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Math 235 Fall 2024, Lecture 3 stenogram:
Induction and modular arithmetic

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

1. Number Theory I: Divisibility and congruence

Number theory is one of the oldest parts of mathematics, and it is often taught
in undergraduate proofs classes and even in high school. I will thus mostly
summarize the results, and refer for proofs to the notes. The topic of prime
numbers will be omitted as well, since I want to keep it for a later week.

1.1. Divisibility

From now on, N shall mean {0, 1, 2, . . .}.

Definition 1.1.1. Given two integers a and b, we write “a | b” (and say “a
divides b” or “b is divisible by a” or “b is a multiple of a” or “a is a divisor
of b”) if there exists an integer c such that b = ac.

We write “a ∤ b” for “not a | b”.

Theorem 1.1.2 (Divisibility facts). In the following, all unspecified variables
are integers.

(a) We have a | 0 for any a ∈ Z. In particular, 0 | 0.
(b) But 0 | b holds only for b = 0.
(c) We always have a | a.
(d) Signs do not matter in divisibility: i.e., we have a | b if and only if

|a| | |b|.
(e) If a | b and b ̸= 0, then |a| ≤ |b|. (When a and b are positive, this is just

saying: If a | b, then a ≤ b.)
(f) If a | b and b | a, then |a| = |b|.
(g) If a ̸= 0, then a | b is equivalent to

b
a
∈ Z.

(h) If a | b and b | c, then a | b | c.
(i) If a1 | b1 and a2 | b2, then a1a2 | b1b2.
(j) If a | b, then ak | bk for any k ∈ N.
(k) We have a | b if and only if ac | bc, as long as c ̸= 0.
(l) If a | b and a | c, then a | b + c and a | b − c.

1.2. Modular arithmetic: Congruences

Congruences (more precisely, modular congruences) are just reformulated di-
visibilities. Nevertheless, the reformulation is useful, since it exposes their most
useful qualities.

https://www.cip.ifi.lmu.de/~grinberg/t/24f
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Definition 1.2.1. Let n, a, b ∈ Z. We say that a is congruent to b modulo n,
and we write “a ≡ b mod n”, if and only if n | a − b.

We write “a ̸≡ b mod n” for “not a ≡ b mod n”.
Statements of the form “a ≡ b mod n” are called congruences.

For example, 3 ≡ 9 mod 2 since 3− 9 = −6 is a multiple of 2. But 3 ̸≡ 6 mod 2
since 3 − 6 is not a multiple of 2. We have a ≡ b mod 0 if and only if a = b. We
have a ≡ b mod 1 always.

Theorem 1.2.2 (Congruence facts). Again, all unspecified variables shall be
integers.

(a) We have a ≡ 0 mod n if and only if n | a.
(b) We have a ≡ b mod n if and only if there exists d ∈ Z such that a =

b + nd.
(c) We always have a ≡ a mod n.
(d) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.
(e) If a ≡ b mod n, then b ≡ a mod n.
(f) We have a − b ≡ c mod n if and only if a ≡ b + c mod n.
(g) If a1 ≡ b1 mod n and a2 ≡ b2 mod n, then

a1 + a2 ≡ b1 + b2 mod n;
a1 − a2 ≡ b1 − b2 mod n;

a1a2 ≡ b1b2 mod n.

That is, congruences modulo the same n can be added, subtracted and mul-
tiplied at will. (But not divided.)

(h) If a ≡ b mod n, then ak ≡ bk mod n for any k ∈ N.
(i) If a ≡ b mod n and m | n, then a ≡ b mod m.

These facts are not hard to prove (see notes), but already quite useful. Here
is an example:

Exercise 1. Let n ∈ N. Show that 7 | 32n+1 + 2n+2.

Solution. Equivalently, we must prove that 32n+1 + 2n+2 ≡ 0 mod 7.
We can try to simplify the LHS (left hand side) modulo 7. We have

32n+1 =

 32︸︷︷︸
=9≡2 mod 7

n

· 3 ≡ 2n · 3 mod 7.

