a function is, but not quite a
rigorous definition. This can become a problem if we want to define a function
that has no simple formula and no finite list of values.

Thus, we need a more rigorous definition as a backup. This will be done
soon, using the more general concept of a relation.

5.2. Relations

Relations (to be specific: binary relations) are another concept that you have
seen on many examples:

• The relation ⊆ is a relation between two sets. For example, {1, 3} ⊆
{1, 2, 3, 4} but {1, 5} ̸⊆ {1, 2, 3, 4}.

• The order relations ≤ and < and > and ≥ are relations between two
integers (or rational numbers, or real numbers). For example, 1 ≤ 5 but
1 ̸≤ −1.

• The containment relation ∈ is a relation between an object and a set. For
instance, 1 ∈ {1, 2, 3} but 5 /∈ {1, 2, 3}.
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• The implication relation =⇒ is a relation between two statements. For ex-
ample, (n ≥ 3 is prime) =⇒ (n is odd) but (n ≥ 1 is prime) ̸=⇒ (n is odd).

• The divisibility relation | is a relation between two integers.

• The relation “coprime” is a relation between two integers.

• In plane geometry, there are lots of relations: “parallel”, “perpendicular”,
“congruent”, “similar”, “directly similar”, etc.

• For any given integer n, the relation “congruent modulo n” is a relation
between two integers. Let me call it

n≡. Thus, a
n≡ b holds if and only if

a ≡ b mod n. For example, 2
3≡ 8 but 2

3
̸≡ 7.

What do all these relations have in common? They can be applied to pairs of
objects. Applying a relation to a pair of objects gives a statement that is either
true or false. For example, the relation “coprime” applied to the pair (5, 8)
gives the statement “5 is coprime to 8”, which is true.

Generally, a relation between two sets X and Y should be applicable to any
pair (x, y) with x ∈ X and y ∈ Y, and applying it to such a pair should give
a statement (which is true or false depending on the pair). The easiest way to
describe a relation is therefore to specify the pairs (x, y) on which the statement
is true. Thus, we can identify the relation with the set of these pairs. This gives
us the following rigorous definition of a relation:

Definition 5.2.1. Let X and Y be two sets. A relation from X to Y is a subset
of X × Y.

If R is a relation from X to Y, and if (x, y) ∈ X × Y, then

• we write x R y if (x, y) ∈ R;

• we write x ̸ R y if (x, y) /∈ R.

All the relations we have seen so far can be recast in terms of this definition:

• The divisibility relation | is a subset of Z × Z, namely the subset

{(x, y) ∈ Z × Z | x divides y}
= {(x, y) ∈ Z × Z | there exists z ∈ Z such that y = xz}
= {(x, xz) | x ∈ Z and z ∈ Z} .

For instance, the pairs (2, 4) and (3, 9) and (4, 12) belong to this subset,
but the pairs (2, 3) and (4, 10) and (10, 5) do not.
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• The coprimality relation (“coprime to”) is a subset of Z × Z, namely the
subset

{(x, y) ∈ Z × Z | x is coprime to y}
= {(x, y) ∈ Z × Z | gcd (x, y) = 1} .

It contains (3, 8) and (5, 12) but not (4, 12).

• For any n ∈ Z, the “congruent modulo n” relation
n≡ is a subset of Z×Z,

namely the subset

{(x, y) ∈ Z × Z | x ≡ y mod n}
= {(x, x + nz) | x, z ∈ Z} .

• A geometric example: Let P be the set of all points in the plane, and let
L be the set of all lines in the plane. Then, the “lies on” relation (as in “a
point lies on a line”) is a subset of P × L, namely the subset

{(p, ℓ) ∈ P × L | the point p lies on the line ℓ} .

• If A is any set, then the equality relation on A is the subset EA of A × A
given by

EA = {(x, y) ∈ A × A | x = y}
= {(x, x) | x ∈ A} .

Two elements x and y of A satisfy x EA y if and only if they are equal.

• We can literally take any subset of X × Y (where X and Y are two sets)
and it will be a relation from X to Y. For example, here is a relation from
{1, 2, 3} to {5, 6, 7}:

{(1, 6) , (1, 7) , (3, 5)} .

Here is its truth table:
5 6 7

1 no yes yes
2 no no no
3 yes no no

(where a “yes” in row x and column y means that (x, y) belongs to the
relation). If we call this relation R, then 1 R 6 and 1 R 7 and 3 R 5 but
1 ̸ R 5.

Relations can be visualized by “blobs-and-arrows diagrams”: To draw a rela-
tion R from a set X to a set Y, we draw both sets X and Y as “blobs”, with each
element of either set being a node, and we draw an arrow from the x-node to
the y-node for each pair (x, y) ∈ R.
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5.3. Functions, formally

We can now rigorously define what a function is:

Definition 5.3.1 (Rigorous definition of a function). Let X and Y be two sets.
A function from X to Y means a relation R from X to Y that has the following
property:

• Output uniqueness: For each x ∈ X, there exists exactly one y ∈ Y
such that x R y.

If R is a function from X to Y, and if x is an element of X, then the unique
element y ∈ Y satisfying x R y will be called R (x).

For example, the equality relation EA on a set A is a function, and so is the
relation from {1, 2, 3} to {1, 2, 3} given by the truth table

1 2 3
1 no yes no
2 yes no no
3 yes no no

,

but not all the other relations we have seen (divisbility, congruence, parallelism,
subset-of, element-of).

If we denote the function

1 2 3
1 no yes no
2 yes no no
3 yes no no

by f ,

then f (1) = 2 and f (2) = 1 and f (3) = 1.
This rigorous definition of a function is equivalent to our provisional defini-

tion of a function, because

• any rule f that transforms elements of X into elements of Y becomes a
relation satisfying output uniqueness by

R = {(x, f (x)) | x ∈ X} .

• Conversely, if R is a relation satisfying output uniqueness, then we obtain
a rule that transforms elements of X into elements of Y, namely

X → Y,
x 7→ (the unique y ∈ Y such that x R y) .

5.4. Some more examples of functions
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Example 5.4.1. Consider the function

f0 : {1, 2, 3, 4} → {1, 2, 3, 4}

that sends 1, 2, 3, 4 to 3, 2, 3, 3, respectively. As a relation satisfying output
uniqueness, it is the relation R that satisfies

1 R 3, 2 R 2, 3 R 3, 4 R 3

and nothing else. In other words, it is the relation

{(1, 3) , (2, 2) , (3, 3) , (4, 3)} .

Example 5.4.2. What about the function

f1 : {1, 2, 3, 4} → {1, 2, 3} ,
n 7→ n ?

I claim that such a function f1 does not exist, since it would have to send 4
to 4, but 4 is not in the target {1, 2, 3}. Be careful when defining functions:
The output values must actually belong to the target.

