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We discuss the hook length formula and some related results.

1. The hook length formula

1.1. Recalling definitions

• We follow the notations in the notes.

• Each partition λ = (λ1, λ2, . . . , λk) has a Young diagram Y (λ)
associated to it:

λ1 cells:

λ2 cells:

λ3 cells:
...

λk cells:

If two partitions λ and µ satisfy Y (µ) ⊆ Y (λ) (or, short: µ ⊆ λ),
then the skew Young diagram Y (λ/µ) is defined to be Y (λ) \
Y (µ).

• Let D be a diagram. A standard tableau of shape D is a bijec-
tive filling of D with the numbers 1, 2, . . . , n such that the en-
tries increase left-to-right along rows and top-to-bottom along
columns.
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https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
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Examples:

straight-shaped skew-shaped

1 3 7

2 4

5 6

3 5 6

2 4

1 7

• We will only consider straight shapes Y (λ) and skew shapes
Y (λ/µ) in this talk.

• We say “tableau of shape λ” instead of “tableau of shape Y (λ)”.

Likewise for λ/µ.

• If c is a cell of Y (λ), then we define the hook Hλ (c) of this cell
in λ to be

Hλ (c) := {c} ∪ {all cells of Y (λ) due east of c}
∪ {all cells of Y (λ) due south of c} .

For example, if λ = (7, 6, 4, 3) and c = (2, 3), then Hλ (c) is the
set of all green cells here:

.

1.2. The hook length formula

• The hook length formula: For any partition λ of n, we have

(# of standard tableaux of shape λ) =
n!

∏
c∈Y(λ)

|Hλ (c)|
.

• Example: If λ = (3, 2), then this becomes

(# of standard tableaux of shape (3, 2)) =
5!

4 · 3 · 1 · 2 · 1 = 5.

Here are the hooks of all five cells:
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and here are the five standard tableaux:

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 3 4

2 5

1 3 5

2 4
.

• Example: Let λ = (m, m) (so that n = 2m). Then, the hook
length formula becomes

(# of standard tableaux of shape (m, m))

=
(2m)!

((m + 1)m (m− 1) · · · 2) · (m (m− 1) (m− 2) · · · 1)

=
1

m + 1

(
2m
m

)
.

Looks familiar? This is the m-th Catalan number Cm. And in-
deed, there is a bijection to Dyck paths:

←→ 1 2 5

3 4 6
.

←→ 1 2 4

3 5 6
.

1.3. How not to prove the hook length formula

• The hook length formula: For any partition λ of n, we have

(# of standard tableaux of shape λ) =
n!

∏
c∈Y(λ)

|Hλ (c)|
.

• Isn’t this easy?

– There are n! bijective fillings of Y (λ) with the numbers
1, 2, . . . , n.
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– Such a filling is a standard tableau if and only if for each
cell c ∈ Y (λ), the entry in cell c is smaller than all other
entries in its hook Hλ (c).

e.g.:
a b1 b2 b3

b4

b5

a < b1, b2, b3, b4, b5.

The probability for this is
1

|Hλ (c)|
.

– Multiplying these probabilities over all cells c, we get
1

∏
c∈Y(λ)

|Hλ (c)|
,

thus the formula.

• Alas, it is not this easy: The events are not independent, so we
cannot just multiply their probabilities. That we got the right
result is a surprise and needs proof!

1.4. Some context

• Standard basis theorem (Theorem 5.9.1 in the notes): The Specht
module Sλ := SY(λ) has a basis indexed by the standard tableaux
of shape λ.

• Thus, the hook length formula gives the rank (= dimension) of
this Specht module.

• Actually, the standard basis theorem holds for skew Young di-
agrams as well, but the hook length formula does not apply to
them.

• This all is unnecessary to understand and prove the hook length
formula. But it is the very context in which tableaux were orig-
inally defined by Alfred Young ca. 1902.

1.5. Some history

• Young never stated the hook length formula in its present form.
What he found was the following (1928):

https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
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• Young’s quotient formula: Let λ = (λ1, λ2, . . . , λk) be any par-
tition with |λ| = n. Let ℓi := λi + k− i for each i ∈ [k]. Then,
the # of standard tableaux of shape Y (λ) is

n!
ℓ1! · ℓ2! · · · · · ℓk! ∏

1≤i<j≤k

(
ℓi − ℓj

)
.

• He gave essentially two proofs.

