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Math 235 Fall 2024, Lecture 6 stenogram: Sums
and sequences

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

1. Sums and sequences (cont’d)

1.1. Linear recurrences (cont’d)

Last time, we were trying to find an explicit formula for all entries xn of an
(a, b)-recurrent sequence (x0, x1, x2, . . .) of numbers. Recall that “(a, b)-recurrent”
means that xn = axn−1 + bxn−2 for all n ≥ 2. We found the formula

xn =
x1 − µx0

λ − µ
λn +

λx0 − x1

λ − µ
µn,

where

λ =
a +

√
a2 + 4b
2

, µ =
a −

√
a2 + 4b
2

.

But this worked only if a2 + 4b ̸= 0. What about the other case?

So let us assume that a2 + 4b = 0. In this case, b =
−a2

4
. Since our above

method does not work here, we just look at the first entries of our sequence
and see if we spot any patterns:

x0 = x0,

x1 = x1 = a0 (x1 − 0x0) ,

x2 = ax1 + bx0 = ax1 +
−a2

4
x0 = a

(
x1 −

a
4

x0

)
,

x3 = ax2 + bx1 = a
(

ax1 +
−a2

4
x0

)
+

−a2

4
x1

=
3a2

4
x1 +

−a3

4
x0 = a2

(
3
4

x1 −
a
4

x0

)
,

x4 = ax3 + bx2 = a
(

3a2

4
x1 +

−a3

4
x0

)
+

−a2

4

(
ax1 +

−a2

4
x0

)
=

a3

2
x1 +

−3a4

16
x0 = a3

(
1
2

x1 −
3a
16

x0

)
,

x5 = a4
(

5
16

x1 −
a
8

x0

)
(similarly) ,

x6 = a5
(

3
16

x1 −
5a
64

x0

)
, etc.

https://www.cip.ifi.lmu.de/~grinberg/t/24f


Lecture 6 stenogram, version November 3, 2024 page 2

The formulas seem to follow the pattern

xn = an−1 (unx1 − vnax0) for some numbers un, vn,

for all n ≥ 1. So let us make the ansatz

xn = an−1 (unx1 − vnax0) for some numbers un, vn,

and try to compute these numbers un, vn. There are two ways to do this:

• Make a table and try to guess the rule.

• Try to see what the recurrence relation xn = axn−1 + bxn−2 says about un
and vn after we substitute the formula xn = an−1 (unx1 − vnax0) on both
sides.

Let us try the former way:

(u1, u2, u3, u4, u5, u6) =

(
1, 1,

3
4

,
1
2

,
5

16
,

3
16

)
=

(
1
1

,
2
2

,
3
4

,
4
8

,
5

16
,

6
32

)
;

(v1, v2, v3, v4, v5, v6) =

(
0,

1
4

,
1
4

,
3

16
,

1
8

,
5
64

)
=

(
0
2

,
1
4

,
2
8

,
3

16
,

4
32

,
5

64

)
.

So we guess

un =
n

2n−1 =
2n
2n and vn =

n − 1
2n .

Thus, our ansatz becomes

xn = an−1
(

2n
2n x1 −

n − 1
2n ax0

)
=

an−1

2n (2nx1 − (n − 1) ax0) for all n ≥ 1.

This can be proved straightforwardly by strong induction on n.

Thus, altogether, we have proved:

Theorem 1.1.1 (generalized Binet formula). Let a and b be two numbers. Let
(x0, x1, x2, . . .) be an (a, b)-recurrent sequence. Then:

(a) If a2 + 4b ̸= 0, then every n ∈ N satisfies

xn = γλn + δµn,
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where we set

λ =
a +

√
a2 + 4b
2

and µ =
a −

√
a2 + 4b
2

and
γ =

x1 − µx0

λ − µ
and δ =

λx0 − x1

λ − µ
.

(b) If a2 + 4b = 0, then every n ∈ N satisfies

xn =
an−1

2n (2nx1 − (n − 1) ax0)

=
1
2n

(
2nan−1x1 − (n − 1) anx0

)
(where we understand nan−1 as 0 for n = 0).

This generalizes

• Binet’s formula for the Fibonacci numbers:

fn =
1√
5

φn − 1√
5

ψn with φ, ψ =
1 ±

√
5

2
;

• a similar formula for the Lucas numbers:

ℓn = φn + ψn with φ, ψ =
1 ±

√
5

2
;

• other recurrences like this: For example, for a (1,−1)-recurrent sequence,
you get

λ =
1 +

√
−3

2
and µ =

1 −
√
−3

2
.

