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Math 235 Fall 2024, Lecture 1 stenogram:
Induction and modular arithmetic

website: https://www.cip.ifi.lmu.de/~grinberg/t/24f

0.1. What is this about?

My name is Darij Grinberg.
See the above website for things you need to know about this class, for the

notes and for the homework.
This is a course on mathematical problem-solving, i.e., proving theorems,

finding formulas, finding counterexamples, answering questions, etc. – but
unlike most courses, this will be a creative activity, since it won’t be clear right
away how to proceed.

1. Induction

I assume that you all know (mathematical) induction, and now want to focus
on places where it can be used.

Here is an example where this is fairly clear:

Exercise 1. Prove that every integer n ≥ 0 satisfies
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Solution. Induct on n.
Base case: For n = 0, the claim is just 0 = 0 (since an empty sum is 0 by

definition).
Induction step: Let n be a positive integer. Assume (as the induction hypoth-

esis) that the claim holds for n − 1 instead of n.
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Now we must prove that the claim also holds for n. In other words, we must
prove
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The LHS here is
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while the RHS here is
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So, in order to prove that the new LHS equals the new RHS, we must only
show that the new addends are equal, i.e., that
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This can be proved straightforwardly by bringing the fractions to a common
denominator. Or we can cancel the first fractions and easily deal with the rest.
So the induction step is complete, and the exercise is solved. ■

Comments:

1. This was an example of an induction proof that is completely straightfor-
ward. The reason is that the LHS and the RHS change very predictably
when you go from n − 1 to n.

Here is an example of a non-straightforward induction proof.

Exercise 2. Fix a positive integer n. An n-bitstring shall mean an n-tuple
(a1, a2, . . . , an) ∈ {0, 1}n of bits. (Recall that a bit is an element of {0, 1}.)

Two n-bitstrings (a1, a2, . . . , an) and (b1, b2, . . . , bn) differ in exactly one
bit if there is exactly one i ∈ {1, 2, . . . , n} such that ai ̸= bi. For instance,
(0, 1, 1, 0) differs from (0, 0, 1, 0) in exactly one bit.

Prove that we can arrange all the 2n many n-bitstrings in a cyclic list
(b1, b2, . . . , b2n) such that for each i ∈ {1, 2, . . . , 2n}, the two bitstrings bi and
bi−1 differ in exactly one bit, where b0 = b2n .

Solution. We try to induct on n.
Base case: For n = 1, we just list the two 1-bitstrings in the obvious order:

(0, 1). (Here, 0 and 1 really mean the 1-bitstrings (0) and (1); we are not
writing the parentheses and the commas.)
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Induction step: Let n > 1. Assume (as the IH = induction hypothesis) that
there is such an arrangement for n − 1 instead of n. That is, we can arrange all
the 2n−1 many (n − 1)-bitstrings in a cyclic list

(b1, b2, . . . , b2n−1)

in a good way (i.e., such that each bi differs from bi−1 in exactly one bit, and
b1 differs from b2n−1 in exactly one bit). Now let us try to arrange the 2n many
n-bitstrings in a similar way.

The 2n many n-bitstrings are

0b1, 0b2, . . . , 0b2n−1 , 1b1, 1b2, . . . , 1b2n−1 .

Then we list them as follows:

0b1, 0b2, . . . , 0b2n−1 , 1b2n−1 , . . . , 1b2, 1b1.

This is a good arrangement, so the induction step is complete and we are done.

Comments:

1. This kind of arrangement is called a Gray code.

2. There are similar constructions for n-tuples of elements of other sets than
{0, 1}.

3. More generally, such arrangements are particular cases of Hamiltonian
cycles in graphs.

1.1. Fibonacci numbers I

Definition 1.1.1. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of
nonnegative integers defined recursively by

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for all n ≥ 2.

The entries of this sequence are called the Fibonacci numbers.

n 0 1 2 3 4 5 6 7 8 9 10 11
fn 0 1 1 2 3 5 8 13 21 34 55 89 .