The reason why we are allowed to do this is some of the above congruence
rules: We are really arguing that 32 ≡ 2 mod 7, so

(
32)n ≡ 2n mod 7, and multi-

plying this by the congruence 3 ≡ 3 mod 7, we get
(
32)n · 3 ≡ 2n · 3 mod 7.
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On the other hand,
2n+2 ≡ 2n · 4 mod 7

(actually an equality, not just a congruence). Adding these two congruences
together, we obtain

32n+1 + 2n+2 ≡ 2n · 3 + 2n · 4 = 2n · 7︸︷︷︸
≡0 mod 7

≡ 2n · 0 = 0 mod 7.

And we are done. ■

As we saw in the above proof, congruences can be substituted into each other:
For example, if a ≡ b mod n, then

(a + 2) (a + 9)− a ≡ (b + 2) (b + 9)− b mod n.

Formally, this is obtained by adding the congruence a ≡ b mod n to the trivial
congruences 2 ≡ 2 mod n and 9 ≡ 9 mod n, then multiplying, then subtracting,
and so on.

This kind of substitution makes congruences particularly useful: They en-
code divisibilities, yet they are as easy to handle as equalities. Just be care-
ful: You can only substitute in “polynomial expressions” (i.e., in expressions
with +, − and ·). You cannot substitute in exponents: e.g., a ≡ b mod n does
not imply 2a ≡ 2b mod n. But we can substitute in bases of exponents: e.g.,
a ≡ b mod n implies a2 ≡ b2 mod n.

When substituting b for a, you don’t have to replace all a’s by b’s; you can
leave some a’s unchanged.

Exercise 2. Let ( f0, f1, f2, . . .) be the Fibonacci sequence. Prove that if a, b ∈ N

satisfy a | b, then fa | fb.

Solution. Writing b as b = ac for some c ∈ N, we can rewrite this as follows:
Prove that every a, c ∈ N satisfy fa | fac.

Now we need to prove this. We induct on c.
The base case (c = 0) is easy: fac = fa·0 = f0 = 0 is divisible by everything.
Induction step: Assume that fa | fac. We must show that fa | fa(c+1).
We have

fa(c+1) = fac+a = fac+(a−1)+1

= fac fa−1 + fac+1 f(a−1)+1

(
by the addition formula for Fibonacci numbers

(Exercise 5 in Lecture 1)

)
= fac︸︷︷︸

≡0 mod fa
(since fa| fac)

fa−1 + fac+1 fa︸︷︷︸
≡0 mod fa

(since fa| fa)

≡ 0 fa−1 + fac+10 = 0 mod fa,
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so that fa | fa(c+1), and we are done (with the induction step and thus the whole
proof).

Not so fast: We applied the addition formula to ac and a − 1 in the roles of n
and m. This requires ac ≥ 0 and a − 1 ≥ 0. Well, ac ≥ 0 is clear, but a − 1 ≥ 0
holds only for a ≥ 1. So the case a = 0 must be handled separately. But it is
obvious anyway (a = 0 implies ac = 0, thus fac = 0). ■

1.3. Quotients and remainders

One of the “workhorse results” in elementary number theory is division with
remainder:

Theorem 1.3.1 (division with remainder theorem). Let n be a positive integer.
Let u be any integer. Then, there exists a unique pair (q, r) with q ∈ Z and
r ∈ {0, 1, . . . , n − 1} and u = qn + r.

Definition 1.3.2. Consider this pair (q, r).
Its first entry q is denoted u//n and called the quotient of the division of

u by n.
Its second entry r is denoted u%n and called the remainder of the division

of u by n.

Other authors use other notations. A lot of people write u mod n for u%n, but
this is sketchy (u mod n more standardly means the residue class of u modulo
n, which is the set of all integers that are congruent to u modulo n).

