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Math 235 Fall 2024, Lecture 9 stenogram:
Enumerative combinatorics

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

1. Invariants and Monovariants

This was less of a proper lecture than a discussion session. See the lecture
notes (Chapter 8) for details.

Exercise 1. A chunk of ice is floating in the sea. At each moment, a chunk
can break into either 3 or 5 smaller chunks. Can we get precisely 100 chunks?

Solution. No.
Proof. The parity of the # of chunks is invariant.

Exercise 2. The numbers 1, 2, . . . , 100 are written in a row (in this order).
In a move, you can swap any two numbers at a distance of 2.
Can you end up with the same numbers in the reverse order

(100, 99, . . . , 1)?

Solution. No.
Proof. The set of all numbers in the even positions stays unchanged; so does

the set of all numbers in the odd positions. Originally, 1 was in an odd position,
but in the end we want it to move to an even position. This is clearly impossible.

Example 1.0.1. Let n ≥ 2 be an integer. Consider n trees arranged in a circle,
with one sparrow sitting on each tree.

Every minute, two of the n sparrows move: one moves to the next tree
clockwise, and one moves to the next tree counterclockwise.

Is it possible that, after some time, all sparrows end up on the same tree?
Answer this in dependence on n.

Solution. Yes if n is odd; no if n is even.
Proof. When n is odd, we can just pick a tree and have every sparrow move

to that tree, making sure to always move them in pairs of opposite sparrows
with respect to that tree.

When n is even, we can find an invariant:

∑
s is a sparrow

(the number of the tree that s sits on) .
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More precisely, this sum is not literally invariant, but it changes by increments
of n, −n or 0, so its remainder modulo n is an invariant. At the onset, this sum

is 1 + 2 + · · ·+ n =
n (n + 1)

2
≡ n

2
̸≡ 0 mod n, whereas our goal is to make it

n · k ≡ 0 mod n. So it is impossible.

Example 1.0.2. Let n ≥ 3 and m ≥ 3 be two integers. You have a rectangular
n×m-grid of lamps. Initially, all nm lamps are off. In a move, you can choose
a row or a column of the grid, and flip all lamps in this row or column.

Can you, by such moves, obtain a state in which the four corner lamps are
on while all the remaining lamps are off?

Solution. No.
Proof. Consider the first two lamps of the first two rows of the grid. These

altogether four lamps have the property that at each point, an even number of
them will be on (indeed, this number can only change by 2, −2 or 0 in any
move). But initially, this number is 0, while our desired final state has it 1. So
we cannot reach the final state.

Exercise 3. Let n ∈ N. You start with an n-tuple (a1, a2, . . . , an) of real num-
bers. In one move, you are allowed to pick two adjacent entries ai and ai+1
that are out of order (i.e., satisfy ai > ai+1), and swap them. Prove that after

at most
(

n
2

)
such moves, the n-tuple will become weakly increasing.

Solution. An inversion of an n-tuple (a1, a2, . . . , an) means a pair (i, j) ∈ [n]2

with i < j and ai > aj. The total # of inversions of an n-tuple is always ≤(
n
2

)
. In each of our moves, this # decreases by exactly 1. So this # is a (strict)

monovariant.

Exercise 4. The numbers 1, 2, . . . , 99 are written in a row (in this order).
In a move, you can swap any two numbers at a distance of 2.
Can you end up with the same numbers in the reverse order (99, 98, . . . , 1)?

Solution. Yes.
Proof. Reverse the process: Start with 99, 98, . . . , 1 and try to get 1, 2, . . . , 99.
To get it, make swaps of the form . . . abc . . . → . . . cba . . . whenever a > c.
This boils down to the preceding exercise, applied separately to the numbers

in the even positions and to the numbers in the odd positions. So, after at most(
50
2

)
+

(
49
2

)
moves, the numbers in the even positions will be in increasing

order, and so will be the numbers in the odd positions. Moreover, as we know,
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the sets of the numbers in either set of positions don’t change. So the numbers
in the even positions must be 2, 4, . . . , 98 from left to right, while the numbers
in the odd positions must be 1, 3, . . . , 99 from left to right. So the total sequence
of numbers is now 1, 2, 3, 4, . . . , 99, as desired.

Exercise 5. Let n and m be two positive integers. You have a rectangular
n × m-grid of lamps. A line shall mean a row or a column of the grid (so
there are n + m lines in total).

In a move, you can choose a line and flip all the lamps on this line.
Prove that – starting with an arbitrary state of the lamps – you can always

find a sequence of moves after which each line has at least as many lamps
turned on as it has lamps turned off.

Solution. Proceed as follows (“greedy algorithm”): Pick a line that has fewer
on-lamps than off-lamps, and flip this line. Rinse and repeat.

Why will this terminate? Because the total # of on-lamps increases in each
move.

Exercise 6. Let n ≥ 2 be an integer. A country has n towns, the distances
between which are distinct.

(a) You start in a town A1. From there you travel to the town A2 that is
farthest away from A1. From there you travel to the town A3 that is farthest
away from A2. You continue travelling in this pattern.

Prove that if A3 ̸= A1, then you never come back to A1.
(b) Prove the same if “farthest away from” is replaced by “closest to”.

Solution. (a) By construction,

|A1A2| ≤ |A2A3| ≤ |A3A4| ≤ · · · .

If A1 ̸= A3, then the first ≤ sign here is actually a < sign, so we get |A1A2| <
|Ai Ai+1| for all i ≥ 2.

But if we come back to A1, then Ai = A1 for some i > 1, so that Ai+1 = A2
and therefore |A1A2| = |Ai Ai+1|, contradiction.

(b) Analogous: just flip every inequality sign.
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