• One proof (1901–1928) is quite intricate, using Specht modules
and long computations with Young symmetrizers. The main
idea is to expand the squared Young symmetrizer E2

T in two

ways: once using the Young symmetrizer theorem E2
T =

n!
f λ

ET

(Theorem 5.11.3 in the notes), and again by writing

E2
T = ∇−Col T∇Row T∇−Col T∇Row T

and gradually “dissolving” the inner ∇−Col T factor by factoring
it and cancelling pieces of it against the adjacent ∇Row T factors.

Note that Young knew the standard basis theorem and even
some of the Garnir relations, though his proof of the former
was much more complicated.

A variant of this proof appears in §5.21 (last section of Chapter
5, in case the numbering shifts) of the notes.

• The other proof (1928) is pretty elementary, and I will sketch it.

• The modern form of the hook length formula was found in
1953:

One Thursday in May of 1953, [Gilbert de Beauregard]
Robinson was visiting [James Sutherland] Frame at
Michigan State University. Discussing the work of
Staal (a student of Robinson), Frame was led to con-
jecture the hook formula. At first Robinson could not
believe that such a simple formula existed, but after
trying some examples he became convinced, and to-
gether they proved the identity. On Saturday they
went to the University of Michigan, where Frame pre-
sented their new result after a lecture by Robinson.
This surprised [Robert McDowell] Thrall, who was in

https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://en.wikipedia.org/wiki/Gilbert_de_Beauregard_Robinson
https://en.wikipedia.org/wiki/Gilbert_de_Beauregard_Robinson
http://sections.maa.org/michigan/newsletters/Fall97Newsletter/frame.html
https://en.wikipedia.org/wiki/Robert_M._Thrall
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the audience, because he had just proved the same
result on the same day!

(Bruce Sagan)

• This is perhaps less surprising once you realize that Young’s
quotient formula was known by then, and the leap to the hook
length formula was not that large: you just need to show that

1
∏

c∈Y(λ)
|Hλ (c)|

=
1

ℓ1! · ℓ2! · · · · · ℓk! ∏
1≤i<j≤k

(
ℓi − ℓj

)
,

which can be done by induction on k (removing the first row of
Y (λ)).

1.6. Proofs galore

• The hook length formula is the quadratic reciprocity of alge-
braic combinatorics: every text gives a proof. Quite a few of
them are different: e.g.

– Young 1901–1928 using Young symmetrizers;

– Young 1928 using rational functions (sketched below);

– James 1978 using determinants;

– Greene, Nijenhuis, Wilf 1979 using discrete probability;

– Novelli, Pak, Stojanovskii 1997 by an intricate (multi)bijection;

– ...

See §11.2 in Igor Pak’s arXiv:2209.06142v1 for a partial taxon-
omy.

1.7. Young’s rational functions proof

• Let me sketch Young’s second proof, from his 1928 paper On
Quantitative Substitutional Analysis (Third Paper).

We shall prove Young’s quotient formula; as we mentioned, the
hook length formula follows easily.

https://www-users.cse.umn.edu/~webb/oldteaching/Year2010-11/the-representation-theory-of-the-symmetric-groups-SLN.pdf
https://www2.math.upenn.edu/~wilf/website/Probabilistic proof.pdf
https://www.math.ucla.edu/~pak/papers/bij.pdf
https://arxiv.org/abs/2209.06142v1
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• We let

f λ := (# of standard tableaux of shape λ) and

gλ :=
n!

ℓ1! · ℓ2! · · · · · ℓk! ∏
1≤i<j≤k

(
ℓi − ℓj

)
,

where λ = (λ1, λ2, . . . , λk) is a partition with |λ| = n, and where
ℓi := λi + k− i for each i ∈ [k].

Our goal is to show that f λ = gλ.

• Assume at first that all rows of Y (λ) have distinct lengths, i.e.,
that

λ1 > λ2 > · · · > λk.

A standard tableau of shape λ must have its entry n in some cell
that is at the end of one of its rows, say the i-th row. Removing
that cell leaves us with a standard tableau of shape

λ− ei := (λ1, λ2, . . . , λi−1, λi − 1, λi+1, λi+2, . . . , λk) .

λ λ− ei

n
7→

This is a bijection. Thus,

f λ = f λ−e1 + f λ−e2 + · · ·+ f λ−ek ,

which is a recursion for f λ.

• This is also true without the “distinct lengths” assumption, as
long as we understand f λ−ei to be 0 when λ− ei is not a partition
(i.e., when λi = λi+1). This makes perfect sense: The entry n
cannot lie at the end of the i-th row in this case.

