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This is a mostly expository note devoted to one of the first nontrivial results
in the modular representation theory of the symmetric groups: Peel’s hook
exact sequence. This sequence has been introduced by Peel in [Peel71] and
revisited by Künzer in [Kuenze15, Propositions 4.2.3 and 4.2.4]. The aim of
this note is to reprove its most basic properties in maximum generality (over
arbitrary commutative rings satisfying n = 0 when necessary, not just finite
fields) and more or less conceptually (using basic homological algebra rather
than ad-hoc computations involving Young tableaux).

It took me a while to figure it out, and I suspect that I ended up rediscovering
known properties of Koszul complexes. Yet I could not easily locate any of it
in the literature, so I have written up my proof in some reasonable level of
detail (not approaching that of my lecture notes [Grinbe25], however, as this is
somewhat more advanced material).

I should note that Peel’s article [Peel71] goes significantly beyond construct-
ing the exact sequence; the present note does not supersede it.

1. Introduction

Peel’s hook exact sequence is an exact sequence consisting of Specht modules.
The classical way to define them is in terms of Young tableaux. But we will use
an equivalent definition using Vandermonde determinants, since it is easier and
self-contained:

Let k be any commutative ring, and n a positive integer.
Consider the symmetric group Sn of the set [n] = {1, 2, . . . , n}. It acts from

the left on the polynomial ring Pn = k [x1, x2, . . . , xn] by k-algebra automor-
phisms that permute the variables (σ · xi = xσ(i) for all σ ∈ Sn and i ∈ [n]). For
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any k elements a1, a2, . . . , ak of any commutative ring, we let V (a1, a2, . . . , ak)
denote their Vandermonde determinant

V (a1, a2, . . . , ak) := det
(

aj−1
i

)
i,j∈[k]

= ∏
1≤i<j≤k

(
aj − ai

)
.

Note that this is clearly an alternating function in the inputs a1, a2, . . . , ak.
For any k ∈ [n], we let Sλk

denote the k-linear span of the Vandermonde
determinants V

(
xi1 , xi2 , . . . , xik

)
in Pn (where (i1, i2, . . . , ik) ranges over [n]k).

This is an Sn-subrepresentation of Pn, and is well-known to be isomorphic to
the Specht module of the hook partition λk :=

(
n − k + 1, 1k−1) (where “1k−1”

means k − 1 many 1s in sequence). (The explicit isomorphism can be found,
e.g., in [Grinbe25, Corollary 5.6 (b)]. Note that the Vandermonde determinant
V
(
xi1 , xi2 , . . . , xik

)
is an alternating function in the inputs i1, i2, . . . , ik; thus, the

k-module Sλk
is spanned by the V

(
xi1 , xi2 , . . . , xik

)
with i1, i2, . . . , ik distinct,

and even just by those with i1 < i2 < · · · < ik. Note that this is a particular
case of how Specht defined Specht modules in the first place.) Peel (in [Peel71])
denotes Sλk

as S (k − 1, n).
Note that by the standard basis theorem for Specht modules, the k-module

Sλk
has a basis consisting of those V

(
xi1 , xi2 , . . . , xik

)
with 1 = i1 < i2 < · · · < ik

(since these correspond to the standard Young tableaux of shape λk).
Now, assume that n = 0 in k. Then, Peel (in [Peel71, §3]) and Künzer (in

[Kuenze15, Proposition 4.2.3]) show that for each k ∈ [n − 1], there is an Sn-
representation homomorphism

fk : Sλk → Sλk+1
,

V
(
xi1 , xi2 , . . . , xik

)
7→ ∑

s∈[n]
V
(
xi1 , xi2 , . . . , xik , xs

)
. (1)

Note that the sum can just as well be restricted to the s ∈ [n] \ {i1, i2, . . . , ik}
only, since the addends for s ∈ {i1, i2, . . . , ik} are 0. Furthermore, they show
that these maps fk form an exact sequence

0 → Sλ1 f1→ Sλ2 f2→ · · · fn−1→ Sλn → 0

that has a k-linear (but not k [Sn]-linear) chain contraction.
The purpose of this note is to prove this in a conceptual and readable way.

The proof in Peel’s [Peel71] is not fully clear to me, and only considers the case
when k is a field. Künzer in [Kuenze15] only shows the existence of the maps
fk, not the exactness of the sequence; it is also computational and intransparent
(though very elementary). Thus, I hope that this note has some use to others.
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2. The proof

As I said, the proof I am giving uses just basic homological algebra (morphisms
and chain contractions of complexes) and exterior powers. But we need to get
some notation introduced and auxiliary results proved.

In the following, we do not assume that n = 0 in k unless we explicitly say
so.

