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Math 235 Fall 2024, Lecture 8 stenogram:
Enumerative combinatorics

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

1. An enumerative combinatorics toolbox

Today I will talk about enumerative combinatorics, i.e., computing cardinali-
ties of finite sets, also known as counting.

This is Chapter 7 of the notes, and there is more in the notes, including more
details, more examples, and more references.

1.1. Basic rules for counting

• Bijection principle: Two sets X and Y satisfy |X| = |Y| if and only if there
exists a bijection f : X → Y.

• Sum rule: For k finite sets S1, S2, . . . , Sk, we always have

|S1 ∪ S2 ∪ · · · ∪ Sk| ≤ |S1|+ |S2|+ · · ·+ |Sk| .

Equality holds if and only if the sets S1, S2, . . . , Sk are disjoint.

• Product rule: For n finite sets A1, A2, . . . , An, we always have

|A1 × A2 × · · · × An| = |A1| · |A2| · · · · · |An| .

(For n = 0, this is saying |{()}| = 1.)

In particular, for any finite set A, we have

|An| = |A|n .

• Difference rule: If B is a subset of a finite set A, then

|A \ B| = |A| − |B| .

1.2. Notations

• If n ∈ N, then [n] shall mean the n-element set {1, 2, . . . , n}. In particular,
[1] = {1} and [0] = ∅.

• If A is a logical statement, then [A] means its truth value, defined by

[A] =

{
1, if A is true;
0, if A is false.

For example, [2 + 2 = 4] = 1 and [2 + 2 = 5] = 0.

• The symbol “#” stands for “number”.

https://www.cip.ifi.lmu.de/~grinberg/t/24f
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1.3. Fundamental counting results

Not all counting problems have explicit answers, but many of the most elemen-
tary ones do. Here are some:

Theorem 1.3.1. Let n ∈ N. Let S be an n-element set. Let k ∈ R. Then,

(# of k-element subsets of S) =
(

n
k

)
.

Proof. Induct on n for a straightforward proof. See Theorem 4.3.12 in the notes
for referenes.

Theorem 1.3.2. Let n ∈ N. Let S be an n-element set. Then,

(# of subsets of S) = 2n.

Proof. We denote the n elements of S by s1, s2, . . . , sn (in some order). Now there
is a bijection

{subsets of S} → {0, 1}n ,
I 7→ ([s1 ∈ I] , [s2 ∈ I] , . . . , [sn ∈ I]) .

The inverse map sends each bitstring (a1, a2, . . . , an) ∈ {0, 1}n to the subset
{i ∈ [n] | ai = 1}. Details in the notes.

Theorem 1.3.3. Let n ∈ N. A composition of n shall mean a tuple of positive
integers whose sum is n. Then,

(# of compositions of n) =

{
2n−1, if n ≥ 1;
1, if n = 0.

Example 1.3.4. The compositions of 3 are

(1, 1, 1) , (1, 2) , (2, 1) , (3) .

There are 4 of them, as the theorem predicts (23−1 = 4).

Proof of the theorem. The case n = 0 is obvious (the only composition of 0 is the
empty tuple ()). So we WLOG assume that n > 0. Hence, we must prove that

(# of compositions of n) = 2n−1.

The preceding theorem says that

(# of subsets of [n − 1]) = 2n−1.
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So we must prove that these two #s are equal. We can achieve this by construct-
ing a bijection

f : {compositions of n} → {subsets of [n − 1]} .

We define this bijection f as follows:

f (a1, a2, . . . , ak) = {a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ ak−1}
= {a1 + a2 + · · ·+ ai | i ∈ [k − 1]} .

The inverse map f−1 sends any given subset I = {i1 < i2 < · · · < ik−1} ⊆
[n − 1] to the composition

(i1 − i0, i2 − i1, i3 − i2, . . . , ik−1 − ik−2, ik − ik−1) ,

where we set i0 := 0 and ik := n. Details in the notes.

Theorem 1.3.5. Let A and B be two finite sets. Set m = |A| and n = |B|.
Then,

(# of maps from A to B) = nm.

