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Math 235 Fall 2024, Lecture 5 stenogram: Sums
and sequences

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

1. Sums and sequences (cont’d)

1.1. Guessing sequences

Often you have a sequence of numbers in front of you (e.g., given by a recursive
definition) and you need to find its properties – e.g., an explicit formula for its
entries (not always possible), or a proof that all its entries are integers or odd
numbers or whatever, or just some patterns you suspect to exist. There is no
one rule or one method for how to do this, but there are many techniques. Let
us see some examples.

Exercise 1. Let q and d be two numbers. Let (x0, x1, x2, . . .) be a sequence of
numbers that satisfies the recursive equation

xn = qxn−1 + d for each n ≥ 1.

(Such a sequence is called an arithmetic-geometric progression. Note that it
is an arithmetic progression when q = 1 and a geometric progression when
d = 0.)

Find an explicit formula for xn in terms of x0, q, d.

Solution. Let us experiment with the first entries:

x0 = x0,
x1 = qx0 + d,

x2 = qx1 + d = q (qx0 + d) + d = q2x0 + (qd + d) ,

x3 = qx2 + d = q
(

q2x0 + (qd + d)
)
+ d = q3x0 +

(
q2d + qd + d

)
,

· · ·

We can venture a guess:

xn = qnx0 +
(

qn−1d + qn−2d + · · ·+ q0d
)

= qnx0 +
(

qn−1 + qn−2 + · · ·+ q0
)

d

= qnx0 +
n−1

∑
k=0

qkd

= qnx0 +
qn − 1
q − 1

d (for q ̸= 1) .

https://www.cip.ifi.lmu.de/~grinberg/t/24f
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This guess is correct and easy to prove by induction on n. ■

Exercise 2. Let (a1, a2, a3, . . .) be a sequence of numbers defined recursively
by a1 = 1 and

a1 + a2 + · · ·+ an = n2 · an for all n ≥ 2.

Find an explicit formula for an.

Solution. We set

bn := a1 + a2 + · · ·+ an for all n ∈ N

(in particular, b0 = (empty sum) = 0). Then,

an = bn − bn−1 for all n ≥ 1.

So if we find an explicit formula for bn, then we obtain an explicit formula for
an.

Is bn any simpler than an ? It is. In fact, our recurrence

a1 + a2 + · · ·+ an = n2 · an

can be rewritten as

bn = n2 · (bn − bn−1) , that is,

bn = n2bn − n2bn−1, that is,

n2bn−1 = n2bn − bn, that is,

n2bn−1 =
(

n2 − 1
)

bn.

Solving this for bn, we find

bn =
n2

n2 − 1
· bn−1.
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So

bn =
n2

n2 − 1
· bn−1

=
n2

n2 − 1
· (n − 1)2

(n − 1)2 − 1
· bn−2

=
n2

n2 − 1
· (n − 1)2

(n − 1)2 − 1
· (n − 2)2

(n − 2)2 − 1
· bn−3

= · · ·

=
n2

n2 − 1
· (n − 1)2

(n − 1)2 − 1
· (n − 2)2

(n − 2)2 − 1
· · · · · 22

22 − 1
· b1︸︷︷︸
=a1=1

=
n2

n2 − 1
· (n − 1)2

(n − 1)2 − 1
· (n − 2)2

(n − 2)2 − 1
· · · · · 22

22 − 1

=
n

∏
k=2

k2

k2 − 1
=

n

∏
k=2

k2

(k − 1) (k + 1)

=

(
n
∏

k=2
k
)2

(
n
∏

k=2
(k − 1)

)(
n
∏

k=2
(k + 1)

) =
(2 · 3 · · · · · n)2

(1 · 2 · · · · · (n − 1)) · (3 · 4 · · · · · (n + 1))

=
2n

n + 1
.

Alternatively, we can use the telescope trick:

n

∏
k=2

k2

(k − 1) (k + 1)
=

n

∏
k=2

(
k

k − 1
/

k + 1
k

)
=

2
1

/
n + 1

n
(by telescope)

=
2n

n + 1
.

Now,

an = bn − bn−1 =
2n

n + 1
− 2 (n − 1)

(n − 1) + 1
=

2n
n + 1

− 2 (n − 1)
n

=
2

n (n + 1)
.

■
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Exercise 3. Define a sequence (a1, a2, a3, . . .) of rational numbers recursively
by

a1 =
5
2

, and an = a2
n−1 − 2 for every n ≥ 2.

Find an explicit formula for an.