These complex numbers λ and µ are 6-th root of unity, i.e., they satisfy
λ6 = 1 and µ6 = 1. Thus, the explicit formula xn = γλn + δµn shows
that the sequence (x0, x1, x2, . . .) is 6-periodic. This is something we have
previously shown algebraically.

1.1.1. Two-term recurrences: various properties

Many facts about the Fibonacci sequence can be generalized to arbitrary (a, b)-
recurrent sequences. For instance:
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• Generalized Cassini identity (Exercise 4.9.4): Let a and b be two num-
bers. Let (x0, x1, x2, . . .) be an (a, b)-recurrent sequence. Then,

xn+1xn−1 − x2
n = (−b)n−1

(
x2x0 − x2

1

)
for all n > 0.

• Generalized addition formula (Exercise 4.9.3): Let a and b be two num-
bers. Let (x0, x1, x2, . . .) and (y0, y1, y2, . . .) be two (a, b)-recurrent se-
quences such that x0 = 0 and x1 = 1. Then,

yn+m+1 = bxnym + xn+1ym+1.

Note that this is a double generalization! We have replaced the Fibonacci
sequence not by one but by two (a, b)-recurrent sequences. There is even
a further generalization, which gets rid of the x0 = 0 and x1 = 1 assump-
tions but has a more complicated LHS (Exercise 4.9.4 in the notes).

• Divisibility property (Exercise 4.9.7): Let a and b be two integers. Let
(x0, x1, x2, . . .) be an (a, b)-recurrent sequence with x0 = 0 and x1 = 1.
Then, all u, v ∈ N satisfying u | v satisfy xu | xv.

• Generalized binomial coefficient formula (Proposition 4.9.18): Let a and
b be two numbers such that a ̸= 0. Let (x0, x1, x2, . . .) be an (a, b)-recurrent
sequence with x0 = 0 and x1 = 1. Then,

xn+1 =
n

∑
k=0

(
n − k

k

)
an−2kbk for any n ≥ −1.

This is proved by induction in the notes. Note that the a ̸= 0 condition is
only there to prevent the an−2k term from being undefined when n − 2k is
negative; you can just as well throw these addends away.

A neat application of the latter formula is the identity

n + 1 =
n

∑
k=0

(−1)k
(

n − k
k

)
2n−2k.

Indeed, the sequence (0, 1, 2, . . .) is (2,−1)-recurrent (like any arithmetic pro-
gression), so that applying the above formula to xi = i and a = 2 and b = −1
yields exactly

n + 1 =
n

∑
k=0

(
n − k

k

)
2n−2k (−1)k =

n

∑
k=0

(−1)k
(

n − k
k

)
2n−2k.
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1.1.2. Two-term recurrences: the matrix approach

So far, we have been approaching (a, b)-recurrent sequences (x0, x1, x2, . . .) en-
try by entry. However, this is not the best way to approach them, since xi is not
determined by the preceding entry xi−1 alone. Meanwhile, two consecutive
entries xi and xi+1 are determined by the preceding two consecutive entries
xi−1 and xi. Thus, we should perhaps look at pairs of consecutive entries at a

time. Even better, we can encode such pairs as vectors
(

xi
xi+1

)
. Each such

vector
(

xi
xi+1

)
can be computed from the previous such vector

(
xi−1

xi

)
by

(
xi

xi+1

)
=

(
xi

axi + bxi−1

)
=

(
0 1
b a

)(
xi−1

xi

)
.

So we have shown:

Proposition 1.1.2. Let a and b be two numbers. Let A be the 2 × 2-matrix(
0 1
b a

)
.

Let (x0, x1, x2, . . .) be an (a, b)-recurrent sequence of numbers. For each

i ∈ N, define a column vector vi by vi :=
(

xi
xi+1

)
. Then:

(a) We have Avi−1 = vi for each i > 0.
(b) We have Anvi = vi+n for each i, n ∈ N.

(Proof of (b) by induction on n is straightforward.)

This proposition allows you to quickly compute vn (and thus xn) if you can
quickly compute An (for example, exponentiation by squaring lets you do that).
But it also helps prove theoretic results. For example, the addition formula can
be derived from An+m = An Am. For another example, the generalized Binet
formula can be proved (and even discovered) by diagonalizing/jordanizing A.
Indeed, if we have a diagonalization/jordanization

A = TDT−1

of a matrix A, then any power of A can be computed by the formula

An = TDnT−1,

and usually Dn is easy to compute (e.g., if D is diagonal, then Dn is obtained
from D simply by taking the n-th powers of all diagonal entries). See the notes
for details.
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1.1.3. Two-term recurrences: odds and ends

A few more remarks about (a, b)-recurrent sequences before we move on:

• The (entrywise) sum of two (a, b)-recurrent sequences is again (a, b)-
recurrent. But not the (entrywise) product.