Let N be the free k-module kn with its standard basis (e1, e2, . . . , en). This is
the natural representation of Sn, where Sn acts on kn by permuting the basis
(σ · ei = eσ(i) for each σ ∈ Sn and i ∈ [n]).

Consider the Sn-invariant element

e := e1 + e2 + · · ·+ en ∈ N. (2)

Consider the exterior algebra ΛN =
n⊕

i=0
ΛiN. It has a basis (eI)I⊆[n], where

we set

e{i1<i2<···<ik} := ei1 ∧ ei2 ∧ · · · ∧ eik

for each {i1 < i2 < · · · < ik} ⊆ [n] .

The exterior algebra ΛN as well as each exterior power ΛiN is an Sn-representation,
equipped with the diagonal Sn-action:

g (v1 ∧ v2 ∧ · · · ∧ vi) = gv1 ∧ gv2 ∧ · · · ∧ gvi

for all g ∈ Sn and v1, v2, . . . , vi ∈ N.
Let ε : ΛN → ΛN be the k-linear map sending each w to e ∧ w.
Let ε1 : ΛN → ΛN be the k-linear map sending each w to e1 ∧ w.
The exterior algebra ΛN is known to be a supercommutative superalgebra

with N-grading given by placing ΛiN in degree i. A superderivation of ΛN shall
mean a k-linear map d : ΛN → ΛN that satisfies the super-Leibniz rule

d (ab) = d (a) · b + (−1)i a · d (b)

for all i ∈ N and a ∈ ΛiN and b ∈ ΛN.

Let ∂ : ΛN → ΛN be the k-linear map defined by

∂
(

e{i1<i2<···<ik}

)
=

k

∑
p=1

(−1)p−1 e{i1<i2<···<îp<···<ik}

for each {i1 < i2 < · · · < ik} ⊆ [n] .

Here (and in the following), the “magician’s hat” ̂ is understood to vanish
whatever stands under it; thus, “i1 < i2 < · · · < îp < · · · < ik” means “i1 <
i2 < · · · < ip−1 < ip+1 < ip+2 < · · · < ik”.
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Let ∂1 : ΛN → ΛN be the k-linear map defined by

∂1 (eI) =

{
eI\{1}, if 1 ∈ I

0, if 1 /∈ I
for each I ⊆ [n] .

We note that both maps ∂ and ∂1 can be described in more canonical ways.
Namely, if we let (e∗1 , e∗2 , . . . , e∗n) denote the dual basis to the basis (e1, e2, . . . , en)
of N (that is, each e∗i ∈ N∗ is the k-linear map N → k that sends each vector to
its i-th coordinate), and if we set e∗ := e∗1 + e∗2 + · · ·+ e∗n ∈ N∗, then all k ∈ N

and v1, v2, . . . , vk ∈ N satisfy

∂ (v1 ∧ v2 ∧ · · · ∧ vk)

=
k

∑
p=1

(−1)p−1 e∗
(
vp
)
· v1 ∧ v2 ∧ · · · ∧ v̂p ∧ · · · ∧ vk (3)

and

∂1 (v1 ∧ v2 ∧ · · · ∧ vk)

=
k

∑
p=1

(−1)p−1 e∗1
(
vp
)
· v1 ∧ v2 ∧ · · · ∧ v̂p ∧ · · · ∧ vk. (4)

In other words, in terms of interior products (see, e.g., [Winitz23, §2.3.1]), we
have ∂ = ιe∗ and ∂1 = ιe∗1 .

Both maps ∂ and ∂1 are superderivations. The maps ε and ε1 shift the degree
by 1 upwards, while the maps ∂ and ∂1 shift it by 1 downwards. Hence, their
images and kernels are N-graded k-submodules of ΛN, and their cokernels
inherit the N-grading from ΛN. When we shall speak of (Coker ∂)i, we will
mean the i-th graded component of this grading on Coker ∂. Explicitly,

(Coker ∂)i =
(

ΛiN
)
⧸∂
(

Λi+1N
)

for each i ∈ N.

Note that the maps ε and ∂ are morphisms of Sn-representations, whereas ε1
and ∂1 are merely k-module morphisms. Thus, Coker ∂ and its graded compo-
nents (Coker ∂)i are Sn-representations.

The following is well-known:

Proposition 2.1. Each of these four maps ε, ∂, ε1, ∂1 makes the graded algebra
ΛN into a long exact sequence: i.e., we have

Ker ε = Im ε, Ker ∂ = Im ∂,
Ker ε1 = Im ε1, Ker ∂1 = Im ∂1.