Solution. Again compute the first few values:

a1 =
5
2

,

a2 = a2
1 − 2 =

(
5
2

)2

− 2 =
17
4

,

a3 = a2
2 − 2 =

(
17
4

)2

− 2 =
257
16

,

. . . .

We suspect

an =
22n

+ 1
22n−1 = 22n−1

+ 2−2n−1
.

Once guessed, this formula can be easily proved by induction: Assuming
that an = 22n−1

+ 2−2n−1
, our recursion yields

an+1 = a2
n − 2 =

(
22n−1

+ 2−2n−1
)2

− 2

=
(

22n−1
)2

︸ ︷︷ ︸
=22n

+2 · 22n−1 · 2−2n−1︸ ︷︷ ︸
=1

+
(

2−2n−1
)2

︸ ︷︷ ︸
=2−2n

−2

= 22n
+ 2−2n

.

How could we have obtained this answer without guessing it?
We observe that any number y ̸= 0 satisfies(

y + y−1
)2

− 2 = y2 + 2 yy−1︸︷︷︸
=1

+y−2 − 2 = y2 + y−2.

So the expression x2 − 2 can be simplified whenever x can be written in the form
y + y−1 for some y. Can every number x be written in this form? Essentially
yes, if you allow y to be complex.

Thus, seeing the recursion an = a2
n−1 − 2, we can make the substitution an :=

bn + b−1
n and rewrite the recursion as bn + b−1

n = b2
n−1 + b−2

n−1. We can solve this
recursion simply by setting bn = b2

n−1. And this latter recursion is easily solved:

bn = b2
n−1 = b4

n−2 = b8
n−3 = · · · = b2n−1

1 .
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Thus, if we pick b1 in such a way that a1 = b1 + b−1
1 , then we will have

an = bn + b−1
n = b2n−1

1 + b−2n−1

1 .

It remains to find b1 in such a way that a1 = b1 + b−1
1 . In the case of our

exercise, a1 =
5
2

, so that we can take b1 = 2. (If a1 was 3, then b1 would be
1
2

√
5 +

3
2

. If a1 was 1, then b1 would be
1
2

i
√

3 +
1
2

, which is a complex number.

The choice of
5
2

in the exercise was meant to make the answer nicer.)

Another example in the notes (Exercise 4.6.4).

1.2. Periodicity

Periodicity is one of the simplest patterns that a sequence can have.

Definition 1.2.1. Let u = (u0, u1, u2, . . .) be an infinite sequence (of any ob-
jects).

(a) A positive integer d is said to be a period of u if every i ∈ N satisfies
ui = ui+d.

(b) The sequence u is said to be periodic if it has a period.
(c) Let d be a positive integer. The sequence u is said to be d-periodic if d

is a period of u.

Example 1.2.2. A 1-periodic sequence is a sequence (u0, u1, u2, . . .) that satis-
fies ui = ui+1 for all i ∈ N, that is, that satisfies u0 = u1 = u2 = · · · . This is
also known as a constant sequence.

Example 1.2.3. The sequence
(
(−1)0 , (−1)1 , (−1)2 , . . .

)
=

(1,−1, 1,−1, 1,−1, . . .) is 2-periodic, and also d-periodic for any even
positive integer d.

Example 1.2.4. For any positive integer n, the sequence

(0%n, 1%n, 2%n, . . .)
= (0, 1, 2, . . . , n − 1, 0, 1, 2, . . . , n − 1, 0, 1, 2, . . . , n − 1, . . .)

is n-periodic.
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Example 1.2.5. Consider the sequence (g0, g1, g2, . . .) defined like the Fi-
bonacci sequence but with a little twist:

g0 = 0, g1 = 1,
gn = gn−1 − gn−2 for all n ≥ 2.

Then,
(g0, g1, g2, . . .) = (0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, . . .)

is a 6-periodic sequence.

Example 1.2.6. The sequence
(
00, 01, 02, 03, . . .

)
= (1, 0, 0, 0, . . .) is not periodic

(since the entry 1 appears never again after its first position). It is, however,
eventually periodic (i.e., it is periodic after removing a finite piece).

Theorem 1.2.7 (facts about periodic sequences). Let u = (u0, u1, u2, . . .) be an
infinite sequence. Then:

(a) If a and b are two periods of u, then a + b is a period of u.
(b) If a and b are two periods of u such that a > b, then a − b is a period of u.
(c) If a is a period of u, then na is a period of u for any integer n ≥ 1.
(d) If a is a period of u, and if p, q ∈ N satisfy p ≡ q mod a, then up = uq.
(e) Assume that u is periodic. Let m be the smallest period of u. Then, the

periods of u are precisely the positive multiples of m.