Proof. Idea: A map f : A → B can be determined by specifying all its values.
That is, for each a ∈ A, we choose the value f (a) ∈ B. There are n options
for each of these values, and these choices are independent. So the total # of
possibilities is nn · · · n︸ ︷︷ ︸

m times

= nm.

More formally: Let the elements of A be a1, a2, . . . , am. Then, there is a bijec-
tion

{maps from A to B} → Bm,
f 7→ ( f (a1) , f (a2) , . . . , f (am)) .

Thus, by the bijection principle,

|{maps from A to B}| = |Bm| = |B|m = nm.

Theorem 1.3.6. Let A and B be two finite sets. Set m = |A| and n = |B|.
Then,

(# of injective maps from A to B) = n (n − 1) (n − 2) · · · (n − m + 1)

= m! ·
(

n
m

)
.
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Proof. Idea: A map f : A → B can be determined by specifying all its values.
That is, for each a ∈ A, we choose the value f (a) ∈ B. However, to make f
injective, we must choose distinct values, i.e., we must ensure that no value is
chosen more than once. So there are n options for the first value, n − 1 options
for the second, n − 2 options for the third, and so on, for a total of m choices.
So the total # of possibilities is

n (n − 1) (n − 2) · · · (n − m + 1) = m! ·
(

n
m

)
.

Formally... this is more complicated. The easiest way to formalize this can
be found in [19fco, §2.4.2]; this proceeds by induction on m. Alternatively, the
above “choices” argument can be crystallized into a general principle, formal-
ized and proved. Let me state the principle, but not prove it here:

Theorem 1.3.7 (dependent product rule). Consider a situation in which you
must make n decisions (in order). Assume that

• you have a1 options in decision 1;

• you have a2 options in decision 2 (no matter what option you chose in
decision 1);

• you have a3 options in decision 3;

• and so on.

Then, the total # of possibilities to make all these choices is a1a2 · · · an.

1.4. Some exercises

Exercise 1 (Putnam 1985/A1). Let n ∈ N. Find the # of all triples (A, B, C)
of subsets of [n] such that A ∩ B ∩ C = ∅.

Solution. We construct such a triple (A, B, C) as follows: For each i ∈ [n], we
decide which of the three subsets it goes into. The only available options are
“none”, “A”, “B”, “C”, “A and B”, “A and C” and “B and C” (but not “all
three”, since we want A ∩ B ∩ C = ∅). This makes 7 options per element, and
thus 7n possibilities altogether. So the # is 7n.

For the next exercise, we introduce some terminology:

Definition 1.4.1. A tuple (a1, a2, . . . , ak) is said to be

• injective if all a1, a2, . . . , ak are distinct;
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• Smirnov (or Carlitz or non-stuttering) if it satisfies ai ̸= ai+1 for all
i ∈ [k − 1];

• cyc-Smirnov if it is Smirnov and also satisfies ak ̸= a1.

Exercise 2. Let n, k ∈ N. Let A be an n-element set.
(a) How many injective k-tuples are there?
(b) How many Smirnov k-tuples are there (for k > 0)?
(c) How many cyc-Smirnov k-tuples are there (for k > 0)?

Solution. (a) The # of injective k-tuples is
(

n
k

)
· k!.

Indeed, there is a bijection

{injective maps from [k] to A} → {injective k-tuples} ,
f 7→ ( f (1) , f (2) , . . . , f (k)) .

Thus, by the bijection principle, we reduce our problem to the problem of count-
ing injective maps from [k] to A, but for this we know the answer.

(b) The # of Smirnov k-tuples is n (n − 1)k−1.
Indeed, we can construct a Smirnov k-tuple (a1, a2, . . . , ak) by first choosing

a1 (there are n choices), then choosing a2 (there are n − 1 choices to ensure
a1 ̸= a2), then choosing a3 (there are n − 1 choices to ensure a2 ̸= a3), and so
on.