Moreover, these four exact sequences are each other’s chain contractions: i.e.,
we have

∂ε1 + ε1∂ = id and
∂1ε + ε∂1 = id .
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Proof. Clearly, ε2 = 0 (since e ∧ e︸︷︷︸
=0

∧w = 0 for each w ∈ ΛN) and ε2
1 = 0

(likewise). Very easily, ∂2
1 = 0. By a standard computation from homologi-

cal algebra, we have ∂2 = 0 as well. (This can also be proved without getting
one’s hands dirty, by defining the symmetric bilinear form ⟨·, ·⟩ on ΛN by〈

eI , eJ
〉
=

{
1, if I = J;
0, if I ̸= J

for all I, J ⊆ [n]. Indeed, this bilinear form ⟨·, ·⟩ is

nondegenerate and is easily seen to satisfy〈
ε (eI) , eJ

〉
=
〈
eI , ∂ (eJ)

〉
for all I, J ⊆ [n] ;

thus, the map ∂ is the adjoint of ε with respect to this bilinear form. Hence,
∂2 = 0 follows from ε2 = 0.)

Since ∂ is a superderivation, each w ∈ ΛN satisfies ∂ (e1 ∧ w) = ∂ (e1)︸ ︷︷ ︸
=1

w− e1 ∧

∂ (w) = w − e1 ∧ ∂ (w), that is, ∂ (ε1 (w)) = w − ε1 (∂ (w)), that is, ∂ (ε1 (w)) +
ε1 (∂ (w)) = w. Thus, ∂ε1 + ε1∂ = id holds. Similarly, ∂1ε + ε∂1 = id holds
(since ∂1 (e) = 1).

The “Ker=Im” identities now follow easily: For instance, let us prove Ker ε =
Im ε. The Im ε ⊆ Ker ε inclusion follows from ε2 = 0. To prove the converse
inclusion, fix w ∈ Ker ε; then, ε (w) = 0; but ∂1ε + ε∂1 = id yields ∂1 (ε (w)) +
ε (∂1 (w)) = w, whence w = ∂1 (ε (w))︸ ︷︷ ︸

=0

+ ε (∂1 (w)) = ε (∂1 (w)) ∈ Im ε. So

Ker ε ⊆ Im ε is proved, and with it Ker ε = Im ε. Likewise, the other three
“Ker=Im” identities can be shown. Altogether, the proof of Proposition 2.1 is
complete.

Proposition 2.2. We have
∂1∂ = −∂∂1. (5)

Hence,
∂1 (Im ∂) ⊆ Im ∂. (6)

Thus, the map ∂1 : ΛN → ΛN descends to a k-linear map ∂′1 : Coker ∂ →
Coker ∂ such that the diagram

ΛkN
∂1 //

����

Λk−1N

����

(Coker ∂)k ∂′1

// (Coker ∂)k−1

(7)

(where the vertical arrows are graded parts of the canonical projection ΛN →
Coker ∂) is commutative for each k > 0.

Proof. The equality ∂1∂ = −∂∂1 is easy to check directly from the definitions
of ∂ and ∂1. Alternatively, we can prove it abstractly using the fact that the
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superderivations of a superalgebra form a Lie superalgebra, so that the super-
commutator of two superderivations is again a superderivation. Indeed, this
shows that ∂1∂ + ∂∂1 (being the supercommutator of ∂1 and ∂) is a superderiva-
tion. Since it sends the generators Λ1N of ΛN to 0, it thus is 0 everywhere (by
the super-Leibniz rule). Either way, (5) is proved.

Of course, (6) follows immediately from (5).
The existence of ∂′1 for which the diagram (7) commutes is an immediate

consequence of (6).

So far, this all was true for any commutative ring k.
Now, we note that ∂ (e) = n. Hence, if n = 0 in k, then we gain extra

properties:

Proposition 2.3. Assume that n = 0 in k. We have

ε∂ = −∂ε. (8)

Thus, up to the usual (−1)deg sign twist, ε is a degree-shifting endomorphism
of the complex (ΛN, ∂), and vice versa.

We furthermore have
ε (Im ∂) ⊆ Im ∂. (9)

Consequently, the map ε : ΛN → ΛN descends to a k-linear endomorphism
ε′ : Coker ∂ → Coker ∂ of Coker ∂ = (ΛN) / Im ∂ such that the diagram

ΛkN ε //

����

Λk+1N

����

(Coker ∂)k ε′
// (Coker ∂)k+1

(10)

(where the vertical arrows are graded parts of the canonical projection ΛN →
Coker ∂) is commutative for each k ∈ N.

Proof. For each w ∈ ΛN, we have

∂ (ε (w)) = ∂ (e ∧ w) (by the definition of ε)

= ∂ (e)︸︷︷︸
=n=0

w − e ∧ ∂ (w) (since ∂ is a superderivation)

= −e ∧ ∂ (w) = −ε (∂ (w)) (by the definition of ε) .