Proof. Easy in this order; see the notes (Theorems 4.7.8 and 4.7.9).

What works for sequences often works for functions as well. Periodicity is
no exception:

Definition 1.2.8. Let A be either R or R+ = {positive reals}. Let S be any
set. Let u : A → S be a function.

(a) A positive real d is said to be a period of u if every x ∈ A satisfies
u (x) = u (x + d).

(b) The function u is said to be periodic if it has a period.
(c) Let d be a positive real. The function u is said to be d-periodic if d is a

period of u.

Example 1.2.9. The trigonometric functions sin, cos, tan, cot, sec, csc are 2π-
periodic. Actually, tan and cot are π-periodic as well.

The above theorem (“facts about periodic sequences”) has a partial analogue
for periodic functions. Partial because not all of it extends to functions: A pe-
riodic function might fail to have a minimal period. This happens for constant
functions (every positive real is a period) and for certain pathological discon-
tinuous functions, but does not happen for non-constant continuous functions.
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All I have said about periodicity is easy, but some of it is quite useful. Here
an example:

Exercise 4. Let n be a positive integer. Prove that

n−1

∑
k=0

⌊
x +

k
n

⌋
= ⌊nx⌋ for each x ∈ R.

Solution. Define the function f : R → R by

f (x) :=
n−1

∑
k=0

⌊
x +

k
n

⌋
− ⌊nx⌋ .

We must then show that f is constant 0 (that is, f (x) = 0 for all x ∈ R).

But f is 1-periodic (since adding 1 to x causes all the floors
⌊

x +
k
n

⌋
to be

incremented by 1, and causes the floor ⌊nx⌋ to grow by n, and of course all
these increments cancel). So all values of f are already taken on the interval
[0, 1). So we only need to show that f is constant 0 on this interval.

Why is f constant 0 on [0, 1) ? Subdivide the interval [0, 1) into n subintervals[
i
n

,
i + 1

n

)
for i ∈ {0, 1, . . . , n − 1}. On each of these subintervals,

f (x) =
n−1

∑
k=0

⌊
x +

k
n

⌋
︸ ︷︷ ︸

=0 when i<n−k;
=1 when i≥n−k

− ⌊nx⌋︸︷︷︸
=i

= (sum of i many 1s)− i = i − i = 0.

So f is 0 all over [0, 1) and thus everywhere else as well. ■

What principle have we used in this proof? The principle that a d-periodic
function is uniquely determined by its values on a given half-open interval of
length d. Likewise, a d-periodic sequence is uniquely determined by any d
consecutive entries.

1.3. Linear recurrences

The Fibonacci sequence is an instance of a wider class of sequences, which share
most of its properties (not all – every once in a while you do come across a re-
sult that only holds for Fibonacci numbers). This general class are the linearly
recurrent sequences (or, more precisely, sequences that satisfy linear recur-
rences with constant coefficients). This class also contains the arithmetic pro-
gressions, the geometric progressions, the arithmetic-geometric progressions,



Lecture 5 stenogram, version October 29, 2024 page 8

and many others. Their theory is interesting yet rather manageable, and we
can even compute “explicit” formulas for their entries (like Binet’s formula

fn =
φn − ψn
√

5
), although these formulas involve irrationalities.

We will mostly discuss the most common subclass of linearly recurrent se-
quences: the ones with two-term recurrences (also known as recurrences of
the second degree). These have the nicest properties and also are connected to
many other things (trigonometry, ODEs, Chebyshev polynomials, ...).

Definition 1.3.1. Let a and b be two numbers. A sequence (x0, x1, x2, . . .) of
numbers will be called (a, b)-recurrent if every n ≥ 2 satisfies

xn = axn−1 + bxn−2.

Clearly, an (a, b)-recurrent sequence is uniquely determined by the four num-
bers a, b, x0, x1.

Example 1.3.2. The Fibonacci sequence ( f0, f1, f2, . . .) = (0, 1, 1, 2, 3, 5, 8, . . .)
is (1, 1)-recurrent. The Lucas sequence (ℓ0, ℓ1, ℓ2, . . .) = (2, 1, 3, 4, 7, . . .) is
also (1, 1)-recurrent.

Example 1.3.3. A sequence (x0, x1, x2, . . .) is (2,−1)-recurrent if and only if it
satisfies

xn = 2xn−1 − xn−2 for all n ≥ 2, or equivalently
xn − xn−1 = xn−1 − xn−2 for all n ≥ 2.

