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Math 235 Fall 2024, Lecture 2 stenogram:
Induction and modular arithmetic cont’d

website: https://www.cip.ifi.lmu.de/ grinberg/t/24f
Planning:

* Recitation: Fri 12M-1PM usually [Korman Center, the common room,
next to 245; otherwise, Korman 263], Mon 12M-1PM next week.

e Office hours: Wed 12M-1PM.

* Bug bounty: +1 homework point per nontrivial correction to the text or
the exercises, up to 25 points over the quarter.

[Jonathan Parlett, Sofie Tauris got their first point.]

1. Induction (cont’'d)

Last time, we saw a few induction proofs:

Exercise 1. Prove that every integer n > 0 satisfies
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Exercise 2. Fix a positive integer n. An n-bitstring shall mean an n-tuple
(ay,a2,...,a,) € {0,1}" of bits. (Recall that a bit is an element of {0,1}.)

Two n-bitstrings (ay,4az,...,a,) and (b1, by, ..., by,) differ in exactly one
bit if there is exactly one i € {1,2,...,n} such that a; # b;. For instance,
(0,1,1,0) differs from (0,0,1,0) in exactly one bit.

Prove that we can arrange all the 2" many n-bitstrings in a cyclic list
(b1,ba, ..., bon) such that for each i € {1,2,...,2"}, the two bitstrings b; and
b;_, differ in exactly one bit, where by = box.

Definition 1.0.1. The Fibonacci sequence is the sequence (fo, f1, f2,...) of
nonnegative integers defined recursively by

fo=0, fi=1, fun=fn-1+ fnpforalln > 2.

The entries of this sequence are called the Fibonacci numbers.
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n 012 3 456 7 8 9 10 11
f» 001 1 2 3 5 8 13 21 34 55 89
Exercise 3. Prove that each integer n > 0 satisfies

htfat-tfu= for2 =1

Exercise 4 (Cassini identity). Prove that for every positive integer 1, we have

fn+1fn—1 _f% = (_1)71.

Exercise 5 (addition formula for Fibonacci numbers). Prove that for any in-
tegers n,m > 0, we have

fn+m+1 = fnfm +fn+1fm+1-

Let’s continue with induction.

Exercise 6. Prove Binet’s formula for the Fibonacci numbers:

1
fnzﬁ

n_i n
\/54]

for all n > 0, where we set

S

1 1—
= +2\/§ ~ 1.618... and P = > ~ —0.618.

(Note that ¢ is known as the golden ratio; ¢ and 1 are the two roots of the
quadratic equation x? = x + 1.)

Solution. Induction on n:
Base case: Easy for n = 0.
Induction step: Let’s try to go from n to n + 1. So our IH is

PRI
LV AV

and our goal is to show that

1 n+1

1
_ n+1
fn+1 — \/E(P \/glp .
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We try to do this:

1 +f
Neid fl” e

But what is f,,_1 ? Our IH doesn’t tell us anything about it.
So this particular kind of induction doesn’t work here.

fn—|—1 - fn ‘|’fn—1 =

The way to proceed is something known as strong induction: an induction
principle where instead of going from n —1 to n, you go from 0,1,...,n —1
together to n. So the IH is not just saying “the claim is true for n — 1”7, but
actually is saying “the claim is true for all numbers up to n — 1 (inclusive)”. In
particular, if you are using this principle, you can use the IH not just for n — 1
but also for n — 2.

The strong induction principle is saying that if you want to prove a state-
ment A (n) for all integers n > 0, it suffices to show that for each n > 0, the
implication

(AOANAMA---NA(n—-1)) = A(n)
holds. Note that for n = 0, this implication is saying that
(nothing) — A(0),
—_——

tautology, i.e., a statement
that says nothing and thus is true

i.e., that A (0) holds unconditionally. So this is some kind of induction base
folded into the induction step. In practice, when using strong induction, the in-
duction step will often treat small values of 7 (like n = 0 and n = 1) differently
from larger values, so we will get “de-facto base cases” inside the induction
step.