λ λ− ei

n

cannot happen

7→

not a partition
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• If we can prove the same recursion for gλ, that is,

gλ ?
= gλ−e1 + gλ−e2 + · · ·+ gλ−ek ,

then we will be done by induction. So this recursion is our new
goal. Note that we keep trailing zeroes in our partition (e.g., we
don’t simplify (3, 2, 0) to (3, 2)), so that k remains fixed.

• Expanding both sides of

gλ ?
= gλ−e1 + gλ−e2 + · · ·+ gλ−ek

using

gλ =
n!

ℓ1! · ℓ2! · · · · · ℓk! ∏
1≤i<j≤k

(
ℓi − ℓj

)
(by definition) ;

gλ−ep =
(n− 1)!

ℓ1! · ℓ2! · · · · · ℓp−1! ·
(
ℓp − 1

)
! · ℓp+1! · · · · · ℓk!

∏
1≤i<j≤k


ℓi − ℓj, if i, j ̸= p;(
ℓp − 1

)
− ℓj, if i = p;

ℓi −
(
ℓp − 1

)
, if j = p,

(likewise) ,

we see that most factors cancel, and we are left with proving
that

n ?
=

k

∑
p=1

ℓp

(
k

∏
j=p+1

(
ℓp − 1

)
− ℓj

ℓp − ℓj

)(
p−1

∏
i=1

ℓi −
(
ℓp − 1

)
ℓi − ℓp

)
.

In view of n =
k
∑

p=1
λp =

k
∑

p=1
ℓp −

(
k
2

)
, this rewrites as

k

∑
p=1

ℓp−
(

k
2

)
?
=

k

∑
p=1

ℓp

(
k

∏
j=p+1

(
ℓp − 1

)
− ℓj

ℓp − ℓj

)(
p−1

∏
i=1

ℓi −
(
ℓp − 1

)
ℓi − ℓp

)
.

• This is an identity between rational functions in ℓ1, ℓ2, . . . , ℓk.
Thus, if it is to be true for all positive integers ℓ1 > ℓ2 > · · · > ℓk,
then it must be true for all ℓ1, ℓ2, . . . , ℓk ∈ C. This means that
we can forget what our ℓ1, ℓ2, . . . , ℓk are and just focus on this
identity as an algebraic identity!

• There are several ways to prove this identity. Here is Young’s:



The hook length formula (talk) page 9

• First combine the two products on the RHS:(
k

∏
j=p+1

(
ℓp − 1

)
− ℓj

ℓp − ℓj

)(
p−1

∏
i=1

ℓi −
(
ℓp − 1

)
ℓi − ℓp

)
= ∏

i∈[k];
i ̸=p

(
ℓp − 1

)
− ℓi

ℓp − ℓi
.

So we need to show that

k

∑
p=1

ℓp −
(

k
2

)
?
=

k

∑
p=1

ℓp ∏
i∈[k];
i ̸=p

(
ℓp − 1

)
− ℓi

ℓp − ℓi
.

• Using the polynomial

f (x) := (x− ℓ1) (x− ℓ2) · · · (x− ℓk) ,

we can write

∏
i∈[k];
i ̸=p

(
ℓp − 1

)
− ℓi

ℓp − ℓi
= −

f
(
ℓp − 1

)
∏

i∈[k];
i ̸=p

(
ℓp − ℓi

) .

So we need to show that

k

∑
p=1

ℓp −
(

k
2

)
?
= −

k

∑
p=1

ℓp
f
(
ℓp − 1

)
∏

i∈[k];
i ̸=p

(
ℓp − ℓi

) .

• Sylvester’s identity says that

– every polynomial Φ ∈ C [x] of degree < k− 1 satisfies

k

∑
p=1

Φ
(
ℓp
)

∏
i∈[k];
i ̸=p

(
ℓp − ℓi

) = 0.

– slightly more generally: if Φ ∈ C [x] is a polynomial of
degree ≤ k− 1, and if φk−1 is its xk−1-coefficient, then

k

∑
p=1

Φ
(
ℓp
)

∏
i∈[k];
i ̸=p

(
ℓp − ℓi

) = φk−1.

https://arxiv.org/abs/2212.13624v2
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[Proof: Lagrange interpolation says that

k

∑
p=1

Φ
(
ℓp
) ∏

i∈[k];
i ̸=p

(x− ℓi)

∏
i∈[k];
i ̸=p

(
ℓp − ℓi

) = Φ (x) .

