Math 235: Mathematical Problem Solving, Fall 2024: Homework 6

Darij Grinberg

November 14, 2024

Please solve 5 of the 10 exercises! Deadline: November 20, 2024

1 EXERCISE 1

1.1 PROBLEM

Let (a_0, a_1, a_2, \ldots) be a sequence of positive integers such that

 $a_n = \left(a_{n-1}^2 \% a_{n-2}\right) + 1$ for each $n \ge 2$.

Prove that this sequence is eventually 2-periodic (i.e., there exists some $m \in \mathbb{N}$ such that the subsequence $(a_m, a_{m+1}, a_{m+2}, \ldots)$ is 2-periodic).

1.2 SOLUTION

•••

2 EXERCISE 2

2.1 PROBLEM

Find all pairs (x, y) of nonnegative integers such that $|x^2 - xy - y^2| = 5$. (Recall the Lucas sequence from Example 4.9.3 in the notes.)

2.2 Solution

•••

3 Exercise 3

3.1 PROBLEM

Let n be a positive integer. Let a be any integer. Prove that there exist $i \in \mathbb{N}$ and $x \in \mathbb{Z}$ such that $a^{i+1}x \equiv a^i \mod n$.

3.2 Remark

This x can be viewed as a weak version of a modular inverse of a modulo n. An actual modular inverse would satisfy the congruence $ax \equiv 1 \mod n$ (that is, $a^{i+1}x \equiv a^i \mod n$ for i = 0), but it only exists when $a \perp n$ (see Theorem 3.5.9 in the notes), whereas the weak version always exists according to this exercise.

3.3 Solution

•••

4 EXERCISE 4

4.1 Problem

Let n be a positive integer. Let $x_1, x_2, \ldots, x_{n+2}$ be n+2 integers. Prove that there exist two distinct elements i and j of $\{1, 2, \ldots, n+2\}$ such that $x_i - x_j$ or $x_i + x_j$ (or both) is divisible by 2n.

4.2 Solution

...

5 EXERCISE 5

5.1 Problem

Inside a regular hexagon with sidelength 1, you have marked 7 points. Show that there are two marked points whose distance to each other is at most 1.

5.2 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

Let $a \in \mathbb{Z}$ be such that $a \equiv 1 \mod 3$. Let k be a positive integer.

- (a) Prove that there exists a unique $x \in \{0, 1, ..., 3^k 1\}$ such that $x \equiv 1 \mod 3$ and $x^2 \equiv a \mod 3^k$.
- (b) Prove that for each $i \in \mathbb{N}$, there exists a unique $x_i \in \{0, 1, \dots, 3^k 1\}$ such that $x_i \equiv 1 \mod 3$ and $x_i^{2^i} \equiv a \mod 3^k$.
- (c) Consider the sequence $(x_0, x_1, x_2, ...)$ of these unique x_i 's. Is this sequence periodic?

6.2 Remark

The x in part (a) can be regarded as the "canonical" square root of a modulo 3^k . In general, square roots modulo n neither necessarily exist nor are always unique, just like square roots of real numbers; thus the claim of part (a) is rather remarkable.

6.3 SOLUTION

...

7 Exercise 7

7.1 PROBLEM

Let a_1, a_2, \ldots, a_m be *m* integers, and let *n* be a positive integer such that $n < 2^m$. Prove that we can find *m* numbers $x_1, x_2, \ldots, x_m \in \{0, 1, -1\}$ such that not all these numbers x_1, x_2, \ldots, x_m are zero and such that $n \mid \sum_{i=1}^m x_i a_i$. (In other words, prove that we can make the sum $a_1 + a_2 + \cdots + a_m$ divisible by *n* if we are allowed to throw some (not all) of the addends away and replace some (possibly none, possibly all) of the remaining addends by their negatives.)

[Example: Let m = 4 and n = 13 and $(a_1, a_2, \ldots, a_m) = (4, 7, 19, 40)$. Then, the four numbers 0, -1, 1, 1 are m numbers x_1, x_2, \ldots, x_m that satisfy $n \mid \sum_{i=1}^m x_i a_i$, since 13 $\mid 0 \cdot 4 + (-1) \cdot 7 + 1 \cdot 19 + 1 \cdot 40$.]

7.2 Solution

•••

8 EXERCISE 8

8.1 PROBLEM

Let a_1, a_2, \ldots, a_k be k real numbers. Let (x_0, x_1, x_2, \ldots) be a sequence of real numbers that is (a_1, a_2, \ldots, a_k) -recurrent (see Definition 4.9.24 in the notes). Assume that this sequence has only finitely many distinct entries (i.e., the set $\{x_0, x_1, x_2, \ldots\}$ is finite). Show the following:

- (a) The sequence $(x_0, x_1, x_2, ...)$ is eventually periodic (i.e., there exists some $m \in \mathbb{N}$ such that the sequence $(x_m, x_{m+1}, x_{m+2}, ...)$ is periodic).
- (b) If $a_k \neq 0$, then the sequence (x_0, x_1, x_2, \ldots) is periodic.

8.2 Solution

•••

9 Exercise 9

9.1 PROBLEM

Let n > 1. Let A be an $n \times n$ -matrix whose entries are the n^2 integers $1, 2, \ldots, n^2$ in some arbitrary order.

- (a) Prove that we can find two entries *i* and *j* of *A* that lie in the same row and satisfy $\frac{n-1}{n} \leq \frac{i}{i} < 1.$
- (b) Prove that we can find two entries *i* and *j* of *A* that lie in the same row or the same column and satisfy $\frac{n}{n+1} \leq \frac{i}{j} < 1$.

9.2 Solution

10 EXERCISE 10

10.1 PROBLEM

Let a and n be two integers such that n > 0. Let u and v be two positive integers such that uv > n and v > 1. Prove that there exist two integers x and y with |x| < u and 0 < y < v and $ay \equiv x \mod n$.

10.2 Solution

•••

•••

References