Let us see how to prove Binet’s formula using strong induction:
Proof of Binet’s formula. We let A (n) be the statement

fo= 9"~
=
So we must prove that .A (n) holds for all n > 0.
By strong induction, it suffices to show that

(AO)VAAQ) A~ AA(n—1)) = A(n)

To show this, we assume that 4 (0) A A(1) A--- A A(n—1). In other words,

for all k < n.

fk \/—(P_\/—
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We want to prove A (n), that is, we want to prove that
LI 1

U

The definition of the Fibonacci numbers yields

fn - fn—l ‘|’fn—2

— L n— n— 1) (L an_L nz)
(57— vs¥ s
by our induction hypothesis,
specifically by A (n —1) and A (n — 2)

fn=

_ _— n-1 L —Z_L n—-1_ ~ n-2

5
— " (p41) ——p T (p+1
(by cor;putation) (by Cor;putation)

n—2_2 n—2,2

\/—4’ ¢ = \/51/1 2

]' n n

A
That is, A (n) holds. This completes the induction step.

Right?

Careful: We have assumed A (0) A A(1)A---AA(n—1), and then we have
applied A (n —2) and A (n — 1). For this to work, we need to know that n — 2
and n — 1 belong to {0,1,...,n —1}. This, in turn, holds for all n > 2, but not
for n = 0 or n = 1. So our above argument only works for n > 2. We thus need
to do the cases n = 0 and n = 1 separately.

Fortunately, they are straightforward: for instance, the n = 1 case is checked
by

fi=1
1 1 114v6  11-V5

vy v by S

The number ¢ is known as the golden ratio and we will meet it many times.

So much for algebraic properties of Fibonacci numbers. There are also com-
binatorial ones. Here is one:




Lecture 2 stenogram, version October 15, 2024 page 5

Definition 1.0.2. A set S of integers is said to be lacunar if it contains no two
consecutive integers (i.e., if there isno s € S such thats +1 € S).

For instance, {2,4,7} is lacunar, but {2,4,5,7} is not.

Theorem 1.0.3. Let n > 0 be an integer. Let [n] be the set {1,2,...,n}.
Then, the number of all lacunar subsets of [n] is the Fibonacci number

fn+2-

Example 1.0.4. Let n = 4. The lacunar subsets of [4] are

o, {1}, {2}, {3}, {4}, {13}, {14}, {24}

There are 8 of them, and of course fy 7 = fs = 8.

For comparison, the number of all subsets of [n] is 2".

Proof of the theorem. Apply strong induction on n.

Assume that the theorem is true for 0,1,...,n — 1. We must prove that it is
true for n.

This is easy to check by hand for n = 0 and for n = 1. So assume WLOG that
n > 2.

A lacunar subset of [n] either contains n or does not. So (the symbol “#”
means “number”)

(# of lacunar subsets of [n])
= (# of lacunar subsets of [n] that contain n)

J/

=(# of lacunar subsets of [n—2])
(because the lacunar subsets of [r] that contain n
are just the lacunar subsets of [n—2] with the
extra element # inserted into them)

+ (# of lacunar subsets of [n] that don’t contain n)

=(# of lacunar subsets of [n—1])

= (# of lacunar subsets of [n —2])

N

=f (n—2)+2
(by the induction hypothesis)

+ (# of lacunar subsets of [n —1])

(&

=f (n—1)+2
(by the induction hypothesis)

= f(n—2)+2 +f(n—1)+2 = fo+ for1 = fut2:
This concludes the proof by strong induction. O

Induction can be useful even if there is seemingly nothing to induct on.




Lecture 2 stenogram, version October 15, 2024

page 6

Exercise 7. Prove that

> 1
— =1
=i(i+1)
Solution. We have
i o lim S (n) where S (n) = i !
Hi(i+1) noe ’ CHii+1)
Maybe we can compute S (1) ?
1 2 3
S(0) =0, 5(1)_5’ S(2)—§, S(3)—Z.
Thus, we suspect that
n
= > 0.
S (n) —— for eachn >0

How do we prove such a suspicion? By induction on #, and in fact a very

straightforward induction. (The induction step is

1 n—1 1
() =St =D+ e ~ =) +1  ntD)
n , .
=TT (after a bit of computation) .
)
So
1 1 s 1
— = lim S (n) = lim " _ lim = ne T = =1
i+l e e n 1 "1+ lim 1+ lim - 1+0
n n— 00 n—oo 1
Alternatively,
= lim S(n) = lim " :nm(1— ):1.
=i(i+1) oo n—soon+1 n—ooo n+1
1
Exercise 8. Prove that the golden ratio ¢ = +2\/5 satisfies
1
1+ 1 = @.
1+
1
1+ 1
1+ —
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Note: The infinite nested fraction on the LHS is called an (infinite) continued

