Math 235: Mathematical Problem Solving, Fall 2024: Homework 5

Darij Grinberg

October 29, 2024

Please solve 4 of the 8 exercises! Deadline: November 6, 2024

1 EXERCISE 1

1.1 PROBLEM

- (a) Does Exercise 5.2.2 in the notes¹ remain valid if we replace "real axis" by "unit circle", replace "intervals" by "arcs", and replace "reals" by "points"?
- (b) Does it help if we weaken the claim to "there exist three points a, b, c such that each of the arcs I_1, I_2, \ldots, I_n contains at least one of a, b, c"?
- (c) Find an analogous variant of Exercise 5.4.8 in the notes² for arcs on the unit circle instead of intervals on the real axis.

¹Let *n* be a positive integer. Let I_1, I_2, \ldots, I_n be *n* nonempty finite closed intervals on the real axis. Assume that for any three distinct elements $i, j, k \in \{1, 2, \ldots, n\}$, at least two of the three intervals I_i, I_j, I_k intersect. Prove that there exist two reals *a* and *b* such that each of the intervals I_1, I_2, \ldots, I_n contains at least one of *a* and *b*.

²Let *n* and *k* be positive integers with $k \ge 2$. Let I_1, I_2, \ldots, I_n be *n* nonempty finite closed intervals on the real axis. Assume that for any *k* distinct elements $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, n\}$, at least two of the *k* intervals $I_{i_1}, I_{i_2}, \ldots, I_{i_k}$ intersect. Prove that there exist k - 1 reals $a_1, a_2, \ldots, a_{k-1}$ such that each of the intervals I_1, I_2, \ldots, I_n contains at least one of $a_1, a_2, \ldots, a_{k-1}$.

1.2 Solution

2 EXERCISE 2

2.1 Problem

Find all 5-tuples $(x_1, x_2, x_3, x_4, x_5)$ of nonnegative real numbers that satisfy the system of equations

ſ	$x_5 + x_2 = x_1^2;$
	$x_1 + x_3 = x_2^2;$
{	$x_2 + x_4 = x_3^2;$
	$x_3 + x_5 = x_4^2;$
l	$x_4 + x_1 = x_5^2$

(that is, $x_{i-1} + x_{i+1} = x_i^2$ for all $i \in \{1, 2, 3, 4, 5\}$, where $x_0 := x_5$ and $x_6 := x_1$).

2.2 Remark

Without the "nonnegative" requirement, this system has some messy solutions that cannot be written in any reasonable form.

2.3 Solution

• • •

...

3 EXERCISE 3

3.1 Problem

Let $n \in \mathbb{N}$. Let A be an $n \times n$ -matrix whose n^2 entries are distinct real numbers. Each row of A contains a largest entry; this entry will be called a *rowmax*. Each column of A contains a largest entry; this entry will be called a *colmax*.

- (a) Assume that all the *n* rowmaxes lie in distinct columns, and that all the *n* colmaxes lie in distinct rows. Prove that the rowmaxes are exactly the colmaxes.
- (b) Find a matrix A that does satisfy these assumptions.

3.2 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Consider an $n \times m$ -matrix A whose entries are 0's and 1's. Assume that each row of A contains at least one 0, whereas each column of A contains at least one 1. Let $A_{r,c}$ denote the entry of A in the r-th row and the c-th column.

Prove that there exist two distinct $r, s \in \{1, 2, ..., n\}$ and two distinct $c, d \in \{1, 2, ..., m\}$ such that $A_{r,c} = A_{s,d} = 1$ but $A_{r,d} = A_{s,c} = 0$.

4.2 Solution

5 Exercise 5

5.1 PROBLEM

For each $n \in \mathbb{N}$, define an integer a_n as follows: We know from Theorem 5.2.1 in the notes that there is a unique finite subset T of N such that $n = \sum_{t \in T} 2^t$. Consider this subset T, and

...

$$a_n := \sum_{t \in T} \left(2^{t+1} - 1 \right).$$

For instance, for n = 10, we have $T = \{3, 1\}$ (since $n = 10 = 2^3 + 2^1$) and thus $a_n = \sum_{t \in \{3,1\}} (2^{t+1} - 1) = (2^4 - 1) + (2^2 - 1) = 18.$

(a) Prove that $0 = a_0 < a_1 < a_2 < \cdots$.

(b) Prove that $a_n = a_{\lfloor n/2 \rfloor} + n$ for each $n \in \mathbb{N}$.

5.2 Solution

...

6 EXERCISE 6

6.1 PROBLEM

Let a, b, c be three integers. Prove that the number $a^2 + b^2 + c^2$ cannot be written in the form $4^k (8m + 7)$ with $k \in \mathbb{N}$ and $m \in \mathbb{Z}$.

6.2 Remark

This is part of the Legendre three-squares theorem. The other (much harder) part is the converse: Every nonnegative integer that is not of the form $4^k (8m + 7)$ with $k \in \mathbb{N}$ and $m \in \mathbb{Z}$ can be written as a sum of three perfect squares. The proof of this can be found in some of the more advanced texts on elementary number theory, such as [UspHea39, \$XIII.10].

6.3 SOLUTION

•••

7 Exercise 7

7.1 PROBLEM

Let $(a_0, a_1, a_2, ...)$ be a sequence of positive integers such that

 $a_n = \left(a_{n-2}^2 \% a_{n-1}\right) + 1$ for each $n \ge 2$.

Prove that there exists some $m \in \mathbb{N}$ such that $a_m = a_{m+1} = a_{m+2} = \cdots = 1$.

7.2 Solution

•••

8 EXERCISE 8

8.1 PROBLEM

Let u and n be integers such that n > 0. Prove the following:

(a) We have
$$u - 1 \mid \binom{un - 1}{n}$$
.
(b) If u is odd, then $\sum_{k=0}^{n} \binom{un}{k}$ is even.

8.2 Solution

...

References

[UspHea39] J. V. Uspensky, M. A. Heaslet, Elementary Number Theory, 1st edition, McGraw-Hill 1939. See https://projecteuclid.org/euclid.bams/1183502492 for some corrections.