Math 235: Mathematical Problem Solving, Fall 2024: Homework 4

Darij Grinberg

October 17, 2024

Please solve 4 of the 8 exercises! Deadline: October 30, 2024

1 EXERCISE 1

1.1 PROBLEM

Prove yet another formula for the Fibonacci numbers f_0, f_1, f_2, \ldots , namely the formula

$$f_{n+2} = \sum_{k=0}^{n} \binom{\lfloor (n+k)/2 \rfloor}{k} \quad \text{for all } n \ge 0.$$

1.2 Solution

•••

2 EXERCISE 2

2.1 PROBLEM

Consider the sequence $(a_0, a_1, a_2, ...)$ of integers defined recursively by

 $a_0 = 0,$ $a_1 = 1,$ and $a_n = 1 + a_{n-1}a_{n-2}$ for each integer $n \ge 2.$

(This was studied in Exercise 4.8.1 of the notes.) Prove that $4 \nmid a_n$ for all positive integers n.

2.2 Solution

3 EXERCISE 3

3.1 PROBLEM

Let (a_0, a_1, a_2, \ldots) be a sequence of reals such that all positive integers k satisfy

$$a_k = 2a_{k-1} + 2^k. (1)$$

Set $c := a_0$. Find an explicit formula for a_n in terms of c.

3.2 Solution

•••

...

4 EXERCISE 4

4.1 Problem

Let (x_0, x_1, x_2, \ldots) be a sequence of real numbers defined recursively by

 $x_0 = 0$ and $x_1 = 1$ and $x_n = x_{n-1} + \frac{x_{n-2}}{n-1}$ for all $n \ge 2$.

Express x_n as a finite sum.

4.2 Remark

With a correct answer and some known results from analysis, it is not hard to see that $\lim_{n\to\infty} \frac{n}{x_n} = e \approx 2.718.$

4.3 Solution

5 EXERCISE 5

5.1 Problem

Let n be a positive integer. Prove that

$$\sum_{k \in \{1,2,\ldots,2n\} \text{ is odd}} \left\lfloor \frac{k^3}{2n} \right\rfloor = n \left(n-1\right) \left(n+1\right).$$

5.2 Solution

...

•••

6 EXERCISE 6

6.1 PROBLEM

Define a sequence $(a_0, a_1, a_2, ...)$ of real numbers recursively by

$$a_0 = 1$$
 and $a_n = -\sum_{k=1}^n \frac{a_{n-k}}{k!}$ for each $n \ge 1$.

Find an explicit formula for a_n .

6.2 Solution

•••

7 EXERCISE 7

7.1 Problem

(a) A linear fractional function means a function $f : \mathbb{C} \setminus \{t\} \to \mathbb{C}$ given by the formula

$$f(x) = \frac{ax+b}{cx+d}$$
 for all $x \in \mathbb{C} \setminus \{t\}$,

where $a, b, c, d \in \mathbb{C}$ are four constants. Here, t is the constant -d/c, which must be excluded from the domain in order to ensure that the denominators are nonzero.

Show that a composition of two linear fractional functions is again linear fractional (up to the fact that its domain might be a bit smaller in order to avoid zero denominators).

(b) Let $f : \mathbb{C} \setminus \{-2\} \to \mathbb{C}$ be the linear fractional function given by

$$f\left(x\right) = \frac{x+1}{x+2}.$$

For each $n \in \mathbb{N}$, let $f^{\circ n}$ be the function $\underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}$ (obtained by applying f successively for a total of n times). Find an explicit formula for $f^{\circ n}(x)$ in terms of numbers

known to us.

7.2 SOLUTION

8 EXERCISE 8

8.1 PROBLEM

Let x be a positive real number. Prove that

$$\sqrt{x+1} = 1 + \frac{x}{2 + \frac{x}{2 + \frac{x}{2 + \frac{x}{2 + \frac{x}{\cdot \cdot \cdot}}}}}.$$

Here, the infinite continued fraction should be understood as in Exercise 2.4.2 of the notes; all the numbers in front of the + signs are 2's except for the very first one.

8.2 Solution

...

References