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Math 235 Fall 2024, Lecture 2 stenogram:
Induction and modular arithmetic cont’d

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

Planning:

• Recitation: Fri 12M–1PM usually [Korman Center, the common room,
next to 245; otherwise, Korman 263], Mon 12M–1PM next week.

• Office hours: Wed 12M–1PM.

• Bug bounty: +1 homework point per nontrivial correction to the text or
the exercises, up to 25 points over the quarter.

[Jonathan Parlett, Sofie Tauris got their first point.]

1. Induction (cont’d)

Last time, we saw a few induction proofs:

Exercise 1. Prove that every integer n ≥ 0 satisfies
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Exercise 2. Fix a positive integer n. An n-bitstring shall mean an n-tuple
(a1, a2, . . . , an) ∈ {0, 1}n of bits. (Recall that a bit is an element of {0, 1}.)

Two n-bitstrings (a1, a2, . . . , an) and (b1, b2, . . . , bn) differ in exactly one
bit if there is exactly one i ∈ {1, 2, . . . , n} such that ai ̸= bi. For instance,
(0, 1, 1, 0) differs from (0, 0, 1, 0) in exactly one bit.

Prove that we can arrange all the 2n many n-bitstrings in a cyclic list
(b1, b2, . . . , b2n) such that for each i ∈ {1, 2, . . . , 2n}, the two bitstrings bi and
bi−1 differ in exactly one bit, where b0 = b2n .

Definition 1.0.1. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of
nonnegative integers defined recursively by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for all n ≥ 2.

The entries of this sequence are called the Fibonacci numbers.

https://www.cip.ifi.lmu.de/~grinberg/t/24f
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n 0 1 2 3 4 5 6 7 8 9 10 11
fn 0 1 1 2 3 5 8 13 21 34 55 89 .

Exercise 3. Prove that each integer n ≥ 0 satisfies

f1 + f2 + · · ·+ fn = fn+2 − 1.

Exercise 4 (Cassini identity). Prove that for every positive integer n, we have

fn+1 fn−1 − f 2
n = (−1)n .

Exercise 5 (addition formula for Fibonacci numbers). Prove that for any in-
tegers n, m ≥ 0, we have

fn+m+1 = fn fm + fn+1 fm+1.

Let’s continue with induction.

Exercise 6. Prove Binet’s formula for the Fibonacci numbers:

fn =
1√
5

φn − 1√
5

ψn

for all n ≥ 0, where we set

φ :=
1 +

√
5

2
≈ 1.618 . . . and ψ :=

1 −
√

5
2

≈ −0.618.

(Note that φ is known as the golden ratio; φ and ψ are the two roots of the
quadratic equation x2 = x + 1.)

Solution. Induction on n:
Base case: Easy for n = 0.
Induction step: Let’s try to go from n to n + 1. So our IH is

fn =
1√
5

φn − 1√
5

ψn,

and our goal is to show that

fn+1 =
1√
5

φn+1 − 1√
5

ψn+1.



Lecture 2 stenogram, version October 15, 2024 page 3

We try to do this:

fn+1 = fn + fn−1 =
1√
5

φn − 1√
5

ψn + fn−1.

But what is fn−1 ? Our IH doesn’t tell us anything about it.
So this particular kind of induction doesn’t work here.

The way to proceed is something known as strong induction: an induction
principle where instead of going from n − 1 to n, you go from 0, 1, . . . , n − 1
together to n. So the IH is not just saying “the claim is true for n − 1”, but
actually is saying “the claim is true for all numbers up to n − 1 (inclusive)”. In
particular, if you are using this principle, you can use the IH not just for n − 1
but also for n − 2.