Thus, the (2,−1)-recurrent sequences are just the arithmetic progressions.

Example 1.3.4. Any geometric progression
(
u, uq, uq2, uq3, . . .

)
is (q, 0)-

recurrent.
However, not every (q, 0)-recurrent sequence is a geometric progression!

In fact, (q, 0)-recurrence only means that xn = qxn−1 for n ≥ 2, not for n ≥ 1,
so it says nothing about x0.

Example 1.3.5. What is a (0, 1)-recurrent sequence? A sequence
(x0, x1, x2, . . .) satisfying xn = xn−2 for all n ≥ 2. That is, a 2-periodic se-
quence.

Example 1.3.6. Every (1,−1)-recurrent sequence (x0, x1, x2, . . .) is 6-periodic:

xn+6 = xn+5 − xn+4 = (xn+4 − xn+3)− xn+4 = −xn+3

= − (xn+2 − xn+1) = xn+1 − xn+2 = xn+1 − (xn+1 − xn) = xn.

However, not every 6-periodic sequence is (1,−1)-recurrent.
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Example 1.3.7. Let α be any angle. Then, the sequences

(sin (0α) , sin (1α) , sin (2α) , . . .) and
(cos (0α) , cos (1α) , cos (2α) , . . .)

are (2 cos α,−1)-recurrent. More generally, the sequence

(sin (β + 0α) , sin (β + 1α) , sin (β + 2α) , . . .)

is (2 cos α,−1)-recurrent for any angle β.

See the notes for a proof.

What can we say about an arbitrary (a, b)-recurrent sequence? We can try to
find an explicit formula:

Exercise 5. Let a and b be two numbers, and let (x0, x1, x2, . . .) be an (a, b)-
recurrent sequence. Is there an explicit formula for xn in terms of a, b, x0, x1,
similar to Binet’s formula for Fibonacci numbers?

Solution. (See the notes for all details.) We try to imitate Binet’s formula

fn =
1√
5

φn − 1√
5

ψn.

We expect a formula of the form

xn = γλn + δµn,

where γ, λ, δ, µ are constants. This is an example of an ansatz (an incomplete
guess, which has to be completed by determining the parameters that appear
in it). An ansatz may succeed or fail, but let’s run with this one and see if it
perhaps succeeds.

If xn = γλn + δµn is to be true for all n, then the recursion

xn = axn−1 + bxn−2

becomes

γλn + δµn = a
(

γλn−1 + δµn−1
)
+ b

(
γλn−2 + δµn−2

)
.

So this latter equality must hold for all n ≥ 2. We suspect that the “λ-part” and
the “µ-part” of this equality hold separately, i.e., that we have

γλn = aγλn−1 + bγλn−2 and

δµn = aδµn−1 + bδµn−2.



Lecture 5 stenogram, version October 29, 2024 page 10

If this is to hold, then we can divide the former equality by γλn−2 and the latter
by δµn−2, simplifying both equalities to

λ2 = aλ + b and

µ2 = aµ + b.

So λ and µ should be roots of the quadratic polynomial X2 − aX − b. Moreover,
they should be the two distinct roots of this quadratic polynomial. By the
quadratic formula, we know that the roots of this polynomial are

a −
√

a2 + 4b
2

,
a +

√
a2 + 4b
2

.

So we take

λ =
a +

√
a2 + 4b
2

, µ =
a −

√
a2 + 4b
2

.

It remains to find γ and δ. For this purpose, we consider the equality

xn = γλn + δµn

for n = 0 and for n = 1. That is,

x0 = γλ0 + δµ0 = γ + δ,

x1 = γλ1 + δµ1 = γλ + δµ.

Knowing λ, µ, x0, x1, we can view this as a system of two linear equations in
γ, δ, which we can solve to get

γ =
x1 − µx0

λ − µ
, δ =

λx0 − x1

λ − µ
.

So our ansatz becomes the explicit formula

xn =
x1 − µx0

λ − µ
λn +

λx0 − x1

λ − µ
µn,

where

λ =
a +

√
a2 + 4b
2

, µ =
a −

√
a2 + 4b
2

.

This formula is a generalization of Binet’s formula (which is obtained for
a = 1 and b = 1 and x0 = 0 and x1 = 1). But there is a little problem: λ − µ can
be 0, in which case the denominators in γ and δ become 0. Next time we will
see how to handle this case. (This is the case when a2 + 4b = 0.)
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