Math 235: Mathematical Problem Solving, Fall 2024: Homework 3

Darij Grinberg

October 20, 2024

Please solve 4 of the 8 exercises! Deadline: October 23, 2024

1 EXERCISE 1

1.1 PROBLEM

Let $n \in \mathbb{N}$ be **odd**. Let a_1, a_2, \ldots, a_n be n **odd** integers. Prove that

$$\sum_{1 \le i < j \le n} a_i a_j \equiv \binom{n}{2} \mod 4.$$

1.2 Solution

•••

2 EXERCISE 2

2.1 Problem

Find a formula for $\sum_{i=0}^{n} i \binom{i}{k}$ for all $n \in \mathbb{N}$ and $k \in \mathbb{N}$.

2.2 Solution

•••

3 EXERCISE 3

3.1 PROBLEM

A triangular number means a number of the form $k(k+1)/2 = \binom{k+1}{2}$, where k is an integer. A perfect square means a number of the form k^2 , where k is an integer.

Let n be an integer. Prove that n can be written as a sum of two triangular numbers if and only if 4n + 1 can be written as a sum of two perfect squares.

3.2 Remark

There is a celebrated result by Lagrange saying that a positive integer n can be written as a sum of two perfect squares if and only if each prime factor p satisfying $p \equiv 3 \mod 4$ appears with an even exponent in the prime factorization of n. A further result by Jacobi even gives a formula for the number of ways to write n as such a sum. However, none of this is needed for this problem.

3.3 Solution

4 EXERCISE 4

4.1 PROBLEM

Let n and k be positive integers satisfying $k < 2^n$. Prove that the binomial coefficient $\binom{2^n - k - 1}{k}$ is even.

4.2 Solution

•••

5 EXERCISE 5

5.1 Problem

For each finite set S of integers, let prod $S = \prod_{s \in S} s$ be the product of all elements of S. For instance, prod $\{3, 6, 7\} = 3 \cdot 6 \cdot 7 = 126$. Let $n \in \mathbb{N}$. Let $[n] := \{1, 2, \dots, n\}$. Prove that

$$\sum_{L \text{ is a lacunar subset of } [n]} (\operatorname{prod} L)^2 = (n+1)!.$$

5.2 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

Let n be a positive integer, and let $a_1, a_2, \ldots, a_{n-1}$ be any n-1 real numbers.

Define an (n + 1)-tuple (u_0, u_1, \dots, u_n) of real numbers recursively by $u_0 = 1$ and $u_1 = 1$ and

 $u_k = u_{k-1} + a_{k-1}u_{k-2}$ for all $k \ge 2$.

Define an (n + 1)-tuple (v_0, v_1, \dots, v_n) of real numbers recursively by $v_0 = 1$ and $v_1 = 1$ and

 $v_k = v_{k-1} + a_{n-k+1}v_{k-2}$ for all $k \ge 2$.

Prove that $u_n = v_n$.

6.2 HINT

Compute $u_n = v_n$ for small n and see if you can guess a combinatorial formula.

6.3 SOLUTION

. . .

7 Exercise 7

7.1 Problem

Find formulas for $\sum_{k=0}^{n} \binom{n}{2k+1} 4^k$ and $\sum_{k=0}^{n} \binom{n}{2k} 4^k$ for each $n \in \mathbb{N}$.

7.2 Hint

This is a variation on Exercise 4.5.9 in the notes.

7.3 Solution

...

8 EXERCISE 8

8.1 Problem

Let (f_0, f_1, f_2, \ldots) be the Fibonacci sequence. Furthermore, set $f_{-1} := 1$ and $\ell_n := f_{n+1} + f_{n-1}$ for each $n \in \mathbb{N}$. Let $n, k \in \mathbb{N}$ be such that $n \geq k$. Show that

$$\ell_k f_n = (-1)^k f_{n-k} + f_{n+k}.$$

(Note that this generalizes Exercise 4.4.4 (c) in the notes, since $\ell_4 = 7$.)

8.2 Solution

•••

References