The strong induction principle is saying that if you want to prove a state-
ment A (n) for all integers n ≥ 0, it suffices to show that for each n ≥ 0, the
implication

(A (0) ∧A (1) ∧ · · · ∧ A (n − 1)) =⇒ A (n)

holds. Note that for n = 0, this implication is saying that

(nothing)︸ ︷︷ ︸
tautology, i.e., a statement

that says nothing and thus is true

=⇒ A (0) ,

i.e., that A (0) holds unconditionally. So this is some kind of induction base
folded into the induction step. In practice, when using strong induction, the in-
duction step will often treat small values of n (like n = 0 and n = 1) differently
from larger values, so we will get “de-facto base cases” inside the induction
step.

Let us see how to prove Binet’s formula using strong induction:
Proof of Binet’s formula. We let A (n) be the statement

fn =
1√
5

φn − 1√
5

ψn.

So we must prove that A (n) holds for all n ≥ 0.
By strong induction, it suffices to show that

(A (0) ∧A (1) ∧ · · · ∧ A (n − 1)) =⇒ A (n)

To show this, we assume that A (0) ∧A (1) ∧ · · · ∧ A (n − 1). In other words,

fk =
1√
5

φk − 1√
5

ψk for all k < n.
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We want to prove A (n), that is, we want to prove that

fn =
1√
5

φn − 1√
5

ψn.

The definition of the Fibonacci numbers yields

fn = fn−1 + fn−2

=

(
1√
5

φn−1 − 1√
5

ψn−1
)
+

(
1√
5

φn−2 − 1√
5

ψn−2
)

(
by our induction hypothesis,

specifically by A (n − 1) and A (n − 2)

)
=

1√
5
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5
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5

ψn−1 − 1√
5

ψn−2

=
1√
5

φn−2 (φ + 1)︸ ︷︷ ︸
=φ2

(by computation)

− 1√
5

ψn−2 (ψ + 1)︸ ︷︷ ︸
=ψ2

(by computation)

=
1√
5

φn−2φ2 − 1√
5

ψn−2ψ2

=
1√
5

φn − 1√
5

ψn.

That is, A (n) holds. This completes the induction step.
Right?
Careful: We have assumed A (0) ∧A (1) ∧ · · · ∧ A (n − 1), and then we have

applied A (n − 2) and A (n − 1). For this to work, we need to know that n − 2
and n − 1 belong to {0, 1, . . . , n − 1}. This, in turn, holds for all n ≥ 2, but not
for n = 0 or n = 1. So our above argument only works for n ≥ 2. We thus need
to do the cases n = 0 and n = 1 separately.

Fortunately, they are straightforward: for instance, the n = 1 case is checked
by

f1 = 1,

1√
5

φ1 − 1√
5

ψ1 =
1√
5

φ − 1√
5

ψ =
1√
5

1 +
√

5
2

− 1√
5

1 −
√

5
2

= 1.

The number φ is known as the golden ratio and we will meet it many times.

So much for algebraic properties of Fibonacci numbers. There are also com-
binatorial ones. Here is one:
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Definition 1.0.2. A set S of integers is said to be lacunar if it contains no two
consecutive integers (i.e., if there is no s ∈ S such that s + 1 ∈ S).

For instance, {2, 4, 7} is lacunar, but {2, 4, 5, 7} is not.

Theorem 1.0.3. Let n ≥ 0 be an integer. Let [n] be the set {1, 2, . . . , n}.
Then, the number of all lacunar subsets of [n] is the Fibonacci number

fn+2.

Example 1.0.4. Let n = 4. The lacunar subsets of [4] are

∅, {1} , {2} , {3} , {4} , {1, 3} , {1, 4} , {2, 4} .

There are 8 of them, and of course f4+2 = f6 = 8.

For comparison, the number of all subsets of [n] is 2n.