Example 5.4.3. Consider the function

f2 : {1, 2, 3, . . .} → {1, 2, 3, . . .} ,
n 7→ (the number of positive divisors of n) .

For example, f2 (1) = 1 and f2 (2) = 2 and f2 (3) = 2 and f2 (4) = 3. As a
relation, f2 is

{(1, 1) , (2, 2) , (3, 2) , (4, 3) , (5, 2) , (6, 4) , (7, 2) , (8, 4) , . . .} .

Example 5.4.4. What about the function

f̃2 : Z → {1, 2, 3, . . .} ,
n 7→ (the number of positive divisors of n) ?

There is no such f̃2, since 0 has infinitely many positive divisors, so their
number is either undefined or ∞ (which is not in {1, 2, 3, . . .}).

Example 5.4.5. What about the function

f3 : {1, 2, 3, . . .} → {1, 2, 3, . . .} ,
n 7→ (the smallest prime divisor of n) ?
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Again, there is no such function f3, since f3 (1) makes no sense (1 has no
prime divisors).

We can fix this by declaring f3 to be a relation, not a function. This relation
simply does not have an output at 1. We can also fix this by restricting the
inputs to {2, 3, 4, . . .}. We get an actual function

f̃3 : {2, 3, 4, . . .} → {1, 2, 3, . . .} ,
n 7→ (the smallest prime divisor of n) .

Example 5.4.6. What about the function

f4 : Q → Z,
a
b
7→ a ?

This is to be a function that takes a rational number as input, writes it as a
ratio of two integers, and outputs the numerator.

Again, there is no such function. Indeed, the above rule would force

f4

(
1
2

)
to be 1 and force f4

(
2
4

)
to be 2. But

1
2

=
2
4

and therefore

f4

(
1
2

)
= f4

(
2
4

)
, a contradiction. Thus, the above rule defines a relation,

but the relation does not satisfy output uniqueness.

5.5. Well-definedness

The issues that we have seen in the last few examples (supposed functions
failing to exist either because their outputs make no sense, or because these
outputs don’t lie in Y, or because these outputs are ambiguous) are known as
well-definedness issues. Mathematicians usually say that “a function is well-
defined” when they mean that its definition does not suffer from such issues.
For example, the function

f4 : Q → Z,
a
b
7→ a

is not well-defined (i.e., there is no such function), but the function

f4 : Q → Q,

a
b
7→ a2

b2
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is well-defined (you can also describe it as x 7→ x2, and then it is clear that the
output is unambiguous). The function

f1 : {1, 2, 3, 4} → {1, 2, 3} ,
n 7→ n

is not well-defined (since f1 (4) fails to lie in the target), but the function

f6 : {1, 2, 3, 4} → {1, 2, 3} ,
n 7→ 1 + (n%3)

is well-defined (its outputs are 2, 3, 1, 2).
Formally speaking, there is no such thing as a non-well-defined function.

5.6. The identity function

Definition 5.6.1. For any set A, there is an identity function idA : A → A.
This is the function that sends each element a ∈ A to a itself. In other words,
it is precisely the relation EA defined above.

In terms of blobs and arrows, it is easiest to visualize idA by drawing corre-
sponding nodes horizontally aligned. Then, all the arrows are horizontal.

5.7. More examples

As we said before, a function f : X → Y can be described either by a rule or by
a list of values (if X is finite) or as a relation. For instance, the “take the square”
function on real numbers is the function

f : R → R,

x 7→ x2.

As a relation, it is the set {(
x, x2

)
| x ∈ R

}
.

When the domain of a function f is a Cartesian product of several sets (i.e.,
its inputs are tuples), f is called a multivariate function. For instance,

f : Z × Z → Z,
(a, b) 7→ a + b

(which sends every pair (a, b) of integers to their sum a + b) is a multivariate
function. Its input is a pair of integers, i.e., it really has two inputs (a and b).
As a relation, it is the subset

{((a, b) , a + b) | a, b ∈ Z}
= {((a, b) , c) | a, b, c ∈ Z such that c = a + b}
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of (Z × Z)× Z. Of course, this function has a name: addition of integers.
Other multivariate functions are

f : Z × Z → Z,
(a, b) 7→ a − b

(subtraction of integers) and

f : Z × Z → Z,
(a, b) 7→ ab

(multiplication of integers), and many similar functions for other sets of num-
bers. Keep in mind that there is no “division” function

f : Z × Z → Z,
(a, b) 7→ a/b,

since this would have an output for the input (1, 0) and since most existing
outputs would not belong to Z.

When f is a multivariate function whose inputs are k-tuples, we commonly
write f (a1, a2, . . . , ak) for f ((a1, a2, . . . , ak)). For example, if f is addition of
integers, then f (a, b) = f ((a, b)) = a + b for all a, b ∈ Z.

5.8. Composition of functions

As we already mentioned, functions can be composed if the target of one is the
domain of the other. We recall the definition:

Definition 5.8.1. Let X, Y and Z be three sets. Let f : Y → Z and g : X → Y
be two functions. Then, f ◦ g denotes the function

X → Z,
x 7→ f (g (x)) .

In other words, f ◦ g is the function that first applies g and then applies f .
This function f ◦ g is called the composition of f with g (pronounced “ f after
g”).

In terms of relations, if f and g are two relations F and G, then f ◦ g is the
relation

{(x, z) | there exists y ∈ Y such that x G y and y F z}
from X to Z.

We have already seen some examples above; more can be found in the notes
(§5.8). Let us state a couple basic properties of compositions:
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Theorem 5.8.2 (associativity of composition). Let X, Y, Z, W be four sets. Let
f : Z → W, g : Y → Z and h : X → Y be three functions. Then,

( f ◦ g) ◦ h = f ◦ (g ◦ h) .

Proof. Argue that both sides send each x ∈ X to the same output. See the notes
for details.

Theorem 5.8.3. Let f : X → Y be a function. Then,

f ◦ idX = idY ◦ f = f .

Proof. Similar but even more trivial.

5.9. Jectivities (injectivity, surjectivity, bijectivity)

Now we define three important properties of functions:

Theorem 5.9.1. Let f : X → Y be a function. Then:
(a) We say that f is injective (aka one-to-one, aka an injection) if

for each y ∈ Y, there exists at most one x ∈ X such that f (x) = y.

In other words: f is injective if there are no two distinct inputs x1 ̸= x2 that
produce the same output (i.e., satisfy f (x1) = f (x2)).

(b) We say that f is surjective (aka onto, aka a surjection) if

for each y ∈ Y, there exists at least one x ∈ X such that f (x) = y.

In other words: f is surjective if every element of Y is an output of f .
(c) We say that f is bijective (aka a one-to-one correspondence, aka a

bijection) if

for each y ∈ Y, there exists exactly one x ∈ X such that f (x) = y.

In other words, f is bijective if and only if f is injective and surjective.