Hence, ∂ε = −ε∂, so that ε∂ = −∂ε. This proves (8). Thus, (9) immediately
follows, and from it flows the existence of ε′ that makes the diagram (10) com-
mutative. ■
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Theorem 2.4. Assume that n = 0 in k. Then, the sequence

· · · ε′−→ (Coker ∂)k−1
ε′−→ (Coker ∂)k

ε′−→ (Coker ∂)k+1
ε′−→ · · ·

(where ε′ was defined in Proposition 2.3) is exact and has a k-linear chain
contraction.

Proof. Recall the ∂′1 map from Proposition 2.2. Clearly, (ε′)2 = 0 because ε2 = 0.
Moreover, projecting the equality ∂1ε + ε∂1 = id (from Proposition 2.1) onto
Coker ∂, we obtain ∂′1ε′ + ε′∂′1 = id, so that ∂′1 is a chain contraction for the
sequence

· · · ε′−→ (Coker ∂)k−1
ε′−→ (Coker ∂)k

ε′−→ (Coker ∂)k+1
ε′−→ · · · .

Thus, this sequence is exact, and Theorem 2.4 is proved.

Now we come to the Peel modules Sλk
. As we recall, for each k ∈ [n],

the Sn-representation Sλk
is defined as the k-linear span of the Vandermonde

determinants V
(
xi1 , xi2 , . . . , xik

)
in Pn. We furthermore set

Sλk
:= 0 for all k > n and also for k = 0.

Note that this agrees with the original definition of Sλk
as the span of the

V
(
xi1 , xi2 , . . . , xik

)
for k > n (since V

(
xi1 , xi2 , . . . , xik

)
is alternating as a function

in i1, i2, . . . , ik), but not for k = 0. Yet it is the right way to define Sλ0
, as we will

see.
For each k > 0, we define the k-linear map

ωk : ΛkN → Sλk
,

ei1 ∧ ei2 ∧ · · · ∧ eik 7→ V
(
xi1 , xi2 , . . . , xik

)
.

This map ωk is well-defined, since V
(
xi1 , xi2 , . . . , xik

)
is an alternating function

in its inputs i1, i2, . . . , ik. Moreover, ωk is a morphism of Sn-representations
(since σ · ei = eσ(i) and σ · xi = xσ(i) for all σ ∈ Sn and i ∈ [n]).

We furthermore define ωk : ΛkN → Sλk
to be the zero map 0 for k > n and

for k = 0.
We now claim the following:

Lemma 2.5. Let k ∈ N. Then, ωk∂ = 0 on Λk+1N.

Proof. We WLOG assume that k ∈ [n], since otherwise the claim is made obvi-
ous by the fact that ωk = 0.
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The k-module Λk+1N is spanned by the vectors ei1 ∧ ei2 ∧ · · · ∧ eik+1 for all
(i1, i2, . . . , ik+1) ∈ [n]k+1. Hence, by linearity, it suffices to show that

ωk
(
∂
(
ei1 ∧ ei2 ∧ · · · ∧ eik+1

))
= 0 for all (i1, i2, . . . , ik+1) ∈ [n]k+1 .

Let us thus do this. Fix (i1, i2, . . . , ik+1) ∈ [n]k+1. Then, the equality (3) shows
that

∂
(
ei1 ∧ ei2 ∧ · · · ∧ eik+1

)
=

k+1

∑
p=1

(−1)p−1 e∗
(

eip

)
︸ ︷︷ ︸

=1

· ei1 ∧ ei2 ∧ · · · ∧ êip ∧ · · · ∧ eik+1

=
k+1

∑
p=1

(−1)p−1 ei1 ∧ ei2 ∧ · · · ∧ êip ∧ · · · ∧ eik+1 .

Thus,

ωk
(
∂
(
ei1 ∧ ei2 ∧ · · · ∧ eik+1

))
= ωk

(
k+1

∑
p=1

(−1)p−1 ei1 ∧ ei2 ∧ · · · ∧ êip ∧ · · · ∧ eik+1

)

=
k+1

∑
p=1

(−1)p−1︸ ︷︷ ︸
=(−1)p+1

ωk

(
ei1 ∧ ei2 ∧ · · · ∧ êip ∧ · · · ∧ eik+1

)
︸ ︷︷ ︸

=V
(

xi1
,xi2 ,...,x̂ip ,...,xik+1

)

=det



x0
i1

x0
i2

· · · x̂0
ip

· · · x0
ik

x0
ik+1

x1
i1

x1
i2

· · · x̂1
ip

· · · x1
ik

x1
ik+1

...
... . . . ... . . . ...