(c) The # of cyc-Smirnov k-tuples is ???
Let us denote this # by c (n, k). We try to get a recursion for it.
We have

c (n, k) = (# of cyc-Smirnov k-tuples)
= (# of Smirnov k-tuples)︸ ︷︷ ︸

=n(n−1)k−1

− (# of Smirnov-but-non-cyc-Smirnov k-tuples)︸ ︷︷ ︸
=(# of Smirnov k-tuples (a1,a2,...,ak) with ak=a1)

=(# of cyc-Smirnov (k−1)-tuples)
(because there is a bijection

from {Smirnov k-tuples (a1,a2,...,ak) with ak=a1}
to {cyc-Smirnov (k−1)-tuples},

which just removes the last entry)

= n (n − 1)k−1 − (# of cyc-Smirnov (k − 1) -tuples)︸ ︷︷ ︸
=c(n,k−1)

= n (n − 1)k−1 − c (n, k − 1) .
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This is a recursion that we can solve by plugging it into itself:

c (n, k) = n (n − 1)k−1 − c (n, k − 1)︸ ︷︷ ︸
=n(n−1)k−2−c(n,k−2)

= n (n − 1)k−1 − n (n − 1)k−2 + c (n, k − 2)︸ ︷︷ ︸
=n(n−1)k−3−c(n,k−3)

= · · ·
= n (n − 1)k−1 − n (n − 1)k−2 + n (n − 1)k−3 − n (n − 1)k−4 ± · · ·
= (n − 1)k + (−1)k (n − 1) .

So the answer is (n − 1)k + (−1)k (n − 1). It is easy to prove this by induction
using our recursion c (n, k) = n (n − 1)k−1 − c (n, k − 1).

1.5. Permutations

Recall that a permutation of a set X means a bijection from X to X. The follow-
ing are easy:

Theorem 1.5.1. Let n ∈ N. For any two n-element sets U and V, we have

(# of bijections from U to V) = n!.

In particular, for any n-element set X, we have

(# of permutations of X) = n!.

Definition 1.5.2. Let n ∈ N. The set of all permutations of [n] is called the
n-th symmetric group, and is denoted by Sn.

This is really a group in the sense of abstract algebra, i.e., it is closed under
composition ( f ◦ g ∈ Sn whenever f , g ∈ Sn) and under taking inverses.

Exercise 3. Let n ≥ 2. How many permutations σ ∈ Sn satisfy σ (1) > σ (2) ?

First solution. We construct such a permutation σ as follows:

• First we choose the two values σ (1) and σ (2). The # of options for this

is
(

n
2

)
, since we are really choosing the 2-element subset {σ (1) , σ (2)}

of [n]. The condition σ (1) > σ (2) dictates that σ (1) must be the largest
element of this subset, and σ (2) its smallest element.
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• Then we choose the remaining values σ (3) , σ (4) , . . . , σ (n). The # of op-
tions for this is (n − 2) (n − 3) · · · 1 = (n − 2)!.

So the total # of permutations σ is
(

n
2

)
· (n − 2)!.

Second solution. A symmetry argument: Among the permutations σ ∈ Sn,
equally many satisfy σ (1) > σ (2) as satisfy σ (1) < σ (2) (since we can get
from one to the other by swapping the values σ (1) and σ (2)). So the # of

permutations σ ∈ Sn that satisfy σ (1) > σ (2) must be
n!
2

(since the total # of
permutations σ ∈ Sn is n!).

As a nice bonus, we have obtained the identity(
n
2

)
· (n − 2)!︸ ︷︷ ︸

our first answer

=
n!
2︸︷︷︸

our second answer

for each n ≥ 2.

Definition 1.5.3. Let X be a set. Let f : X → X be a map.
(a) A fixed point of f means an x ∈ X such that f (x) = x.
(b) We let Fix f denote the set of all fixed points of f .

Exercise 4 (IMO 1987 problem 1). Let n be a positive integer. Prove that

∑
w∈Sn

|Fix w| = n!.

In other words, prove that on average, a random permutation of [n] has 1
fixed point.