The theorem is not hard to prove by induction on u. The only twist is that
u can be negative, so you need a version of induction that can go both up and
down (i.e., with two induction steps: u 7→ u + 1 and u 7→ u − 1); I call this
“two-sided induction”. Alternatively, you can use regular induction to cover
the case u ≥ 0 and then some other trick to extend it to negative u.

Theorem 1.3.3 (Division with remainder facts). Let n be a positive integer,
and u, v ∈ Z.

(a) We have u%n ∈ {0, 1, . . . , n − 1} and u%n ≡ u mod n and u =
(u//n) n + (u%n).

(b) We have n | u if and only if u%n = 0.
(c) If c ∈ {0, 1, . . . , n − 1} is such that c ≡ u mod n, then c = u%n.
(d) We have u//n =

⌊u
n

⌋
, where ⌊x⌋ means the floor of x.

(e) We have u ≡ v mod n if and only if u%n = v%n.
(f) We have

(u is even) ⇐⇒ (2 | u) ⇐⇒ (u ≡ 0 mod 2) ⇐⇒ (u%2 = 0)
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and
(u is odd) ⇐⇒ (2 ∤ u) ⇐⇒ (u ≡ 1 mod 2) ⇐⇒ (u%2 = 1) .

These facts are fundamental. Even things that are completely obvious (such
as “the sum of any two odd integers is even”) are proved using them. But also
some less obvious things, such as the following:

Exercise 3. Let n be an odd integer. Prove that 8 | n2 − 1.

Solution. Since n is odd, we have n ≡ 1 mod 2 (by the above facts). Thus,
n = 2k + 1 for some k ∈ Z. Consider this k. Now,

n2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k + 1 − 1 = 4
(

k2 + k
)
= 4k (k + 1) .

If we can show that 2 | k (k + 1), then we are therefore done (since the 2 joins
the 4 factor to obtain 2 · 4 = 8). So why is 2 | k (k + 1) ? Because

• if k is even, then 2 | k | k (k + 1);

• if k is odd, then k ≡ 1 mod 2, so that k + 1 ≡ 1 + 1 = 2 ≡ 0 mod 2, so that
2 | k + 1 | k (k + 1).

So we are done. ■

Exercise 4. Let n be an integer such that 3 ∤ n. Prove that 3 | n2 − 1.

Solution. We want to show that n2 ≡ 1 mod 3. But the above facts tell us that
n%3 ≡ n mod 3, so that n ≡ n%3 mod 3. So we can replace n by n%3 in the
congruence that we are trying to prove.

But n%3 is either 0 or 1 or 2, and cannot be 0 (since 3 ∤ n). So n%3 is either
1 or 2. Hence, instead of proving that n2 ≡ 1 mod 3, we only need to show
that 12 ≡ 1 mod 3 and 22 ≡ 1 mod 3. But this is straightforward (12 = 1 and
22 = 4 ≡ 1 mod 3). ■

What we have done in this solution is a general technique: the “try all pos-
sible remainders” method for proving divisibilities and congruences. We could
also do the previous exercise (8 | n2 − 1) in the same way, but we would have
to try all possible remainders upon division by 8, of which there are only 4
(since the odd number n must leave an odd remainder, i.e., one of 1, 3, 5, 7).
Likewise, we can show that any integer n satisfies 6 | n3 − n and 12 | n4 − n2

and 24 | n5 − n3 and 6 | n (n + 1) (n + 2) and many other such claims.

Another example of the use of congruence arguments:
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Exercise 5. Which Fibonacci numbers are even?

Solution. See whiteboard, and see the notes for the formal version. Essentially,
the idea is to compute the remainders fn%2 by interpreting the recursion fn =
fn−1 + fn−2 modulo 2. The sequence of remainders is periodic with period 3,
and we conclude that fn is even if and only if 3 | n. ■

1.4. Greatest common divisors
Definition 1.4.1. A common divisor of k integers b1, b2, . . . , bk is an integer a
such that

a | bi for each i ∈ {1, 2, . . . , k} .