fraction. Rigorously, it is defined as the limit

1
Iim |1+
n—s00 1
1+
1
1+
1+ !
..+1
N . 11
with n};actions
Solution. Set
1
X =1+ 1 for each n > 0.
1+
1
1+ ———
1+ L
L
. T
with n };actions
Thus,
1 1 3
xO_l/ x1:1+_:2/ x2:1+—:_1
! 141 2
1
1 1 1 2
x3=1+ T =1+—=1+ :1+—:§,
1 X (3) 3 3
—I——l 3
14+ =
+1
1 1 3 8
x4:1+ :1+_:1+_:_1
1 X3 5 5
1+ 1
14+ ——
1+1
1
x—l—i—§—E
>TTg T g
So it looks like
_ fni2 for each n > 0.
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How do we prove this? We induct on #, using the recursion

1

Xn—1

X, =1+ foralln > 1.

So to go from n — 1 to n, we must just argue that

1 1 fn fn+1 + fn fn+2
xp=1+—=14+ <=1+ = = :
! Xn—1 (fn—i—l) fn+1 fn+1 fn+1
fn
OK, so we have now proved that
Xy = fui2 for each n > 0.
fn+1
Thus,
1 n+2 1 n+2
fn—l—Z \/390 \/gllj

lim x,;, = lim = lim T T
n—00 n—o0 fn-l-l n—oo 1 - 0 —l/J”'H

VNG
by Binet’s formula. What now?
1

_4)7’1—!-2 _ 4,71-1—2 o o
n n
lim x,;, = lim \{E \{E = lim QOHH—IPHH
n—oo n—o00 _(Pn+1 _ _¢n+1 n—oo @ — 1/)
VAV
n—+2 1 n+2
= lim QDHH( _'OHH), wherep:f
n=voo @1 (1 — pr ) ¢
) 1— pn+2
o nlgrc}o 1— p”+1
—0.61
But Q= 1.618 and l[) ~ —0.618, SO p = g ~ ](.)6288 = —0,382; in any way,

lp| < 1 (this follows from ¢ > 1 and ¢ € (—1,0)). Thus, the powers of p
converge to 0 as n — co. Hence,

. T n+2
o 1P e 10
nseo ]l —prtl  lim 1— lim p*t1 1-0
n—00 n—00
S0 +2
. . 1—=p"
Jg%ox”:qo',}ggol_pwrl:?/
N—————

=1
as desired.
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Exercise 9. We say that a number is funny if it can be written in the form
£12 422 +3% % £

for some nonnegative integer m and some choice of & signs. For example,
4 is funny because 4 = —1% — 22 + 32, Also, 0 is funny because we can take
m = 0 and get the empty sum.

Prove that every integer is funny.

Solution. If we cannot solve a problem directly, we can try to simplify it and
solve the simpler problem first.

Here, we can try to replace the squares by first powers. So let’s say that a
number is giggly if it can be written in the form

+1+£2+£3+---£m

for some nonnegative integer m and some choice of £ signs. Is every integer
giggly?

For instance, 3 is giggly since 3 = 1+ 2.

Is 4 giggly? Yes, since 4 = —1+2+ 3.

Is 5 giggly? Yes, since5 =1+2+3+4—5.

Is 6 giggly? Yes, since 6 =1+ 2+ 3.

If n is giggly, then sois n + 1, since n = £1 =2 £ 3 &+ - - - £ m entails

n+1=+414+2+34--tm—(m+1)+ (m+2).

So, by induction, all n > 0 are giggly (since 0 is giggly).

What about negative integers? These are giggly, too, since you can flip all
signsinn =4+14+24+3+---+tmtoget -n=F1F2F3F---Fm.

So we have solved the simplified problem: We have shown that all integers
are giggly.

Now what about the original problem? Why is every integer funny (i.e., of
the form +12 +224+3% 4+ ... + m?)?

We try something similar as for the simplified problem: an argument for why
n funny entails n 4 1 funny.

Sadly, — (m +1)*+ (m+2)* =2m+3 # 1.

Maybe we can find a pattern involving several (say, three or four) consecutive
squares such that if we add them with signs, we get a constant? Yes:

(m+1)*— (m+2)* — (m+3)* + (m +4)* = 4.

Thus, if n is funny, then n + 4 is funny.

Hence, if we can show that —1,0, 1,2 are funny, then so is every nonnegative
integer (by strong induction), and therefore every integer (since we can go from
n to —n by flipping all the signs).
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But this is easy:

0 = (empty sum), 1=+12

—1=-12

So the problem is solved.

2=-12-22-32 147




	Induction (cont'd)