Compare coefficients before xk−1.]

• We cannot apply this to the polynomial

Φ = x f (x− 1)
= x (x− 1− ℓ1) (x− 1− ℓ2) · · · (x− 1− ℓk)

directly, since its degree is too large (k + 1 rather than ≤ k− 1).
But we can instead apply it to the “second-order approxima-
tion”

Φ := x ( f (x− 1)− f (x) + f ′ (x)) ,

which is a polynomial of degree ≤ k − 1 because subtracting
f (x)− f ′ (x) has cancelled the two highest terms (cf. Taylor se-

ries: f (x− 1) = f (x)− f ′ (x) +
1
2

f ′′ (x)− 1
6

f ′′′ (x)± · · · ). Thus
we get

k

∑
p=1

ℓp
(

f
(
ℓp − 1

)
− f

(
ℓp
)
+ f ′

(
ℓp
))

∏
i∈[k];
i ̸=p

(
ℓp − ℓi

) = φk−1 =
k (k− 1)

2
,

since

f (x− 1)− f (x) + f ′ (x) =
1
2

f ′′ (x)− 1
6

f ′′′ (x)± · · · .

Subtracting

k

∑
p=1

−ℓp f
(
ℓp
)

∏
i∈[k];
i ̸=p

(
ℓp − ℓi

) = 0
(
since f

(
ℓp
)
= 0

)
and

k

∑
p=1

ℓp f ′
(
ℓp
)

∏
i∈[k];
i ̸=p

(
ℓp − ℓi

) = k

∑
p=1

ℓp

since f ′
(
ℓp
)
= ∏

i∈[k];
i ̸=p

(
ℓp − ℓi

) ,
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we obtain

k

∑
p=1

ℓp
f
(
ℓp − 1

)
∏

i∈[k];
i ̸=p

(
ℓp − ℓi

) = k (k− 1)
2

− 0−
k

∑
p=1

ℓp

=

(
k
2

)
−

k

∑
p=1

ℓp

and thus

k

∑
p=1

ℓp −
(

k
2

)
= −

k

∑
p=1

ℓp
f
(
ℓp − 1

)
∏

i∈[k];
i ̸=p

(
ℓp − ℓi

) ,

as desired.

• We are almost done. We need to show that f λ−ep = gλ−ep holds
when λ− ep is not a partition. (This is essentially the base case
of our recursion, along with the easy case λ = (0, 0, . . . , 0).)

This is easy: f λ−ep = 0 by definition, whereas

gλ−ep =
(n− 1)!

ℓ1! · ℓ2! · · · · · ℓp−1! ·
(
ℓp − 1

)
! · ℓp+1! · · · · · ℓk!

∏
1≤i<j≤k


ℓi − ℓj, if i, j ̸= p;(
ℓp − 1

)
− ℓj, if i = p;

ℓi −
(
ℓp − 1

)
, if j = p,

= 0

since the factor for (i, j) = (p, p + 1) is 0 (check it!).

• Thus the proof of the hook length formula is complete.

• This proof still keeps getting rediscovered: e.g., Glass and Ng,
A Simple Proof of the Hook Length Formula, The American Math-
ematical Monthly 111 (2004), pp. 700–704. (With minor vari-
ations: e.g., they use the residue theorem instead of Lagrange
interpolation.)

https://web.archive.org/web/20231014121836/http://pds21.egloos.com/pds/201412/17/93/glass.ng.2004.pdf
https://web.archive.org/web/20231014121836/http://pds21.egloos.com/pds/201412/17/93/glass.ng.2004.pdf
https://web.archive.org/web/20231014121836/http://pds21.egloos.com/pds/201412/17/93/glass.ng.2004.pdf
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2. Naruse’s skew hook length formula

2.1. The Young–Frobenius–Aitken determinant
formula

• Now what about skew shapes?

(# of standard tableaux of shape λ/µ) = ???

• Example: Let λ/µ = (3, 2) / (1), so that

Y (λ/µ) = .

Then,
(# of standard tableaux of shape λ/µ) = 5.

This is not
4!

an integer
, so don’t expect any

n!
∏

-type formula any
more.

• For a long time, the best formula known was the Young–Frobenius–
Aitken determinantal formula

(# of standard tableaux of shape λ/µ)

= n! · det

(
1(

λi − µj − i + j
)
!