Proof of the theorem. Apply strong induction on n.
Assume that the theorem is true for 0, 1, . . . , n − 1. We must prove that it is

true for n.
This is easy to check by hand for n = 0 and for n = 1. So assume WLOG that

n ≥ 2.
A lacunar subset of [n] either contains n or does not. So (the symbol “#”

means “number”)

(# of lacunar subsets of [n])
= (# of lacunar subsets of [n] that contain n)︸ ︷︷ ︸

=(# of lacunar subsets of [n−2])
(because the lacunar subsets of [n] that contain n

are just the lacunar subsets of [n−2] with the
extra element n inserted into them)

+ (# of lacunar subsets of [n] that don’t contain n)︸ ︷︷ ︸
=(# of lacunar subsets of [n−1])

= (# of lacunar subsets of [n − 2])︸ ︷︷ ︸
= f(n−2)+2

(by the induction hypothesis)

+ (# of lacunar subsets of [n − 1])︸ ︷︷ ︸
= f(n−1)+2

(by the induction hypothesis)

= f(n−2)+2 + f(n−1)+2 = fn + fn+1 = fn+2.

This concludes the proof by strong induction.

Induction can be useful even if there is seemingly nothing to induct on.
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Exercise 7. Prove that
∞

∑
i=1

1
i (i + 1)

= 1.

Solution. We have
∞

∑
i=1

1
i (i + 1)

= lim
n→∞

S (n) , where S (n) =
n

∑
i=1

1
i (i + 1)

.

Maybe we can compute S (n) ?

S (0) = 0, S (1) =
1
2

, S (2) =
2
3

, S (3) =
3
4

.

Thus, we suspect that

S (n) =
n

n + 1
for each n ≥ 0.

How do we prove such a suspicion? By induction on n, and in fact a very
straightforward induction. (The induction step is

S (n) = S (n − 1) +
1

n (n + 1)
=

n − 1
(n − 1) + 1

+
1

n (n + 1)

=
n

n + 1
(after a bit of computation) .

)
So

∞

∑
i=1

1
i (i + 1)

= lim
n→∞

S (n) = lim
n→∞

n
n + 1

= lim
n→∞

1

1 +
1
n

=
lim

n→∞
1

lim
n→∞

1 + lim
n→∞

1
n

=
1

1 + 0
= 1.

Alternatively,

∞

∑
i=1

1
i (i + 1)

= lim
n→∞

S (n) = lim
n→∞

n
n + 1

= lim
n→∞

(
1 − 1

n + 1

)
= 1.

Exercise 8. Prove that the golden ratio φ =
1 +

√
5

2
satisfies

1 +
1

1 +
1

1 +
1

1 +
1
. . .

= φ.
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Note: The infinite nested fraction on the LHS is called an (infinite) continued
fraction. Rigorously, it is defined as the limit

lim
n→∞



1 +
1

1 +
1

1 +
1

1 +
1

. . . +
1
1︸ ︷︷ ︸

with n fractions



.

Solution. Set

xn := 1 +
1

1 +
1

1 +
1

1 +
1

. . . +
1
1︸ ︷︷ ︸

with n fractions

for each n ≥ 0.

Thus,

x0 = 1, x1 = 1 +
1
1
= 2, x2 = 1 +

1

1 +
1
1

=
3
2

,

x3 = 1 +
1

1 +
1

1 +
1
1

= 1 +
1
x2

= 1 +
1(
3
2

) = 1 +
2
3
=

5
3

,

x4 = 1 +
1

1 +
1

1 +
1

1 +
1
1

= 1 +
1
x3

= 1 +
3
5
=

8
5

,

x5 = 1 +
5
8
=

13
8

.

So it looks like
xn =

fn+2

fn+1
for each n ≥ 0.
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How do we prove this? We induct on n, using the recursion

xn = 1 +
1

xn−1
for all n ≥ 1.

So to go from n − 1 to n, we must just argue that

xn = 1 +
1

xn−1
= 1 +

1(
fn+1

fn

) = 1 +
fn

fn+1
=

fn+1 + fn

fn+1
=

fn+2

fn+1
.

OK, so we have now proved that

xn =
fn+2

fn+1
for each n ≥ 0.