• (a, b)-recurrent sequences exist not only for numbers but for any objects
that can be scaled and added. In particular, there are (a, b)-recurrent se-
quences of polynomials. The most important example of such sequences
are the Chebyshev polynomials of the first kind T0 (x) , T1 (x) , T2 (x) , . . .
defined recursively by

T0 (x) = 1, T1 (x) = x, and
Tn (x) = 2xTn−1 (x)− Tn−2 (x) for all n ≥ 2.

So they are a (2x,−1)-recurrent sequence of polynomials. They have
many useful properties; the most well-known one is the fact that

cos (nα) = Tn (cos α) for any angle α.

There is also such a thing as (a, b, c)-recurrent sequences and, more generally,
(a1, a2, . . . , ak)-recurrent sequences. For instance, an (a, b, c)-recurrent sequence
is a sequence (x0, x1, x2, . . .) that satisfies

xn = axn−1 + bxn−2 + cxn−3 for all n ≥ 3.

These sequences are a lot less well-behaved than (a, b)-recurrent sequences;
in particular, they have no addition formula, no binomial coefficient formula(?),
no divisibility in general, and the generalized Binet formula for them involves
roots of higher-degree polynomials, which are famously hard to explicitly de-
scribe.

Yet they sometimes appear in nature (even though not as frequently as (a, b)-
recurrent ones). For instance, the sequence

(
02, 12, 22, 32, . . .

)
is (3,−3, 1)-recurrent,

i.e., we have

n2 = 3 (n − 1)2 − 3 (n − 2)2 + 1 (n − 3)2 for all n.

See the notes for a few more properties.
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2. The Extremal Principle

In this chapter, we will learn to use one of the simplest tricks in mathematics:
When you have a bunch of objects, look at the smallest or the largest among
them. This is known as the extremal principle. Figuring out the precise mean-
ing of “smallest” and “largest” might be a choice: For example, if you have a
bunch of finite sets of integers, like {1, 3, 6} and {2, 7} and {14, 15, 18}, which
one is the largest? The one of largest size? (note that there can be several.) The
one with largest minimum? The one with largest maximum? The one with
largest sum? You will have to make such decisions, and often you will need to
pick the right choice to get something useful.

2.1. Existence theorems

Before we see this principle being used, let me recall some theorems that guar-
antee the existence of the desired extremal objects:

Theorem 2.1.1. Let S be a nonempty finite set of real numbers. Then, S has
a minimum (= a smallest element) and a maximum (= a largest element).

Theorem 2.1.2. Let S be a nonempty set of nonnegative integers. Then, S has
a minimum (but usually not a maximum).

Theorem 2.1.3. Let S be a nonempty set of integers. Then:
(a) If S has a lower bound (i.e., there is some integer x such that x ≤ s for

all s ∈ S), then S has a minimum.
(b) If S has an upper bound, then S has a maximum.

Theorem 2.1.4. Let S be a nonempty set of reals. Then:
(a) If S has a lower bound, then S has an infimum (i.e., a greatest lower

bound). This infimum is a minimum of S if and only if it belongs to S.
(b) If S has an upper bound, then S has a supremum (i.e., a least upper

bound). This supremum is a maximum of S if and only if it belongs to S.

Theorem 2.1.5. Let S be a nonempty set of reals that is closed with respect
to the topology on R. Then:

(a) If S has a lower bound, then S has a minimum.
(b) If S has an upper bound, then S has a maximum.
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2.2. Applications

We will now see various uses of the Extremal Principle. We begin with a well-
known result, restated in a somewhat unusual form:

Theorem 2.2.1. Let n ∈ N. Then, there is a unique finite subset T of N such
that n = ∑

t∈T
2t.

Proof. This is, of course, just the base-2 representation of n, but let us prove it
in a different way.

Existence: We proceed by strong induction on n. In the induction step, we want
to write n as a sum of distinct powers of 2, and we assume that all nonnegative
integers smaller than n can be written in this form.

Pick the largest power of 2 smaller or equal to n, that is, the largest m such
that 2m ≤ n. (This exists because 20 < 21 < 22 < · · · .) Then, n − 2m is a
nonnegative integer smaller than n. Thus, by the induction hypothesis, n − 2m

can be written as a sum of distinct powers of 2, that is,

n − 2m = ∑
t∈T

2t for some finite set T ⊆ N.