Some examples:

• The function

f : N → N,

k 7→ k2

is injective (since no two distinct natural numbers k, ℓ ∈ N have the same
square k2 = ℓ2) but not surjective (since not every nonnegative integer is
a perfect square), and thus not bijective either.
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• Let S = {0, 1, 4, 9, 16, 25, . . .} be the set of all perfect squares (= squares of
integers). The function

g : N → S,

k 7→ k2

is injective (for the same reason as f ) and also surjective (since each y ∈ S
is a perfect square, i.e., has the form k2 for some k ∈ N). Thus, it is
bijective.

• The function

f̃ : Z → Z,

k 7→ k2

is not injective (since f̃ (1) = f̃ (−1)) and not surjective either, thus defi-
nitely not bijective.

• The function

h : N → N,
k 7→ k//2

is not injective (since h (0) = h (1)) but surjective (since each y ∈ N is the
image h (2y)). So it is not bijective.

• Let E = {0, 2, 4, 6, . . .} be the set of all even nonnegative integers. Then,
the function

heven : E → N,
k 7→ k//2

is injective (since k//2 = k/2 for any k ∈ E) and surjective, so it is bijec-
tive.

• Let O = {1, 3, 5, 7, . . .} be the set of all odd nonnegative integers. Then,
the function

hodd : O → N,
k 7→ k//2

is injective (since k//2 = (k − 1) /2 for any k ∈ O) and surjective, so it is
bijective.

• The function

f : Z × Z → Z,
(a, b) 7→ a + b

(this is the addition of integers) is not injective (for example, f (0, 1) =
f (1, 0)) but is surjective (since n = f (n, 0) for each n ∈ Z).
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When a function is defined on a finite set, you can list its values in a table.
This makes it easy to determine whether it is in/sur/bi/nothingjective:

Remark 5.9.2. Consider a function f : X → Y given by a table of all its values
(possibly an infinite table if X is infinite). Assume that all possible inputs
x ∈ X appear in the top row (each exactly once), and the corresponding
outputs f (x) appears in the bottom row. So the table looks as follows:

x a b c · · ·

f (x) f (a) f (b) f (c) · · ·
.

Then:
(a) The function f is injective if and only if the bottom row of the table has

no two equal values.
(b) The function f is surjective if and only if each element of Y appears on

the bottom row.
(c) The function f is bijective if and only if each element of Y appears

exactly once on the bottom row.

For example:

• The function

f : {4, 6, 7} → {0, 1, 2} ,
k 7→ k%3

has table of values
x 4 6 7

f (x) 1 0 1
,

so it is not injective (since 1 appears twice in the bottom row) and not
surjective (since 2 does not appear in the bottom row).

In terms of blobs-and-arrows pictures,

• a map f : X → Y is injective if and only if no two arrows hit the same
Y-node;

• a map f : X → Y is surjective if and only if each Y-node is hit by at least
one arrow;

• a map f : X → Y is bijective if and only if each Y-node is hit by exactly
one arrow.
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5.10. Inverses

5.10.1. Definition and examples

Bijective maps have a special power: they can be inverted. Here is what this
means:

Definition 5.10.1. Let f : X → Y be a function. An inverse of f means a
function g : Y → X such that

f ◦ g = idY and g ◦ f = idX .

In other words, an inverse of f means a function g : Y → X such that

f (g (y)) = y for each y ∈ Y, and
g ( f (x)) = x for each x ∈ X.

Roughly speaking, an inverse of f thus means a map that both undoes and
is undone by f .

Not every function has an inverse. We shall soon see which ones do. First,
some examples:

• Let f : {1, 2, 3} → {6, 7, 8} be the “add 5” function (sending each x to
x + 5). Let g : {6, 7, 8} → {1, 2, 3} be the “subtract 5” function (sending
each y to y − 5). Then, g is an inverse of f , since each y ∈ {6, 7, 8} satisfies

f (g (y)) = g (y)︸︷︷︸
=y−5

+5 = y − 5 + 5 = y

and similarly each x ∈ {1, 2, 3} satisfy g ( f (x)) = x.

• Now let f be the map

f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} ,
1 7→ 3,
2 7→ 5,
3 7→ 1,
4 7→ 2,
5 7→ 4.
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This map f has an inverse – namely, the map

g : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} ,
3 7→ 1,
5 7→ 2,
1 7→ 3,
2 7→ 4,
4 7→ 5.

• Let

f : {1, 2, 3} → {1, 2} ,
1 7→ 1,
2 7→ 2,
3 7→ 1.

This map f has no inverse, since any inverse g of f would have to satisfy
both g (1) = 1 and g (1) = 3, a contradiction. The underlying issue here
is that f is not injective (specifically, f (1) = f (3)).

• Let

f : N → N,
i 7→ i + 1.

This map f has no inverse, since any inverse g of f would have to satisfy
f (g (0)) = 0, but 0 is not a value of f . The underlying issue here is that f
is not surjective (specifically, 0 is not a value).

5.10.2. Invertibility is bijectivity

The last two examples show that in order to have an inverse, a map needs to
be both injective and surjective, i.e., bijective. The converse is also true: Any
bijective map has an inverse. Let us state this as a theorem:

Theorem 5.10.2. Let f : X → Y be a map between two sets X and Y. Then, f
has an inverse if and only if f is bijective.

Proof. Essentially, this is clear from looking at the blobs-and-arrows picture: If
f is bijective, then an inverse of f can simply be defined as the map g : Y → X
that sends each y ∈ Y to the unique x ∈ X that satisfies f (x) = y. Showing
that this map g really is an inverse of f is an easy exercise in manipulating
equations. (See the notes.)

So bijective maps are the same as invertible maps (= maps that have inverses).
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5.10.3. Uniqueness of the inverse

Theorem 5.10.3. Let f : X → Y be a function. Then, f has at most one
inverse.

Proof. We must prove that any two inverses of f are equal.
So let g1 and g2 be two inverses of f . We must prove that g1 = g2.
Since g1 is an inverse of f , we have g1 ◦ f = idX and f ◦ g1 = idY.
Since g2 is an inverse of f , we have g2 ◦ f = idX and f ◦ g2 = idY.
Now,

g1 ◦ f ◦ g2︸ ︷︷ ︸
=idY

= g1 ◦ idY = g1,

so that
g1 = g1 ◦ f︸ ︷︷ ︸

=idX

◦g2 = idX ◦g2 = g2,

as desired.

Definition 5.10.4. Let f : X → Y be a map that has an inverse. Then, this
inverse is unique (by the theorem we just proved), and thus will be called
the inverse of f . We will denote it by f−1.

So
f−1 ◦ f = idX and f ◦ f−1 = idY .

That is,

f−1 ( f (x)) = x for each x ∈ X;

f
(

f−1 (y)
)
= y for each y ∈ Y.