Thus,

lim
n→∞

xn = lim
n→∞

fn+2

fn+1
= lim

n→∞

1√
5

φn+2 − 1√
5

ψn+2

1√
5

φn+1 − 1√
5

ψn+1

by Binet’s formula. What now?

lim
n→∞

xn = lim
n→∞

1√
5

φn+2 − 1√
5

ψn+2

1√
5

φn+1 − 1√
5

ψn+1
= lim

n→∞

φn+2 − ψn+2

φn+1 − ψn+1

= lim
n→∞

φn+2 (1 − ρn+2)
φn+1 (1 − ρn+1)

, where ρ =
ψ

φ

= φ · lim
n→∞

1 − ρn+2

1 − ρn+1 .

But φ ≈ 1.618 and ψ ≈ −0.618, so ρ =
ψ

φ
≈ −0.618

1.618
= −0.382; in any way,

|ρ| < 1 (this follows from φ > 1 and ψ ∈ (−1, 0)). Thus, the powers of ρ
converge to 0 as n → ∞. Hence,

lim
n→∞

1 − ρn+2

1 − ρn+1 =
lim

n→∞
1 − lim

n→∞
ρn+2

lim
n→∞

1 − lim
n→∞

ρn+1 =
1 − 0
1 − 0

= 1.

So

lim
n→∞

xn = φ · lim
n→∞

1 − ρn+2

1 − ρn+1︸ ︷︷ ︸
=1

= φ,

as desired.



Lecture 2 stenogram, version October 15, 2024 page 9

Exercise 9. We say that a number is funny if it can be written in the form

±12 ± 22 ± 32 ± · · · ± m2

for some nonnegative integer m and some choice of ± signs. For example,
4 is funny because 4 = −12 − 22 + 32. Also, 0 is funny because we can take
m = 0 and get the empty sum.

Prove that every integer is funny.

Solution. If we cannot solve a problem directly, we can try to simplify it and
solve the simpler problem first.

Here, we can try to replace the squares by first powers. So let’s say that a
number is giggly if it can be written in the form

±1 ± 2 ± 3 ± · · · ± m

for some nonnegative integer m and some choice of ± signs. Is every integer
giggly?

For instance, 3 is giggly since 3 = 1 + 2.
Is 4 giggly? Yes, since 4 = −1 + 2 + 3.
Is 5 giggly? Yes, since 5 = 1 + 2 + 3 + 4 − 5.
Is 6 giggly? Yes, since 6 = 1 + 2 + 3.
If n is giggly, then so is n + 1, since n = ±1 ± 2 ± 3 ± · · · ± m entails

n + 1 = ±1 ± 2 ± 3 ± · · · ± m − (m + 1) + (m + 2) .

So, by induction, all n ≥ 0 are giggly (since 0 is giggly).
What about negative integers? These are giggly, too, since you can flip all

signs in n = ±1 ± 2 ± 3 ± · · · ± m to get −n = ∓1 ∓ 2 ∓ 3 ∓ · · · ∓ m.
So we have solved the simplified problem: We have shown that all integers

are giggly.
Now what about the original problem? Why is every integer funny (i.e., of

the form ±12 ± 22 ± 32 ± · · · ± m2)?
We try something similar as for the simplified problem: an argument for why

n funny entails n + 1 funny.
Sadly, − (m + 1)2 + (m + 2)2 = 2m + 3 ̸= 1.
Maybe we can find a pattern involving several (say, three or four) consecutive

squares such that if we add them with signs, we get a constant? Yes:

(m + 1)2 − (m + 2)2 − (m + 3)2 + (m + 4)2 = 4.

Thus, if n is funny, then n + 4 is funny.
Hence, if we can show that −1, 0, 1, 2 are funny, then so is every nonnegative

integer (by strong induction), and therefore every integer (since we can go from
n to −n by flipping all the signs).
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But this is easy:

0 = (empty sum) , 1 = +12, 2 = −12 − 22 − 32 + 42,

−1 = −12.

So the problem is solved.


	Induction (cont'd)