...

xk−1
i1

xk−1
i2

· · · x̂k−1
ip

· · · xk−1
ik

xk−1
ik+1


(since V(a1,a2,...,ak)=det

(
ai−1

j

)
i,j∈[k]

for all a1,a2,...,ak)

=
k+1

∑
p=1

(−1)p+1 det



x0
i1

x0
i2

· · · x̂0
ip

· · · x0
ik

x0
ik+1

x1
i1

x1
i2

· · · x̂1
ip

· · · x1
ik

x1
ik+1

...
... . . . ... . . . ...

...

xk−1
i1

xk−1
i2

· · · x̂k−1
ip

· · · xk−1
ik

xk−1
ik+1


.
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On the other hand, if we let A denote the (k + 1)× (k + 1)-matrix

1 1 · · · 1 1
x0

i1
x0

i2
· · · x0

ik
x0

ik+1

x1
i1

x1
i2

· · · x1
ik

x1
ik+1

...
... . . . ...

...
xk−1

i1
xk−1

i2
· · · xk−1

ik
xk−1

ik+1


,

then

det A =
k+1

∑
p=1

(−1)p+1 det



x0
i1

x0
i2

· · · x̂0
ip

· · · x0
ik

x0
ik+1

x1
i1

x1
i2

· · · x̂1
ip

· · · x1
ik

x1
ik+1

...
... . . . ... . . . ...

...

xk−1
i1

xk−1
i2

· · · x̂k−1
ip

· · · xk−1
ik

xk−1
ik+1


(by Laplace expansion along the first row of A). Comparing these two equali-
ties, we find

ωk
(
∂
(
ei1 ∧ ei2 ∧ · · · ∧ eik+1

))
= det A.

But the matrix A has two equal rows: In fact, its second row(
x0

i1
x0

i2
· · · x0

ik
x0

ik+1

)
agrees with its first row

(
1 1 · · · 1 1

)
, since

x0
j = 1 for all j. Hence, det A = 0 (since a matrix with two equal rows must

always have determinant 0). Thus,

ωk
(
∂
(
ei1 ∧ ei2 ∧ · · · ∧ eik+1

))
= det A = 0.

As explained above, this proves Lemma 2.5.

Next comes the most technical lemma in this note:

Lemma 2.6. Let k > 0. A monomial in Pn is called nice if it can be written as
x1

i1
x2

i2
· · · xk−1

ik−1
with 1 < i1 < i2 < · · · < ik−1 ≤ n. Let η : Pn → Λk−1N be the

k-linear map that

sends each nice monomial x1
i1 x2

i2 · · · xk−1
ik−1

to ei1 ∧ ei2 ∧ · · · ∧ eik−1 ∈ Λk−1N,

and sends each monomial that is not nice to 0.

(This is well-defined, since the monomials form a basis of the k-module Pn,
and since a nice monomial can be written in the form x1

i1
x2

i2
· · · xk−1

ik−1
uniquely.)

Then,
ε1ηωk = id on ε1

(
Λk−1N

)
.
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Proof. The k-module Λk−1N is spanned by the vectors ei1 ∧ ei2 ∧ · · · ∧ eik−1 for
all (i1, i2, . . . , ik−1) ∈ [n]k−1 satisfying i1 < i2 < · · · < ik−1. Hence, its image
ε1
(
Λk−1N

)
is spanned by the images ε1

(
ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
of these vectors.

Since ε1
(
ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
= e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1 (by the definition of ε1),

we can restate this as follows: The image ε1
(
Λk−1N

)
is spanned by the vectors

e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1 for all (i1, i2, . . . , ik−1) ∈ [n]k−1 satisfying i1 < i2 < · · · <
ik−1.

However, many of these vectors vanish: Indeed, e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1 = 0
whenever i1 = 1, since an exterior product with two equal factors is 0. Ob-
viously, these vanishing vectors are unneccessary for spanning ε1

(
Λk−1N

)
.

Hence, we can remove them from our list, and conclude that the image ε1
(
Λk−1N

)
is spanned by the vectors e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1 for all (i1, i2, . . . , ik−1) ∈ [n]k−1

satisfying 1 < i1 < i2 < · · · < ik−1.
Thus, by linearity, it suffices (towards our goal of proving that ε1ηωk = id on

ε1
(
Λk−1N

)
) to show that

(ε1ηωk)
(
e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
= e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

for all (i1, i2, . . . , ik−1) ∈ [n]k−1 satisfying 1 < i1 < i2 < · · · < ik−1. Let us do
this.

Let (i1, i2, . . . , ik−1) ∈ [n]k−1 be such that 1 < i1 < i2 < · · · < ik−1. Then, the
definition of ωk yields

ωk
(
e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
= V

(
x1, xi1 , xi2 , . . . , xik−1

)
.

Setting i0 := 1, we can rewrite this as

ωk
(
e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
= V

(
xi0 , xi1 , xi2 , . . . , xik−1

)
= det

(
xv−1

iu−1

)
u,v∈[k]

= ∑
σ∈Sk

(−1)σ
k

∏
p=1

xσ(p)−1
ip−1

(11)

by the Leibniz formula for the determinant.