5.10.4. More examples

• Recall the bijective function

f : E → N,
k 7→ k//2 = k/2,

where E = {0, 2, 4, 6, . . .}. Then, f has an inverse, namely

g : N → E,
k 7→ 2k.

• Let R≥0 be the set of all nonnegative real numbers. Then, the function

f : R≥0 → R≥0,

x 7→ x2
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has an inverse, namely

g : R≥0 → R≥0,

x 7→
√

x.

• The function

f : R → R,

x 7→ x2

has no inverse, since it is not bijective.

• The function

f : R → R,

x 7→ x3

has an inverse, called

g : R → R,

x 7→ 3
√

x.

5.10.5. Inverses of inverses and compositions

The following basic facts are easy to prove (see the notes for the proofs):

Proposition 5.10.5. Let X be any set. Then, the identity map idX : X → X is
bijective, and is its own inverse.

Theorem 5.10.6. Let f : X → Y be a map that has an inverse f−1 : Y → X.
Then, f−1 has an inverse, namely f .

Theorem 5.10.7 (socks-and-shoes formula). Let X, Y, Z be three sets. Let f :
Y → Z and g : X → Y be two bijective maps. Then, the composition f ◦ g :
X → Z is also bijective, and its inverse is

( f ◦ g)−1 = g−1 ◦ f−1.

Note that g−1 ◦ f−1 is not the same as f−1 ◦ g−1 (in fact, the latter might not
exist).

In particular, the socks-and-shoes formula shows that a composition of two
bijective maps is itself bijective. (However, sometimes a composition of non-
bijective maps can also be bijective.)

See the notes for several solved exercises on in/sur/bijections and inverses.
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5.11. Isomorphic sets

Definition 5.11.1. Let X and Y be two sets. We say that these sets X and
Y are isomorphic as sets (or, for short, isomorphic, or in bijection, or in
one-to-one correspondence, or equinumerous) if there exists a bijective map
from X to Y.

This relation is symmetric: If X and Y are isomorphic, then so are Y and X
(since bijective maps f : X → Y have bijective inverses f−1 : Y → X).

Some examples:

• The sets {1, 2, 3} and {6, 7, 8} are isomorphic, since the “add 5” map from
{1, 2, 3} to {6, 7, 8} is bijective.

• The sets {1, 2, 3} and {1, 2} are not isomorphic, since there is no injective
(let alone bijective) map from {1, 2, 3} to {1, 2}.

• The sets {1, 2, 3} and {1, 6, 25} are isomorphic, since the map sending 1 to
1, sending 2 to 6 and sending 3 to 25 is bijective.

• The sets N and E := {all even nonnegative integers} are isomorphic,
since the map

N → E,
n 7→ 2n

is bijective.

• The sets N and O := {all odd nonnegative integers} are isomorphic, since
the map

N → O,
n 7→ 2n + 1

is bijective.

• The sets N and Z are isomorphic, since there is a bijection from N to Z

that sends

0, 1, 2, 3, 4, 5, 6, 7, . . . to
0, 1,−1, 2,−2, 3,−3, 4,−4, . . . , respectively.

Explicitly, this map can be defined by the formula

f (n) =

{
−n/2, if n is even;
(n + 1) /2, if n is odd.
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• The sets N and Q are isomorphic, since there is a bijection from N to Q

that sends

0, 1, 2, 3, 4, 5, 6, 7, . . . to
−1
1

,
0
1

,
1
1︸ ︷︷ ︸

all reduced fractions
whose numerator and
denominator are ≤1

in absolute value
(ordered from smallest

to largest)

,
−2
1

,
−1
2

,
1
2

,
2
1︸ ︷︷ ︸

all reduced fractions
whose numerator and
denominator are ≤2

in absolute value
(ordered from smallest

to largest)

,
−3
1

,
−3
2

,
−2
3

,
−1
3

,
1
3

,
2
3

,
3
2

,
3
1︸ ︷︷ ︸

all reduced fractions
whose numerator and
denominator are ≤3

in absolute value
(ordered from smallest

to largest)

, . . . ,

respectively.

• The sets N and N×N are isomorphic, since there is a bijection f from N

to N × N that sends

0, 1, 2, 3, 4, 5, 6, . . . to
(0, 0)︸ ︷︷ ︸

all pairs
whose entries

sum to 0

, (0, 1) , (1, 0)︸ ︷︷ ︸
all pairs

whose entries
sum to 1

, (0, 2) , (1, 1) , (2, 0)︸ ︷︷ ︸
all pairs

whose entries
sum to 2

, . . .

respectively. The inverse f−1 : N×N → N of this map f can be described
explicitly by

f−1 (n, m) =
(n + m) (n + m + 1)

2
+ n for every (n, m) ∈ N

(puzzle: why?).

• The sets N and R are not isomorphic, i.e., there is no bijection from N to
R. Proofs can be found in various textbooks; see the notes for a couple
references.

6. Enumeration revisited

6.1. Counting, formally

6.1.1. Definition

As you might have noticed, isomorphic sets (i.e., sets that have a bijection going
between them) have the same size – i.e., the same # of elements (at least when
they are finite). We shall now use this idea to define the size of a set!

First, some notations:
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Definition 6.1.1. (a) If n ∈ N, then [n] will denote the set {1, 2, . . . , n}.
(b) If a, b ∈ Z, then [a, b] shall mean the set

{a, a + 1, a + 2, . . . , b} = {all integers x such that a ≤ x ≤ b}
= {x ∈ Z | a ≤ x ≤ b} .

If a > b, then this is the empty set.

For example,

[4] = {1, 2, 3, 4} , [1] = {1} , [0] = ∅,
[2, 5] = {2, 3, 4, 5} , [5, 2] = ∅.

Now, we can define the size of a finite set:

Definition 6.1.2. Let n ∈ N. A set S is said to have size n if S is isomorphic
to [n] (that is, if there is a bijection from S to [n]).

For instance:

• The set {4, 6, 8, 10} has size 4, since the map

{4, 6, 8, 10} → [4] ,
4 7→ 1,
6 7→ 2,
8 7→ 3,

10 7→ 4

is a bijection.

• The set N is infinite, so there is no bijection from N to [n] for any n ∈ N.
Thus, N does not have size n for any n ∈ N.

Here is another equivalent definition of size:

Definition 6.1.3. We define the notion of a “set of size n” recursively as
follows:

(a) A set S is said to have size 0 if and only if it is empty.
(b) Let n be a positive integer. A set S is said to have size n if and only if

there exists some s ∈ S such that S \ {s} has size n − 1.

This recursive definition reduces the question of “what is a set of size n” to
the simpler question “what is a set of size n − 1”, which (by induction) makes
it possible to answer the question.
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Theorem 6.1.4. (a) The above two definitions of size are equivalent.
(b) The size of a finite set is determined uniquely – i.e., a set cannot have

two different sizes at the same time.

We will not prove this here.