Solution. We use the language of probabilities. We let E (X) denote the ex-
pected value of a random variable X, whereas Pr (A) denotes the probability of
an event A. Note that

Pr (A) = E ([A]) for an event A.

We are looking for the average # of fixed points of a random permutation of
[n]. In other words, we are looking for E (|Fix w|) where w ∈ Sn is uniformly
random.

Now a basic property of expected values comes handy: If X1, X2, . . . , Xk are
any k random variables, then

E (X1 + X2 + · · ·+ Xk) = E (X1) + E (X2) + · · ·+ E (Xk) .

This is known as linearity of expectation. We can apply it by decomposing
|Fix w| as

|Fix w| = [1 ∈ Fix w] + [2 ∈ Fix w] + · · ·+ [n ∈ Fix w] .



Lecture 8 stenogram, version November 19, 2024 page 8

We get

E (|Fix w|) = E ([1 ∈ Fix w] + [2 ∈ Fix w] + · · ·+ [n ∈ Fix w])

= E ([1 ∈ Fix w]) + E ([2 ∈ Fix w]) + · · ·+ E ([n ∈ Fix w])

(by linearity of expectation)
= Pr (1 ∈ Fix w) + Pr (2 ∈ Fix w) + · · ·+ Pr (n ∈ Fix w)

(since E ([A]) = Pr (A) for any event A) .

Now, how can we compute the probabilities on the RHS?
Fix i ∈ [n], and try to compute Pr (i ∈ Fix w).
First way: The # of permutations w ∈ Sn that fix i is (n − 1)!, since choosing

such a permutation w means choosing its remaining n − 1 values. That is,

Pr (i ∈ Fix w) =
(n − 1)!

n!
=

1
n

.

Second way: We note that Pr (i ∈ Fix w) = Pr (w (i) = i). But w (i) must al-
ways be one of the n numbers 1, 2, . . . , n, and moreover, each of these n numbers
is equally likely (since there are bijections between these possibilities). So all
the probabilities

Pr (w (i) = 1) , Pr (w (i) = 2) , . . . , Pr (w (i) = n)

are equal, but they add up to 1. So each of them equals
1
n

. In particular,

Pr (w (i) = i) =
1
n

, so that Pr (i ∈ Fix w) =
1
n

.

Either way, we have shown that Pr (i ∈ Fix w) =
1
n

. Now,

E (|Fix w|) = Pr (1 ∈ Fix w) + Pr (2 ∈ Fix w) + · · ·+ Pr (n ∈ Fix w)

=
1
n
+

1
n
+ · · ·+ 1

n︸ ︷︷ ︸
n times

= 1.

In other words, on average, a permutation w ∈ Sn has 1 fixed point.
See the notes for details.

1.6. Double counting

Often, a counting problem can be solved in two ways, yielding two results. As a
consequence, the two results are equal, even if this is not immediately obvious
from their looks. For instance, we obtained(

n
2

)
· (n − 2)! =

n!
2

by solving a counting problem and obtaining both sides as answers.
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This identity is easy to check by hand, but often you can find nontrivial
identities this way. Sometimes, when proving an identity (usually a binomial
identity), you can interpret its LHS and its RHS as two answers to one and the
same counting problem, and thus prove the identity. This technique is called
double counting.

For example, how would you prove

2n =
n

∑
k=0

(
n
k

)
for all n ∈ N

by double counting? You count subsets of [n]. The LHS counts them directly,
while the RHS counts them by size. Because the two sides answer the same
problem, they must be equal, so the identity is (re)proved.

Here are two more interesting examples for this technique:

Proposition 1.6.1 (Chu–Vandermonde identity for nonnegative integers). Let
n, x, y ∈ N. Then, (

x + y
n

)
=

n

∑
k=0

(
x
k

)(
y

n − k

)
.

Proposition 1.6.2 (Trinomial revision formula for nonnegative integers). Let
n, a, b ∈ N. Then, (

n
a

)(
a
b

)
=

(
n
b

)(
n − b
a − b

)
.
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