)
i,j∈[k]

,

where λ = (λ1, λ2, . . . , λk) and µ = (µ1, µ2, . . . , µk) and where

we set
1

m!
:= 0 for m < 0.

This goes back to Frobenius (1900) as a formula for dim
(
Sλ/µ

)
(at least for µ = ∅), then made combinatorial by Young (1935?)
as he realized that Sλ/µ has a standard tableau basis.

For a modern proof, see e.g. Theorem 5.6 in Adin/Roichman,
Enumeration of Standard Young Tableaux, arXiv:1408.4497v2 (also
a lot more there).

Alternatively, if you know the Jacobi–Trudi formula for the Schur
function sλ/µ, you can evaluate it at 1, 1, . . . , 1︸ ︷︷ ︸

k ones

, 0, 0, . . . , 0 and

consider the leading term as k → ∞. (The larger k gets, the
less likely is a semistandard tableau with entries in {1, 2, . . . , k}
to have two equal entries!)

https://arxiv.org/abs/1408.4497v2
https://arxiv.org/abs/1408.4497v2
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• Recently, two formulas generalizing the hook length formula
came into existence. I will introduce the Naruse hook length
formula (Naruse 2014).

2.2. Excited diagrams

• Let D be any diagram.

• An excited move for a cell c = (i, j) ∈ D means moving this cell
from (i, j) to (i + 1, j + 1).

This is allowed only if the three cells marked × in the picture
below (that is, (i + 1, j) , (i, j + 1) , (i + 1, j + 1)) are not in D.

c ×
× ×

→
× ×
× c

• Examples:

c
7−→

c

allowed.

c
̸ 7−→

c

forbidden.

c
̸ 7−→

c

forbidden.

c
̸ 7−→

c

forbidden.
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• An excitation of a diagram D is a diagram obtained from D by a
sequence of excited moves. (This sequence can be empty, so D
itself is an excitation of D.)

• Example: Start with Y (2, 2, 1) and make some excited moves:

7−→ 7−→

7−→ 7−→ ,

so each of these five diagrams is an excitation of the first.

2.3. Naruse’s skew hook length formula

• Naruse’s skew hook length formula: Let λ and µ be two parti-
tions with µ ⊆ λ and |Y (λ/µ)| = n. Then,

(# of standard tableaux of shape λ/µ)

= n! ∑
E is an excitation of Y(µ);

E⊆Y(λ)

∏
c∈Y(λ)\E

1
|Hλ (c)|

.

• Example: If λ = (2, 2, 2) and µ = (1, 1), then the E’s in the sum
are

∗
∗

, ∗

∗

,
∗
∗
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(where the cells in E are now marked with ∗s). Thus,

(# of standard tableaux of shape λ/µ)

= 4! ·
(

1
3 · 2 · 1 · 2 +

1
3 · 2 · 3 · 2 +

1
3 · 2 · 3 · 4

)
=

4!
12

+
4!
36

+
4!
72

= 2 +
2
3
+

1
3
= 3.

• Note that we are adding non-integers to get an integer. A strong
sign that this is a hard theorem!

• History:

2014: Naruse states his formula in a talk, omitting the proof.
Supposedly his proof uses algebraic geometry, which is
where the notion of excited diagrams originated.

2015–21: Morales, Pak and Panova write a series of four papers (#1,
#2, #3, #4) giving several proofs, which are more combina-
torial but still intricate and advanced.

2023: Grinberg, Korniichuk, Molokanov, Khomych (the latter three
are high school students at the time of writing) find a proof
that is completely elementary but very long (arXiv:2310.18275).
This also proves a “weighted” generalization of the for-
mula.

2024: Panova and Petrov publish two simpler proofs (arXiv:2409.17842)
using a bit of complex analysis and lattice methods.

• Excited diagrams are hard to work with. Each proof (I think)
starts out by re-encoding them as semistandard tableaux of
shape µ satisfying certain conditions.

3. More about counting standard tableaux

3.1. Classical formulas

• Now we return to straight shapes Y (λ).

• For any partition λ, let f λ be the # of standard tableaux of shape
λ.

• “λ ⊢ n” is shorthand for “λ is a partition of n”.

https://www.emis.de/journals/SLC/wpapers/s73vortrag/naruse.pdf
https://arxiv.org/abs/1512.08348v5
https://arxiv.org/abs/1610.04744
https://arxiv.org/abs/1707.00931
https://arxiv.org/abs/2108.10140
https://arxiv.org/abs/2310.18275
https://arxiv.org/abs/2409.17842
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• Classical theorems (Young 1928 and Littlewood?): Let n ∈ N.
Then:

(a) We have

∑
λ⊢n

(
f λ
)2

= n! = (# of all permutations w ∈ Sn) .