Definition 6.1.5. (a) An n-element set (for some n ∈ N) means a set of size
n.

(b) A set is said to be finite if it has size n for some n ∈ N.
(c) If S is a finite set, then |S| shall denote the size of S.
(d) We also refer to |S| as the cardinality of S, or as the number of elements

of S.

For example, the # of odd integers between 2 and 8 is the size of the set
{odd integers between 2 and 8}. This size is 3. Also, |{4, 6, 8, 10}| = 4. Also,
|{5, 6, 5}| = 2.

6.1.2. Rules for sizes of finite sets

The following rules (some of which we have already encountered in other
words) are common sense, but very useful in counting.

Theorem 6.1.6 (Bijection Principle). Let A and B be two finite sets. Then,
|A| = |B| if and only if there exists a bijection from A to B.

Theorem 6.1.7. For each n ∈ N, we have |[n]| = n.

Theorem 6.1.8. Let S be a set. Then:
(a) We have |S| = 0 if and only if S is empty.
(b) We have |S| = 1 if and only if S = {s} for a single element s.
(c) We have |S| = 2 if and only if S = {s, t} for two distinct elements s and

t.

Theorem 6.1.9. Let S be a finite set. Let t be an object such that t /∈ S. Then,

|S ∪ {t}| = |S|+ 1.

Theorem 6.1.10 (Sum rule for two sets). Let A and B be two disjoint finite
sets. Then, the set A ∪ B is again finite, and its size is

|A ∪ B| = |A|+ |B| .
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Theorem 6.1.11 (Sum rule for k sets). Let A1, A2, . . . , Ak be k disjoint finite
sets. Then, the set A1 ∪ A2 ∪ · · · ∪ Ak, and its size is

|A1 ∪ A2 ∪ · · · ∪ Ak| = |A1|+ |A2|+ · · ·+ |Ak| .

Theorem 6.1.12 (Difference rule). Let T be a subset of a finite set S. Then:
(a) The set T is finite, and its size satisfies |T| ≤ |S|.
(b) We have |S \ T| = |S| − |T|.
(c) If |T| = |S|, then T = S.

Theorem 6.1.13 (Product rule for two sets). Let A and B be any finite sets.
Then, the set

A × B = {all pairs (a, b) with a ∈ A and b ∈ B}

is again finite and has size

|A × B| = |A| · |B| .

Theorem 6.1.14 (Product rule for k sets). Let A1, A2, . . . , Ak be any k finite
sets. Then, the set

A1 × A2 × · · · × Ak

= {all k-tuples (a1, a2, . . . , ak) with ai ∈ Ai for each i ∈ [k]}

is again finite and has size

|A1 × A2 × · · · × Ak| = |A1| · |A2| · · · · · |Ak| .

The above are the basic counting rules. There are a few more which can be
derived from them. For example:

Theorem 6.1.15. Let A and B be two finite sets (not necessarily disjoint).
Then,

|A ∪ B| = |A|+ |B| − |A ∩ B| .

Theorem 6.1.16. Let A, B, C be three finite sets. Then,

|A ∪ B ∪ C|
= |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C| .

These two theorems are the start of a pattern known as the “principle of
inclusion and exclusion” aka “Sylvester’s sieve formula”.
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6.2. Redoing some proofs rigorously

We have previously proved some counting theorems somewhat informally. Let
us now revisit those proofs briefly and see how to formalize them. (See the
notes for much more detail.)

Proposition 6.2.1. Let a, b ∈ Z be such that a ≤ b + 1.
Then, there are exactly b − a + 1 numbers in the set [a, b]. In other words,

there are exactly b − a + 1 integers between a and b (inclusive).

Proof. As we said, this can be proved by induction on b, but let us give a differ-
ent proof now:

Consider the map

f : [b − a + 1]︸ ︷︷ ︸
=[1,b−a+1]

={1,2,...,b−a+1}

→ [a, b]︸︷︷︸
={a,a+1,...,b}

,

i 7→ i + (a − 1) .

This map f just adds a − 1 to its input. This map f has an inverse: namely, the
map

g : [a, b]︸︷︷︸
={a,a+1,...,b}

→ [b − a + 1]︸ ︷︷ ︸
=[1,b−a+1]

={1,2,...,b−a+1}

,

j 7→ j − (a − 1) .

Proving that these maps f and g are mutually inverse is trivial. So the map
f has an inverse, i.e., is a bijection. Thus, we have found a bijection from
[b − a + 1] to [a, b] (namely, f ). Hence, by the bijection principle, |[b − a + 1]| =
|[a, b]|. Therefore,

|[a, b]| = |[b − a + 1]| = b − a + 1,

qed.

Now, let us revisit our first theorem about counting subsets:

Theorem 6.2.2. Let n ∈ N. Then,

(# of subsets of [n]) = 2n.

Rigorous proof. We induct on n.
Base case: For n = 0, the theorem says that (# of subsets of [0]) = 20, which

is just saying that 1 = 1.
Induction step: We proceed from n − 1 to n. Thus, let n be a positive integer.

We assume (as IH) that the theorem holds for n − 1 instead of n, and we set out
to prove it for n.
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So our IH says that

(# of subsets of [n − 1]) = 2n−1.

Our goal is to show that

(# of subsets of [n]) = 2n.

We define

• a red set to be a subset of [n] that contains n;

• a green set to be a subset of [n] that does not contain n.

For instance, for n = 3, the sets {3} , {1, 3} , {2, 3} , {1, 2, 3} are red, while
the sets ∅, {1} , {2} , {1, 2} are green.

Each subset of [n] is either red or green, but not both. Hence,

{subsets of [n]} = {red sets} ∪ {green sets} ,

and the two sets {red sets} and {green sets} are disjoint. Therefore, by the sum
rule,

|{red sets} ∪ {green sets}| = |{red sets}|+ |{green sets}| .

In other words,

|{subsets of [n]}| = |{red sets}|+ |{green sets}| .

In other words,

(# of subsets of [n]) = (# of red sets) + (# of green sets) .

Thus it remains to count the red sets and the green sets.
Let’s count the green sets first: The green sets are just the subsets of [n − 1].

By the IH, there are 2n−1 of them. So

(# of green sets) = 2n−1.

Now to the red sets: I claim that they are just the green sets with an extra n
inserted into them. In more detail: Each green set can be turned into a red set
by inserting n into it. Conversely, each red set can be turned green by removing
n from it. This means that we can define two maps

insn : {green sets} → {red sets} ,
G 7→ G ∪ {n}

and

remn : {red sets} → {green sets} ,
R 7→ R \ {n} ,
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and these two maps are mutually inverse, so they are bijections. Therefore, by
the bijection principle,

|{red sets}| = |{green sets}| , i.e.
(# of red sets) = (# of green sets) .

Thus,
(# of red sets) = (# of green sets) = 2n−1.