For example, the common divisors of 6 and 8 are −2,−1, 1, 2.

Definition 1.4.2. The greatest common divisor (short: gcd) of k integers
b1, b2, . . . , bk is defined as follows:

• If not all of b1, b2, . . . , bk are 0, then it is literally the largest of all com-
mon divisors of b1, b2, . . . , bk.

• If all of b1, b2, . . . , bk are 0, then it is 0 by decree.

We denote it by gcd (b1, b2, . . . , bk).

Theorem 1.4.3 (Basic gcd facts). All variables here are understood to be inte-
gers.

(a) We have gcd (a, b) = gcd (b, a).
(b) We have gcd (a, b) | a and gcd (a, b) | b.
(c) We have gcd (a, 0) = gcd (0, a) = |a|.
(d) We have gcd (a, ua + b) = gcd (a, b). (This is the basic tool behind the

Euclidean algorithm.)
(e) If b ≡ c mod a, then gcd (a, b) = gcd (a, c). (In other words, in a gcd of

two numbers, we can move one by a multiple of the other.)
(f) If a > 0, then gcd (a, b) = gcd (a, b%a).
(g) We have gcd (a, b) = gcd (−a, b) = gcd (a,−b).
(h) If a | b, then gcd (a, b) = |a|.
(i) We have gcd () = 0.

These facts can be very useful for finding gcds without having to decompose
the numbers into prime factors (“Euclidean algorithm”). For instance,

gcd (21, 34) = gcd (21, 13) (since 34%21 = 13)
= gcd (13, 21) = gcd (13, 8) = gcd (8, 13) = gcd (8, 5)
= gcd (5, 8) = gcd (5, 3) = gcd (3, 5) = gcd (3, 2)
= gcd (2, 3) = gcd (2, 1) = gcd (1, 2) = gcd (1, 0) = |1| = 1.
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Note that these are the Fibonacci numbers, unsurprisingly because fn+1% fn =
fn−1 for all n ≥ 1. Thus we have really shown the following:

Proposition 1.4.4. The gcd of any two consecutive Fibonacci numbers is 1.
That is, gcd ( fn, fn+1) = 1 for the Fibonacci sequence and any n ∈ N.

Now to some more significant and less obvious properties of gcds:

Theorem 1.4.5 (“Advanced” gcd facts). (a) Bezout’s theorem: For any two
integers a and b, there exist integers x and y such that

gcd (a, b) = xa + yb.

In other words, gcd (a, b) is always a linear combination of a and b with
integer coefficients.

(b) The universal property of the gcd: For any three integers m, a, b, the
equivalence

(m | a and m | b) ⇐⇒ (m | gcd (a, b))

holds. In other words, the common divisors of a and b are precisely the
divisors of gcd (a, b).

(c) For any s, a, b ∈ Z, we have

gcd (sa, sb) = |s| gcd (a, b) .

(d) If a1 | b1 and a2 | b2, then

gcd (a1, a2) | gcd (b1, b2) .

Proofs can be found in the notes. Main idea for (a): induction. But first,
replace a and b by |a| and |b|, so that a and b become nonnegative. Then, do
strong induction on a + b. In the induction step, reduce the problem for (a, b)
to either the problem for (a − b, b) (if a ≥ b) or the problem for (a, b − a) (if
a ≤ b). In either case, the sum a + b goes down, unless one of a, b is 0, but this
case is easy. This inductive proof leads to the Extended Euclidean algorithm
for finding the x and the y. Part (b) can be derived from (a), and parts (c) and
(d) can be derived from (b).

Most of the above can be generalized to multiple numbers:

Theorem 1.4.6 (“Advanced” gcd facts). (a) Bezout’s theorem: For any k in-
tegers a1, a2, . . . , ak, there exist integers x1, x2, . . . , xk such that

gcd (a1, a2, . . . , ak) = x1a1 + x2a2 + · · ·+ xkak.
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In other words, gcd (a1, a2, . . . , ak) is always a linear combination of
a1, a2, . . . , ak with integer coefficients.