(b) We have

∑
λ⊢n

f λ =
n

∑
k=0

(
n
2k

)(
2k
k

)
k!

2k = (# of all involutions w ∈ Sn) .

• Part (a) is Corollary 5.12.18 in the notes, where it is proved using
Young symmetrizers and the center of k [Sn].

Part (b) is Corollary 5.21.11 in the notes, where it is proved
using a bespoke basis of k [Sn].

• But these are combinatorial identities, so can’t we just prove
them combinatorially?

• Yes! Two ways:

– explicitly bijective via the Robinson–Schensted–Knuth corre-
spondence;

– recursive via “one-step bijections”.

Both are explained in Marc A. A. van Leeuwen, The Robinson-
Schensted and Schützenberger algorithms, an elementary approach,
1996. In a deeper sense, they are equivalent, since the Robinson–
Schensted–Knuth correspondence can be assembled from the
“one-step bijections”.

3.2. A proof sketch

• Let me outline the second proof (§1 of van Leeuwen’s paper).

• If µ and λ are two partitions, then the notation “µ ⋖ λ” will
mean “Y (λ) = Y (µ) ∪ {a single box not in Y (µ)}”, or equiva-
lently “µ ⊆ λ and |λ| = |µ|+ 1”.

https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/24s/sga.pdf
https://en.wikipedia.org/wiki/Robinson-Schensted-Knuth_correspondence
https://en.wikipedia.org/wiki/Robinson-Schensted-Knuth_correspondence
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/foata-fest.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/foata-fest.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/foata-fest.pdf
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/foata-fest.pdf
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• Example:

⋖ ⋖ ⋖ .

• Lemma A: For any partition λ, we have

(# of partitions µ such that λ ⋖ µ)

= (# of partitions µ such that µ ⋖ λ) + 1.

Proof idea: We must prove that

(# of ways to add a cell to Y (λ) and get a partition)
= (# of ways to remove a cell from Y (λ) and get a partition)− 1.

But the former and the latter ways “alternate” as you scan Y (λ)
from top to bottom:

(green = addable cells; red = removable cells).

• Lemma B: Given two partitions λ ̸= ν, we have

(# of partitions µ such that λ ⋖ µ and ν ⋖ µ)

= (# of partitions µ such that µ ⋖ λ and µ ⋖ ν) .

Proof idea: If λ and ν have the same size and differ in only two
boxes, then this is saying 1 = 1. Otherwise, it is saying 0 = 0.
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• Lemma C: For any nonempty partition λ, we have

∑
µ⋖λ

f µ = f λ.

Proof idea: This is our old friend

f λ = f λ−e1 + f λ−e2 + · · ·+ f λ−ek .

• Lemma D: For any partition λ, we have

∑
λ⋖µ

f µ = (|λ|+ 1) f λ.

Proof idea: Combine Lemmas A, B and C and induct on |λ|.
The induction step in a bit more detail:

∑
λ⋖µ

f µ = ∑
λ⋖µ

∑
ν⋖µ

f ν (by Lemma C)

= f λ + ∑
µ⋖λ

∑
µ⋖ν

f ν

 by comparing coefficients
in front of each f ν,

using Lemma A and Lemma B


= f λ + ∑

µ⋖λ

(|µ|+ 1) f µ

(
by induction hypothesis for µ,

since |µ| = |λ| − 1

)
= f λ + ∑

µ⋖λ

|λ| f µ = f λ + |λ| ∑
µ⋖λ

f µ

= f λ + |λ| f λ (by Lemma C)

= (|λ|+ 1) f λ.

• Now, setting

σ2 (n) = ∑
λ⊢n

(
f λ
)2

and σ1 (n) = ∑
λ⊢n

f λ,

we easily find the recursions

σ2 (n) = nσ2 (n− 1) and
σ1 (n) = σ1 (n− 1) + (n− 1) σ1 (n− 2) ,

which lead to the explicit formulas σ2 (n) = n! and σ1 (n) =
(# of all involutions w ∈ Sn), qed.

• The idea of this proof goes back to Rutherford, Substitutional
Analysis, Edinburgh 1948, §15.
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