The products
k

∏
p=1

xσ(p)−1
ip−1

that appear on the right hand side are monomials,

but I claim that only one of them is nice: viz., the one obtained for σ = id.
Indeed, the latter product is

k

∏
p=1

xid(p)−1
ip−1

=
k

∏
p=1

xp−1
ip−1

= x0
i0︸︷︷︸

=1

x1
i1 x2

i2 · · · xk−1
ik−1

= x1
i1 x2

i2 · · · xk−1
ik−1

,

which is clearly nice. Now let me show that none of the remaining products
k

∏
p=1

xσ(p)−1
ip−1

(with σ ̸= id) is nice. Indeed, a nice monomial cannot contain
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the variable x1 at all, and must contain the exponents 1, 2, . . . , k − 1 on vari-
ables with increasing subscripts (i.e., the larger the exponent, the larger the

subscript). But a product
k

∏
p=1

xσ(p)−1
ip−1

with σ ̸= id cannot satisfy these two prop-

erties, since it either contains xi0 = x1 (when σ (1) ̸= 1), or contains the other
exponents 1, 2, . . . , k − 1 in the “wrong order” (when σ (1) = 1, so that σ has
an inversion among its values σ (2) , σ (3) , . . . , σ (k)). Thus, a monomial of the

form
k

∏
p=1

xσ(p)−1
ip−1

with σ ̸= id cannot be nice. Hence, such a monomial will

always satisfy

η

(
k

∏
p=1

xσ(p)−1
ip−1

)
= 0 (12)

(since η kills all non-nice monomials, by definition).
Now, the map η is k-linear. Hence,

η

(
∑

σ∈Sk

(−1)σ
k

∏
p=1

xσ(p)−1
ip−1

)
= ∑

σ∈Sk

(−1)σ η

(
k

∏
p=1

xσ(p)−1
ip−1

)
︸ ︷︷ ︸
=0 whenever σ ̸=id

(by (12))

= (−1)id︸ ︷︷ ︸
=1

η


k

∏
p=1

xid(p)−1
ip−1︸ ︷︷ ︸

=x1
i1

x2
i2
···xk−1

ik−1


= η

(
x1

i1 x2
i2 · · · xk−1

ik−1

)
= ei1 ∧ ei2 ∧ · · · ∧ eik−1

(by the definition of η). In view of (11), this rewrites as

η
(
ωk
(
e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

))
= ei1 ∧ ei2 ∧ · · · ∧ eik−1 .

Hence,

ε1
(
η
(
ωk
(
e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

)))
= ε1

(
ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
= e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

(by the definition of ε1). In other words,

(ε1ηωk)
(
e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1

)
= e1 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik−1 .

But this is precisely what remained to prove. So the proof of Lemma 2.6 is
complete.
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Theorem 2.7. Let k ∈ N. Then, the map ωk : ΛkN → Sλk
is a surjective

morphism of Sn-representations. Its kernel is

Ker (ωk) = Ker (∂ |Λk N) = ∂
(

Λk+1N
)

. (13)

Thus, ωk induces an isomorphism

Sλk ∼= (Coker ∂)k of Sn-representations. (14)

Proof. We already know that ωk is a morphism of Sn-representations.
From Proposition 2.1, we know that Ker ∂ = Im ∂. Taking the k-th graded

component of this equality, we obtain Ker (∂ |Λk N) = ∂
(
Λk+1N

)
.

Next, we shall prove that ωk is surjective and that Ker (ωk) = ∂
(
Λk+1N

)
.

We WLOG assume that k > 0, since the k = 0 case is easily done by hand
(remember that ω0 = 0 and Sλ0

= 0 by definition, and observe that ∂
(
Λ1N

)
contains ∂ (e1) = 1 and thus is the whole Λ0N). Hence, Sλk

is defined as the
span of all V

(
xi1 , xi2 , . . . , xik

)
. Thus, the surjectivity of ωk is obvious from its

definition.
Proposition 2.1 yields ∂ε1 + ε1∂ = id. Hence, ΛkN = ε1

(
Λk−1N

)
+ ∂

(
Λk+1N

)
.

Lemma 2.5 says that ωk∂ = 0 on Λk+1N. In other words, ∂
(
Λk+1N

)
⊆

Ker (ωk).
Lemma 2.6 shows that ε1ηωk = id on ε1

(
Λk−1N

)
(where η is as defined

in that lemma). Hence, the map ωk is injective when restricted to ε1
(
Λk−1N

)
(since it has a left inverse ε1η). In other words, Ker (ωk) ∩ ε1

(
Λk−1N

)
= 0.