Now,

(# of subsets of [n])
= (# of red sets)︸ ︷︷ ︸

=2n−1

+ (# of green sets)︸ ︷︷ ︸
=2n−1

= 2n−1 + 2n−1 = 2 · 2n−1 = 2n.

This proves the goal. So the induction is complete.

More generally, we don’t have to only look at sets of the form [n]; we have:

Theorem 6.2.3. Let n ∈ N. Let S be any n-element set. Then,

(# of subsets of S) = 2n.

Rigorous proof. Since S has size n, there exists a bijection α : S → [n]. Pick such
an α. As a bijection, α has an inverse α−1.

Now, let us “extend” this bijection α to the subsets of S (rather than the
elements of S). Namely, we define a map

α∗ : {subsets of S} → {subsets of [n]} ,
T 7→ {α (t) | t ∈ T} ,

equivalently {s1, s2, . . . , sk} 7→ {α (s1) , α (s2) , . . . , α (sk)} .

This map α∗ is again a bijection, since it has an inverse
(
α−1)

∗. Therefore, by
the bijection principle,

|{subsets of S}| = |{subsets of [n]}| .

In other words,

(# of subsets of S) = (# of subsets of [n]) = 2n

by the preceding theorem. Proof complete.
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Similarly, we can formalize the proofs of the
(

n
k

)
formula (for the # of k-

element subsets of an n-element set) and of the other counting results we have
proved before.

You don’t have to do this on the MT!

Let me derive a simple corollary:

Corollary 6.2.4. Let n ∈ N. Then,

n

∑
k=0

(
n
k

)
= 2n.

Proof. Consider the n-element set [n] = {1, 2, . . . , n}. This set has size n, so that
each subset of [n] has size ≥ 0 and ≤ n. Thus, by the sum rule,

(# of subsets of [n])
= (# of 0-element subsets of [n])

+ (# of 1-element subsets of [n])
+ (# of 2-element subsets of [n])
+ · · ·
+ (# of n-element subsets of [n])

=
n

∑
k=0

(# of k-element subsets of [n])︸ ︷︷ ︸
=

(
n
k

)
=

n

∑
k=0

(
n
k

)
.

Thus,
n

∑
k=0

(
n
k

)
= (# of subsets of [n]) = 2n.

6.3. Lacunar subsets

Another type of objects we can count are the so-called lacunar subsets. Here is
their definition:
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Definition 6.3.1. A set S of integers is called lacunar if it contains no two
consecutive integers (i.e., if there is no i ∈ Z such that both i and i + 1
belong to S).

For example, the set {2, 4, 7} is lacunar, but the set {1, 2, 5} is not. Any 1-
element set of integers is lacunar, and so is the empty set.

Now three natural questions can be asked: For a given n ∈ N,

1. how many lacunar subsets does [n] have?

2. how many k-element lacunar subsets does [n] have for a given k ∈ N ?

3. what is the largest size of a lacunar subset of [n] ?

We shall answer these three questions in the present section. First, question
3:

Proposition 6.3.2. Let n ∈ N. Then, the maximum size of a lacunar subset

of [n] is
⌊

n + 1
2

⌋
.

Proof. See the notes.

Now let us count the lacunar subsets. This is an easy question to experiment
on in any programming language, so we can just run it for n = 0, 1, . . . , 9 and
see whether the results look recognizable:

n 0 1 2 3 4 5 6 7 8 9
# of lacunar subsets of [n] 1 2 3 5 8 13 21 34 55 89

For example, for n = 4, the lacunar subsets of [4] are

∅, {1} , {2} , {3} , {4} , {1, 3} , {1, 4} , {2, 4} .

The table above reminds us of the Fibonacci numbers. And indeed, these
numbers are the Fibonacci numbers fn+2:

Theorem 6.3.3. For any integer n ≥ −1, we have

(# of lacunar subsets of [n]) = fn+2.

Here, we agree that [−1] := ∅, and more generally, [k] := ∅ for any k ≤ 0.

Proof. Let

ℓn := (# of lacunar subsets of [n]) for any n ≥ −1.
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So we must prove that

ℓn = fn+2 for each n ≥ −1.

To prove this, it sounds like a good idea to express ℓn in terms of ℓn−1 and
ℓn−2; specifically, we would hope to show that ℓn = ℓn−1 + ℓn−2 for each n ≥ 1.
If we can show this, then (assuming that we can also show ℓ−1 = f1 and ℓ0 = f2)
we can conclude by strong induction that ℓn = fn+2 for each n.

Showing that ℓ−1 = f1 and ℓ0 = f2 is easy: All four values are 1. Now we
need to prove that:

Claim 1: We have ℓn = ℓn−1 + ℓn−2 for each integer n ≥ 1.

Proof of Claim 1. Let n ≥ 1 be an integer. We shall call a subset of [n]

• red if it contains n, and

• green if it does not contain n.

Then, the definition of ℓn shows that

ℓn = (# of lacunar subsets of [n])
= (# of red lacunar subsets of [n]) + (# of green lacunar subsets of [n]) .

The green lacunar subsets of [n] are just the lacunar subsets of [n − 1]. So

(# of green lacunar subsets of [n])
= (# of lacunar subsets of [n − 1]) = ℓn−1.

What about the red ones? If R is a red lacunar subset of [n], then n ∈ R,
thus n − 1 /∈ R (since R is lacunar), and therefore R \ {n} is a lacunar subset of
[n − 2]. So we obtain a map

remn : {red lacunar subsets of [n]} → {lacunar subsets of [n − 2]} ,
R 7→ R \ {n} .

Conversely, if L is a lacunar subset of [n − 2], then L ∪ {n} is a red lacunar
subset of [n] (since the n added to L will not be adjacent to any existing element
of L). Thus, we obtain a map

insn : {lacunar subsets of [n − 2]} → {red lacunar subsets of [n]} ,
L 7→ L ∪ {n} .

It is clear that the maps remn and insn are inverses of each other. Thus, they
are bijections. Hence, by the bijection principle,

|{red lacunar subsets of [n]}| = |{lacunar subsets of [n − 2]}| .
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In other words,

(# of red lacunar subsets of [n])
= (# of lacunar subsets of [n − 2]) = ℓn−2.

Thus, as we know,

ℓn = (# of red lacunar subsets of [n])︸ ︷︷ ︸
=ℓn−2

+ (# of green lacunar subsets of [n])︸ ︷︷ ︸
=ℓn−1

= ℓn−2 + ℓn−1 = ℓn−1 + ℓn−2.

This proves Claim 1.

Now recall that our goal is to prove that ℓn = fn+2 for each n ≥ −1. In other
words, we must prove that the two sequences (ℓ−1, ℓ0, ℓ1, . . .) and ( f1, f2, f3, . . .)
are equal. But this is now easy: These two sequences

• have the same two starting entries ℓ−1 = f1 and ℓ0 = f2, and

• satisfy the same recursion (ℓn = ℓn−1 + ℓn−2 for each n ≥ 1, and fn =
fn−1 + fn−2 for each n ≥ 2).