(b) The universal property of the gcd: For any integers m, a1, a2, . . . , ak,
the equivalence

(m | ai for all i ∈ {1, 2, . . . , k}) ⇐⇒ (m | gcd (a1, a2, . . . , ak))

holds. In other words, the common divisors of a1, a2, . . . , ak are precisely the
divisors of gcd (a1, a2, . . . , ak).

(c) For any s, ai ∈ Z, we have

gcd (sa1, sa2, . . . , sak) = |s| gcd (a1, a2, . . . , ak) .

(d) If ai | bi for all i, then

gcd (a1, a2, . . . , ak) | gcd (b1, b2, . . . , bk) .

(e) Associativity: We have

gcd (b1, b2, . . . , bk, c1, c2, . . . , cℓ)
= gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , cℓ)) .

Exercise 6. Let u be an integer, and a, b ∈ N. Prove that

gcd
(

ua − 1, ub − 1
)
=

∣∣∣ugcd(a,b) − 1
∣∣∣ .

Solution. Exercise 3.4.1 in the notes. Recommend looking at the solution
there. The crux of the argument is: When you subtract the smaller of a and
b from the larger, both sides of the claim are unchanged. (For the right hand
side, this follows from gcd (a, b) = gcd (a − b, b), but for the left hand side it
requires more work.) This allows you to gradually reduce the problem to the
case when a or b is 0 (formally, this is a strong induction on a + b).

1.5. Coprimality

Gcds are at their most useful when they equal 1. This has a name:

Definition 1.5.1. Two integers a and b are said to be coprime (and I write
“a ⊥ b” for this) if gcd (a, b) = 1.
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This is clearly a symmetric relation. “Coprime” is also known as “relatively
prime” (or “prime to each other”, but please avoid this one).

For example, 2 is coprime to 3, since gcd (2, 3) = 1. More generally, each a is
coprime to a + 1, since gcd (a, a + 1) = gcd (a, 1) = 1.

When is a coprime to a + 2 ? When a is odd. Indeed,

gcd (a, a + 2) = gcd (a, 2) =

{
2, if a is even;
1, if a is odd.

Any number a is coprime to 1, but only 1 and −1 are coprime to 0.

Theorem 1.5.2 (Coprimality facts). All variables here are integers.
(a) Cancellation from divisibility: If a | bc and a ⊥ b, then a | c. You can

think of this rule as a way to remove “unsolicited guests” from a divisibility.
(Here, the guest is b.)

(b) Combining two divisibilities: If a | c and b | c and a ⊥ b, then ab | c.
(c) If a1 | b1 and a2 | b2 and b1 ⊥ b2, then a1 ⊥ a2.
(d) If a ⊥ c and b ⊥ c, then ab ⊥ c.
(e) If ai ⊥ c for all i ∈ {1, 2, . . . , k}, then a1a2 · · · ak ⊥ c.
(f) If a ⊥ b, then an ⊥ bm for all n, m ∈ N.
(g) Combining k divisibilities: If a1, a2, . . . , ak are k mutually coprime di-

visors of c, then a1a2 · · · ak | c. Caution: “Mutually coprime” means that
ai ⊥ aj for all i ̸= j, not that gcd (a1, a2, . . . , ak) = 1.

(h) Cancellation from congruence: If a ⊥ n and ab ≡ ac mod n, then
b ≡ c mod n.

(i) Reducing fractions: If (a, b) ̸= (0, 0) and g = gcd (a, b), then g > 0 and
a
g

⊥ b
g

. This is saying that any fraction
a
b

of integers can be brought to a

reduced form by cancelling the gcd of numerator and denominator.

Caution: It is easy to find three integers x, y, z that satisfy gcd (x, y, z) = 1
but that are not mutually coprime. Indeed, taking x = 6 and y = 10 and z = 15,
we note that gcd (x, y, z) = 1 but no two of x, y, z are coprime.
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