But a general fact (easy exercise) about modules says the following: If A, B, C
are three k-submodules of a k-module M satisfying M = A + B and B ⊆ C
and C ∩ A = 0, then B = C. Applying this to M = ΛkN and A = ε1

(
Λk−1N

)
and B = ∂

(
Λk+1N

)
and C = Ker (ωk), we obtain ∂

(
Λk+1N

)
= Ker (ωk) (since

ΛkN = ε1
(
Λk−1N

)
+ ∂

(
Λk+1N

)
and ∂

(
Λk+1N

)
⊆ Ker (ωk) and Ker (ωk) ∩

ε1
(
Λk−1N

)
= 0). Hence, Ker (ωk) = ∂

(
Λk+1N

)
is proved. Combining this

with Ker (∂ |Λk N) = ∂
(
Λk+1N

)
, we conclude that (13) holds.

By the homomorphism theorem, we have Im (ωk) ∼= ΛkN⧸Ker (ωk) as Sn-
representations (since ωk is a morphism of Sn-representations). Since ωk is
surjective, we have Im (ωk) = Sλk

and thus

Sλk
= Im (ωk) ∼= ΛkN⧸ Ker (ωk)︸ ︷︷ ︸

=∂(Λk+1N)

= ΛkN⧸∂
(

Λk+1N
)
= (Coker ∂)k

as Sn-representations. Thus we have proved (14), and Theorem 2.7 is proven.
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We can now show that Peel’s maps fk are well-defined and form an exact
sequence, and in fact form a commutative diagrams with the maps (−1)k ε on
ΛN and the morphisms ωk:

Theorem 2.8. Assume that n = 0 in k. Then, for each k > 0, the map

fk : Sλk → Sλk+1
,

V
(
xi1 , xi2 , . . . , xik

)
7→ ∑

s∈[n]
V
(
xi1 , xi2 , . . . , xik , xs

)
is a well-defined morphism of Sn-representations. Let furthermore f0 :
Sλ0 → Sλ1

be the zero map 0. Then, the diagram

ΛkN
(−1)kε

//

ωk
��

Λk+1N

ωk+1
��

Sλk

fk

// Sλk+1

(15)

commutes for each k ∈ N. Thus, the sequence

· · · fk−2−→ Sλk−1 fk−1−→ Sλk fk−→ Sλk+1 fk+1−→ · · · (16)

is exact and has a k-linear (but not Sn-equivariant) chain contraction.

Proof. First, we note that the Sn-action is not relevant to any claims of the the-
orem, except for the easy claim that fk is a morphism of Sn-representations.
Thus, we can forget about this action now (although this does not simplify
much, just taking some minor cargo off our backs).

Theorem 2.7 shows that for each k ∈ N, the map ωk : ΛkN → Sλk
is surjective

and has kernel Ker (ωk) = ∂
(
Λk+1N

)
. Thus, this map gives rise to a canonical

isomorphism

ω′
k : ΛkN⧸∂

(
Λk+1N

) ∼=→ Sλk
,

v 7→ ωk (v)

(where v denotes the projection of a vector v onto the quotient). Since we have
ΛkN⧸∂

(
Λk+1N

)
= (Coker ∂)k, we can rewrite this as

ω′
k : (Coker ∂)k

∼=→ Sλk
,

v 7→ ωk (v) .

Using these isomorphisms ω′
k, we can turn the morphisms ε′ : (Coker ∂)k →

(Coker ∂)k+1 from Proposition 2.3 into morphisms ε′′k : Sλk → Sλk+1
so that the
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diagram

(Coker ∂)k
ε′ //

ω′
k

∼=
��

(Coker ∂)k+1

ω′
k+1

∼=
��

Sλk

ε′′k

// Sλk+1

(17)

commutes (explicitly, we set ε′′k := ω′
k+1ε′

(
ω′

k
)−1 on Sλk

). Consider these mor-
phisms ε′′k . Let us furthermore define a new morphism

gk := (−1)k ε′′k : Sλk → Sλk+1
for each k ∈ N.

Thus, gk differs from ε′′k only in the sign factor (−1)k. Hence, the commutative
diagram (17) yields a commutative diagram

(Coker ∂)k
(−1)kε′

//

ω′
k

∼=
��

(Coker ∂)k+1

ω′
k+1

∼=
��

Sλk

gk
// Sλk+1

(18)

(obtained from it by scaling both horizontal arrows by (−1)k).
We claim that the new maps gk are precisely the maps fk defined in the

theorem (and, in particular, the latter maps fk are well-defined). Indeed, this is
obvious for k = 0, so let us take k > 0. Let (i1, i2, . . . , ik) ∈ [n]k. Then,

V
(
xi1 , xi2 , . . . , xik

)
= ωk

(
ei1 ∧ ei2 ∧ · · · ∧ eik

)
(by the definition of ωk)