This entails that they are equal (by induction).

There remains one question of the three that we posed: counting the k-
element lacunar subsets of [n] for given n and k. Looking at a table makes
us suspect the following pattern:

Theorem 6.3.4. Let n ∈ Z and k ∈ N be such that k ≤ n + 1. Then,

(# of k-element lacunar subsets of [n]) =
(

n + 1 − k
k

)
.

Proof. One way to prove this is by induction on n, as before using green and
red sets.

Here is a nicer way, which reduces this to the combinatorial interpretation of
BCs. Namely, we shall construct a bijection

from {k-element lacunar subsets of [n]}
to {k-element subsets of [n + 1 − k]} .

The idea of this bijection is to move the elements of our lacunar subset closer to
each other by subtracting 0 from the smallest element, subtracting 1 from the
second-smallest element, subtracting 2 from the third-smallest, and so on. To
put this in formulas: If S is a k-element lacunar subset of [n], and if s1, s2, . . . , sk
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are the elements of S in increasing order, then the image of S under our bijection
will be the subset

{s1 − 0, s2 − 1, s3 − 2, . . . , sk − (k − 1)} of [n + 1 − k] .

Notice that the relative order of the elements is preserved by this operation: i.e.,
we still have

s1 − 0 < s2 − 1 < s3 − 2 < · · · < sk − (k − 1) ,

since the set S was lacunar.
To prove that this map is a bijection, we construct its inverse: This inverse

takes any k-element subset T of [n + 1 − k], lists its elements as t1, t2, . . . , tk in
increasing order, and sends it to the lacunar subset

{t1 + 0, t2 + 1, t3 + 2, . . . , tk + (k − 1)} of [n] .

Thus, we have found a bijection

from {k-element lacunar subsets of [n]}
to {k-element subsets of [n + 1 − k]} .

Hence, the bijection principle yields

(# of k-element lacunar subsets of [n])

= (# of k-element subsets of [n + 1 − k]) =
(

n + 1 − k
k

)
.

Note that we have tacitly used the following fundamental fact:

Proposition 6.3.5. Let k ∈ N. Let S be a k-element set of integers. Then, we
can list the elements of S uniquely in increasing order. In other words, there
exists a unique k-tuple (s1, s2, . . . , sk) of integers such that

{s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk.

So now we have answered all three questions about lacunar subsets. We
actually get two different-looking answers to Question 2: On the one hand, we
have shown that

(# of lacunar subsets of [n]) = fn+2;
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on the other hand, the sum rule yields

(# of lacunar subsets of [n])

=
n

∑
k=0

(# of k-element lacunar subsets of [n])︸ ︷︷ ︸
=

(
n + 1 − k

k

)
=

n

∑
k=0

(
n + 1 − k

k

)
=

(
n + 1

0

)
+

(
n
1

)
+

(
n − 1

2

)
+ · · ·+

(
0

n + 1

)
.

Comparing these two equalities, we obtain

fn+2 =

(
n + 1

0

)
+

(
n
1

)
+

(
n − 1

2

)
+ · · ·+

(
0

n + 1

)
.

Substituting n − 1 for n in this equality, we transform it into the following nicer
form:

Corollary 6.3.6. Let n ∈ N. Then, the Fibonacci number fn+1 is

fn+1 =

(
n
0

)
+

(
n − 1

1

)
+

(
n − 2

2

)
+ · · ·+

(
0
n

)
=

n

∑
k=0

(
n − k

k

)
.

This is precisely the phenomenon of Fibonacci numbers coming out if you
add the entries of Pascal’s triangle along certain slanted lines.

6.4. Compositions and weak compositions

6.4.1. Compositions

How many ways are there to write the number 5 as a sum of 3 positive integers,
if the order matters?

5 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1
= 3 + 1 + 1 = 1 + 3 + 1 = 1 + 1 + 3.

Six ways in total. What about the general case?

Definition 6.4.1. (a) If n ∈ N, then a composition of n means a tuple (i.e.,
finite list) of positive integers whose sum is n.

(b) If n, k ∈ N, then a composition of n into k parts means a k-tuple of
positive integers whose sum is n.
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So we have just shown that the compositions of 5 into 3 parts are

(1, 2, 2) , (2, 1, 2) , (2, 2, 1) , (3, 1, 1) , (1, 3, 1) , (1, 1, 3) .

The compositions of 3 are

(1, 1, 1) , (2, 1) , (1, 2) , (3) .

The only composition of 0 is the empty list (), which is a 0-tuple and thus a
composition of 0 into 0 parts.

Now let us count these compositions.

Theorem 6.4.2. Let n, k ∈ N. Then,

(# of compositions of n into k parts) =
(

n − 1
n − k

)
.

If n > 0, then we furthermore have

(# of compositions of n into k parts) =
(

n − 1
k − 1

)
.

Proof. The case n = 0 is very easy, so we WLOG assume that n > 0.
Thus, n − 1 ∈ N. We would like to construct a bijection

from {compositions of n into k parts}
to {(k − 1) -element subsets of [n − 1]} .

This bijection sends each composition a = (a1, a2, . . . , ak) to its partial sum set

C (a) := {a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ ak−1} .

To see that this is really a bijection, we can (e.g.) construct its inverse as the
map that sends each (k − 1)-element subset S of [n − 1] to the composition

(s1, s2 − s1, s3 − s2, . . . , sk−1 − sk−2, n − sk−1) ,

where s1, s2, . . . , sk−1 are the elements of S in increasing order.
Now that we have this bijection, we can use the bijection principle to obtain

(# of compositions of n into k parts)
= (# of (k − 1) -element subsets of [n − 1])

=

(
n − 1
k − 1

)
(by the combinatorial interpretation of BCs)

=

(
n − 1

(n − 1)− (k − 1)

)
(by the symmetry of BCs)

=

(
n − 1
n − k

)
.
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We can also count all compositions of n:

Theorem 6.4.3. Let n be a positive integer. Then, the # of all compositions of
n is 2n−1.

Proof. Same bijection as above, but without fixing k. The total # of subsets of
[n − 1] is 2n−1, as we know.

6.4.2. Weak compositions

A weak composition is just like a composition, except that it allows its entries
to be 0. In other words,

Definition 6.4.4. (a) If n ∈ N, then a weak composition of n means a tuple
(i.e., finite list) of nonnegative integers whose sum is n.

(b) If n, k ∈ N, then a weak composition of n into k parts means a k-tuple
of nonnegative integers whose sum is n.

For example, the weak compositions of 2 into 3 parts are

(1, 1, 0) , (1, 0, 1) , (0, 1, 1) , (2, 0, 0) , (0, 2, 0) , (0, 0, 2) .