Hence,
n = 2m + ∑

t∈T
2t.

We want to show that this is a sum of distinct powers of 2. The only thing we
need to check is that m /∈ T. Indeed, if we had m ∈ T, then we would have

n − 2m = ∑
t∈T

2t ≥ 2m,

so that n ≥ 2m + 2m = 2 · 2m = 2m+1. That is, we would have 2m+1 ≤ n. But
this would contradict the maximality of m. This contradiction shows that we
do have m /∈ T, and thus we have written n as a sum of distinct powers of 2.

Uniqueness: We must show that no integer can be written as ∑
t∈T

2t for two

different finite subsets T of N. In other words, we must prove that

∑
t∈T

2t ̸= ∑
t∈S

2t for any T ̸= S.

To prove this, assume the contrary, and pick the smallest possible n that has two
distinct such representations. If the largest elements of T and S are equal, then
we can just subtract 2max T=max S from n and get an even smaller counterexam-
ple. If they are distinct, then WLOG max T > max S, and you can leverage this
to show that ∑

t∈T
2t > ∑

t∈S
2t. See the notes for details.
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Exercise 1. Let n be a positive integer. A lecture is attended by n students.
Each student enters the classroom once and leaves it once. Assume that
among any three (distinct) students, there are at least two that overlap (i.e.,
are together in the room at some moment).

The lecturer wants to make an announcement that every student will hear.
Prove that the lecturer can pick two moments at which to make this an-
nouncement so that each student hears it at least once. (We assume that
making the announcement is instantaneous.)

Translating this into mathematical language, we rewrite this as follows:

Exercise 2. Let n be a positive integer. Let I1, I2, . . . , In be n nonempty finite
closed intervals on the real axis. Assume that for any three distinct numbers
i, j, k ∈ {1, 2, . . . , n}, at least two of the intervals Ii, Ij, Ik intersect (i.e., have
a nonempty intersection). Prove that there exist two reals a and b such that
each of the intervals I1, I2, . . . , In contains at least one of a and b.

Solution. Write each interval Im as Im = [am, bm] for some two reals am and
bm. Let

a := max {am | m ∈ {1, 2, . . . , n}} and
b := min {bm | m ∈ {1, 2, . . . , n}} .

(In words: a is the time at which the last student to enter enters, while b is the
time at which the first student to leave leaves.)

I claim that a and b are as desired – i.e., that each of the intervals I1, I2, . . . , In
contains at least one of a and b.

To prove this, we assume the contrary. Thus, some interval Ip =
[
ap, bp

]
contains neither a nor b. Note that a = au for some u ∈ {1, 2, . . . , n}, and b = bv
for some v ∈ {1, 2, . . . , n}. Consider these p, u and v.

By assumption,
[
ap, bp

]
contains neither a nor b. So it does not contain a = au.

Since
au = a = max {am | m ∈ {1, 2, . . . , n}} ≥ ap,

this means that au > bp (since otherwise, we would have au ≥ ap and au ≤ bp
and therefore au ∈

[
ap, bp

]
). Therefore, the interval

[
ap, bp

]
lies completely to

the left of the interval [au, bu] on the real number line.
A similar argument shows that the interval

[
ap, bp

]
lies completely to the

right of the interval [av, bv] on the real number line.
So the three intervals are arranged as follows:

[av, bv]
[
ap, bp

]
[au, bu] .

In particular, no two of these three intervals intersect. But this contradicts our
assumption that among any three of our intervals, at least two intersect. Qed.
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Remark 2.2.2. The exercise (in its original formulation, involving lecturer
and students) can be understood somewhat more strongly: Can the lecturer
pick the two moments “on the fly”, without knowing when further students
will appear or disappear in the future? The above solution works for this
stronger version if the number n is known to the lecturer in advance. If not,
it does not (how can the professor find a before it is too late?), and something
subtler is needed. See the notes for this.

Exercise 3. Let n ∈ N. Let F1, F2, . . . , Fn be n distinct points in the plane.
Let W1, W2, . . . , Wn be n distinct points in the plane. Prove that there is a
way to connect each F-point with a W-point by a line segment so that these
line segments do not intersect. In other words, prove that there is a bijection
σ : {1, 2, . . . , n} → {1, 2, . . . , n} such that no two of the n line segments

F1Wσ(1), F2Wσ(2), . . . , FnWσ(n)

intersect.
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