= ω′
k
(
ei1 ∧ ei2 ∧ · · · ∧ eik

) (
by the definition of ω′

k
)

;

thus,

gk
(
V
(
xi1 , xi2 , . . . , xik

))
= gk

(
ω′

k
(
ei1 ∧ ei2 ∧ · · · ∧ eik

))
= ω′

k+1

(
(−1)k ε′

(
ei1 ∧ ei2 ∧ · · · ∧ eik

))
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(since the diagram (18) commutes). Since

(−1)k ε′
(
ei1 ∧ ei2 ∧ · · · ∧ eik

)
= (−1)k ε

(
ei1 ∧ ei2 ∧ · · · ∧ eik

) (
by the definition of ε′

)
= (−1)k e ∧ ei1 ∧ ei2 ∧ · · · ∧ eik (by the definition of ε)

= (−1)k

 ∑
s∈[n]

es

 ∧ ei1 ∧ ei2 ∧ · · · ∧ eik

since e = ∑
s∈[n]

es


= ∑

s∈[n]
(−1)k es ∧ ei1 ∧ ei2 ∧ · · · ∧ eik︸ ︷︷ ︸

=ei1
∧ei2∧···∧eik

∧es

= ∑
s∈[n]

ei1 ∧ ei2 ∧ · · · ∧ eik ∧ es,

this rewrites as

gk
(
V
(
xi1 , xi2 , . . . , xik

))
= ω′

k+1

 ∑
s∈[n]

ei1 ∧ ei2 ∧ · · · ∧ eik ∧ es


= ωk+1

 ∑
s∈[n]

ei1 ∧ ei2 ∧ · · · ∧ eik ∧ es

 (
by the definition of ω′

k+1
)

= ∑
s∈[n]

V
(
xi1 , xi2 , . . . , xik , xs

)
(by the definition of ωk+1) .

So we have shown that gk : Sλk → Sλk+1
is a k-linear map that sends each

V
(
xi1 , xi2 , . . . , xik

)
to ∑

s∈[n]
V
(
xi1 , xi2 , . . . , xik , xs

)
. But this is exactly what the map

fk is supposed to do. Thus, it follows that the map fk is well-defined (it is
unique since the V

(
xi1 , xi2 , . . . , xik

)
span Sλk

), and that gk = fk.
We have thus proved that for each k ∈ N, the map fk is well-defined and

satisfies gk = fk. As we said, it is easy to show that fk is a morphism of Sn-
representations.

Now, the commutative diagram (18) rewrites as

(Coker ∂)k
(−1)kε′

//

ω′
k

∼=
��

(Coker ∂)k+1

ω′
k+1

∼=
��

Sλk

fk

// Sλk+1

(19)
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(since gk = fk). Now, we consider the diagram

ΛkN
(−1)kε

//

����

Λk+1N

����

(Coker ∂)k
(−1)kε′

//

ω′
k

∼=
��

(Coker ∂)k+1

ω′
k+1

∼=
��

Sλk

fk

// Sλk+1

(20)

(where the two topmost vertical arrows are canonical projections ΛN → Coker ∂).
This diagram is commutative, because the top square commutes (indeed, it is
just the diagram (10) with both horizontal arrows scaled by (−1)k) and the
bottom square commutes (this square is just the diagram (19)). Composing
the vertical arrows in this diagram (and recalling that ω′

k (v) = ωk (v) for each
v ∈ ΛkN), we obtain the commutative diagram

ΛkN
(−1)kε

//

ωk
��

Λk+1N

ωk+1
��

Sλk

fk

// Sλk+1

.

Thus we have shown that the diagram (15) commutes.
Recall from Theorem 2.4 that the sequence

· · · ε′−→ (Coker ∂)k−1
ε′−→ (Coker ∂)k

ε′−→ (Coker ∂)k+1
ε′−→ · · ·

is exact and has a k-linear chain contraction. Hence, the same is true of the
sequence

· · · (−1)k−2ε′−→ (Coker ∂)k−1
(−1)k−1ε′−→ (Coker ∂)k

(−1)kε′−→ (Coker ∂)k+1
(−1)k+1ε′−→ · · ·

(because the exactness of a sequence is preserved when we scale every other ar-
row by −1, and the same holds for the existence of a chain contraction; indeed,
this is just the shift functor A 7→ A [1] on chain complexes). Thus, the same is
true of the sequence

· · · fk−2−→ Sλk−1 fk−1−→ Sλk fk−→ Sλk+1 fk+1−→ · · · ,

because the commutative diagram (19) reveals that these two sequences are

isomorphic (with isomorphism given by ω′
k : (Coker ∂)k

∼=→ Sλk
). This finishes

the proof of Theorem 2.8.
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