Counting all weak compositions of n is no longer a reasonable question, since
there are ∞ of them: even just 0 has () , (0) , (0, 0) , (0, 0, 0) , . . ..

But we can count weak compositions of n into k parts:

Theorem 6.4.5. Let n, k ∈ N. Then,

(# of weak compositions of n into k parts) =
(

n + k − 1
n

)
.

Proof. There is a bijection

from {weak compositions of n into k parts}
to {compositions of n + k into k parts}

which sends

(a1, a2, . . . , ak) 7→ (a1 + 1, a2 + 1, . . . , ak + 1) .

Its inverse is similar:

(b1, b2, . . . , bk) 7→ (b1 − 1, b2 − 1, . . . , bk − 1) .



Math 221 Winter 2024, version March 14, 2024 page 155

The bijection principle thus yields

(# of weak compositions of n into k parts)
= (# of compositions of n + k into k parts)

=

(
n + k − 1
n + k − k

)
(by a previously proved theorem)

=

(
n + k − 1

n

)
.

6.5. Selections

We now come to a class of problems that we have mentioned a while ago but
have not fully answered yet: How many ways are there to select a bunch of
elements from a given set?

To be more specific: Given an n-element set S, how many ways are there to
select k elements from it?

There are four ways to interpret this question, due to the following two
choices:

1. Do we want k arbitrary elements or k distinct elements? (“With repe-
tition” vs. “without repetition”, aka “with replacement” vs. “without
replacement”.)

2. Does the order of these k elements matter or not? (That is, do “1, 2” and
“2, 1” count as different choices or as one?)

Altogether you thus have 4 options, so 4 different counting problems. Let us
address them all.

6.5.1. Unordered selections without repetition (= without replacement)

To choose k distinct elements from a given set S without regard to the order is
just the same as choosing a k-element subset of S. The # of ways to do this is
therefore

(# of k-element subsets of S) =
(

n
k

)
, where n = |S| .
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6.5.2. Ordered selections without repetition (= without replacement)

To choose k distinct elements from a given set S with regard to the order is the
same as choosing a k-tuple of distinct elements of S. I shall call such tuples
injective. In other words:

Definition 6.5.1. Let k ∈ N. A k-tuple (i1, i2, . . . , ik) is said to be injective if
its k entries i1, i2, . . . , ik are distinct (i.e., if ia ̸= ib for all a ̸= b).

For example, (6, 1, 2) is injective, but (3, 1, 3) is not.

Definition 6.5.2. Let S be any set, and let k ∈ N. Then, Sk shall mean the
Cartesian product

S × S × · · · × S︸ ︷︷ ︸
k times

= {k-tuples of elements of S}

= {(a1, a2, . . . , ak) | a1, a2, . . . , ak ∈ S} .

Now we claim:

Theorem 6.5.3. Let n, k ∈ N. Let S be an n-element set. Then,(
# of injective k-tuples in Sk

)
= n (n − 1) (n − 2) · · · (n − k + 1)

=

(
n
k

)
· k!.

Informal proof. (See the notes for a rigorous version of this.)
Let us look at an example. Let n = 5 and k = 3 and S = {a, b, c, d, e}. How

many injective k-tuples are there in Sk ? In other words, how many injective
3-tuples are there in S3 ?

Such a 3-tuple has the form (x, y, z), where x, y, z are three distinct elements
of S. Let us see how we can choose such a 3-tuple:

1. First, we choose its first entry x. There are 5 options for this, since S has 5
elements.

2. Next, we choose its second entry y. There are 4 options for this, since S
has 5 elements but the element x is forbidden (because the injectivity of
our tuple requires x ̸= y).

3. Finally, we choose its third entry z. There are 3 options for this, since S
has 5 elements but the elements x and y are forbidden (and x and y are
distinct).
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Altogether, we have 5 options at the first step, 4 options at the second, and 3
at the third. Each combination of these choices gives a different injective 3-tuple
in S3. So the total # of outcomes of this construction is 5 · 4 · 3 = 60. What we
have used here is a counting principle called the “dependent product rule”,
which (informally) says that if we perform a multi-step construction in which
we have

• exactly n1 options in step 1,

• exactly n2 options in step 2,

• . . . ,

• exactly nk options in step k,

then the entire construction can be performed in exactly n1n2 · · · nk many
ways. Rigorously speaking, this is an induction argument on k.

So we got 5 · 4 · 3 as an answer in our example. In the general case, the answer
will be

n (n − 1) (n − 2) · · · (n − k + 1)

for the same reasons. But this equals
(

n
k

)
· k! because

(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

.

6.5.3. Intermezzo: Listing n elements

If we apply the above theorem to k = n, then we conclude that the # of ways to
choose n distinct from an n-element set, where the order matters, is

n (n − 1) (n − 2) · · · (n − n + 1) = n (n − 1) (n − 2) · · · 1 = n!.

Of course, when we are choosing n distinct from an n-element set, we must
necessarily choose all the elements of this set. So such a choice is simply an
ordering of the n elements of our set. Thus, we have obtained the following:

Corollary 6.5.4. Let n ∈ N. Let S be an n-element set. Then, the # of ways to
list the elements of S in some order (i.e., the # of n-tuples that contain each
element of S exactly once) is n!.

For example, for n = 3, these ways are

(1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) .
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6.5.4. Ordered selections with repetition

How many ways are there to choose k elements of an n-element set S if the
order matters? These ways are just the k-tuples in Sk, and they are easy to
count:

Theorem 6.5.5. Let n, k ∈ N. Let S be an n-element set. Then,(
# of all k-tuples in Sk

)
= nk.

Proof. This follows from the product rule.

6.5.5. Unordered selections with repetition

Only one of our four questions remains now: What is the # of ways to choose k
arbitrary elements from an n-element set S if we don’t care about their order?

There are several ways to rigorously define what this means:

1. We can define the concept of a multiset, which is “like a finite set but
allowing for multiplicities” (i.e., an element can be contained a given # of
times). This is normally done in Math 222.

2. Alternatively, we can define the concept of an unordered k-tuple, which
is “a k-tuple up to reordering its entries”. The formal way to do this is by
using equivalence relations (unordered k-tuples are equivalence classes of
k-tuples with respect to the equivalence of being permutations of each
other).

3. Finally, the most pedestrian way: If S is a set of integers, then we con-
sider the weakly increasing k-tuples of elements of S (i.e., the k-tuples
(s1, s2, . . . , sk) with s1 ≤ s2 ≤ · · · ≤ sk).

These three definitions yield three different objects, but the # of them is al-
ways the same because there are bijections from one object to the other.

What is this #?

Theorem 6.5.6. Let n, k ∈ N. Let S be an n-element set. Then,

(# of all ways to select k elements from S (if the order does not matter))

=

(
k + n − 1

k

)
.

Proof. See the notes.

See the notes also for a few other combinatorial questions with answers.
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