Exercise 3. Prove that each integer n ≥ 0 satisfies

f1 + f2 + · · ·+ fn = fn+2 − 1.
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Solution. Induction on n.
Base case: For n = 0, this is saying that 0 = f2 − 1, which is indeed true.
Induction step: Going from n to n + 1, we have

f1 + f2 + · · ·+ fn+1 = ( f1 + f2 + · · ·+ fn)︸ ︷︷ ︸
= fn+2−1
(by IH)

+ fn+1

= fn+2 − 1 + fn+1 = fn+2 + fn+1︸ ︷︷ ︸
= fn+3

(by the definition
of the Fibonacci sequence)

−1

= fn+3 − 1,

qed. ■

Exercise 4. Prove that for every positive integer n, we have

fn+1 fn−1 − f 2
n = (−1)n .

Solution. Induction on n.
Base case: n = 1, straightforward.
Induction step: Let’s go from n to n + 1. So the IH says that fn+1 fn−1 − f 2

n =

(−1)n, and our goal is to prove that fn+2 fn − f 2
n+1 = (−1)n+1.

We have

fn+2︸︷︷︸
= fn+1+ fn

(by the definition
of the Fibonacci seq)
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n+1

= fn+1 ( fn + fn−1 − fn+1)︸ ︷︷ ︸
=0

(since fn+1= fn+ fn−1)

− (−1)n

= − (−1)n = (−1)n+1 ,

qed. ■
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Exercise 5 (addition formula for Fibonacci numbers). Prove that for any in-
tegers n, m ≥ 0, we have

fn+m+1 = fn fm + fn+1 fm+1.

Solution. Induct on n. (We could just as well induct on m, but this would not
make any difference, since the roles are symmetric.)

Base case: For n = 0, this is saying fm+1 = f0︸︷︷︸
=0

fm + f1︸︷︷︸
=1

fm+1.

Induction step: Let’s go from n − 1 to n. So let n be a positive integer. Assume
as the IH that the claim holds for n − 1 instead of n. In other words, we assume
that

fn+m = fn−1 fm + fn fm+1 for all m ≥ 0.

Our goal is to prove that the claim also holds for n, i.e., to prove that

fn+m+1 = fn fm + fn+1 fm+1 for all m ≥ 0.

So let m ≥ 0. Then,

fn+m+1 = fn+m︸ ︷︷ ︸
= fn−1 fm+ fn fm+1

(by the IH)

+ fn+m−1︸ ︷︷ ︸
= fn−1 fm−1+ fn fm

(by the IH, applied to m−1 instead of m)

= fn−1 fm + fn fm+1 + fn−1 fm−1 + fn fm

= fn−1 fm + fn−1 fm−1 + fn fm+1 + fn fm

= fn−1 ( fm + fm−1)︸ ︷︷ ︸
= fm+1

+ fn fm+1 + fn fm

= fn−1 fm+1 + fn fm+1 + fn fm = ( fn−1 + fn)︸ ︷︷ ︸
= fn+1

fm+1 + fn fm

= fn+1 fm+1 + fn fm = fn fm + fn+1 fm+1.

There is one little catch: Applying the IH to m − 1 instead of m was only
allowed when m − 1 ≥ 0. So we need to consider the m = 0 case separately.
But this case is easy anyway (just like the n = 0 case), so the induction step is
complete both for positive and for zero m. ■

Exercise 6. Prove Binet’s formula for the Fibonacci numbers:
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(Note that φ is known as the golden ratio; φ and ψ are the two roots of the
quadratic equation x2 = x + 1.)

Solution. Induction on n:
Base case: Easy for n = 0.
Induction step: Let’s try to go from n to n + 1. So our IH is

fn =
1√
5

φn − 1√
5

ψn,

and our goal is to show that

fn+1 =
1√
5

φn+1 − 1√
5

ψn+1.

We try to do this:

fn+1 = fn + fn−1 =
1√
5

φn − 1√
5

ψn + fn−1.

But what is fn−1 ? Our IH doesn’t tell us anything about it.
So this particular kind of induction doesn’t work here.
The way to proceed is something known as strong induction: an induction

principle where instead of going from n − 1 to n, you go from 0, 1, . . . , n − 1
together to n. So the IH is not just saying “the claim is true for n − 1”, but
actually is saying “the claim is true for all numbers up to n − 1 (inclusive)”. In
particular, if you are using this principle, you can use the IH not just for n − 1
but also for n − 2.
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