Math 235: Mathematical Problem Solving, Fall 2024: Homework 1

Darij Grinberg

October 2, 2024

Please solve 4 of the 8 exercises! Deadline: October 9, 2024

1 EXERCISE 1

1.1 PROBLEM

Let $(f_0, f_1, f_2, ...)$ be the Fibonacci sequence (which, as we recall, starts with $f_0 = 0$ and $f_1 = 1$ and continues by the recursive rule $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$). Furthermore, set $f_{-1} := 1$ and $\ell_n := f_{n+1} + f_{n-1}$ for each $n \in \mathbb{N}$.

(a) Prove that $\ell_0 = 2$ and $\ell_1 = 1$ and $\ell_n = \ell_{n-1} + \ell_{n-2}$ for all $n \ge 2$.

Let $m \in \mathbb{N}$. Prove the following:

- (b) We have $f_{2m} = f_m \ell_m$.
- (c) We have $f_{2m+1} 1 = f_m \ell_{m+1}$ if m is even.
- (d) We have $f_{2m+1} 1 = f_{m+1}\ell_m$ if *m* is odd.

1.2 Solution

•••

2 EXERCISE 2

2.1 Problem

Define a sequence $(a_0, a_1, a_2, ...)$ of positive rational numbers recursively by setting

$$a_0 = 1, \quad a_1 = 1, \quad a_2 = 1, \quad \text{and}$$

 $a_n = \frac{a_{n-1}a_{n-2}}{a_{n-3} + 1} \quad \text{for each } n \ge 3.$

Prove that a_n is the reciprocal of a positive integer for each $n \in \mathbb{N}$. (For instance, $a_8 = \frac{1}{195840}$. Note the subtle difference to Homework set #0 Exercise 3.)

2.2 Solution

•••

3 EXERCISE 3

3.1 Problem

For each $n \in \mathbb{N}$, let [n] denote the set $\{1, 2, \ldots, n\}$.

If P is a finite set of integers and if $i \in [|P|]$, then $\min_i P$ shall denote the *i*-th smallest element of P. For instance, $\min_3 \{2, 4, 6, 8, 10, 12\} = 6$.

If S and T are two finite sets of integers, then we say that $S \preccurlyeq T$ if and only if we have

 $|S| \ge |T|$ and $(\min_i S \le \min_i T \text{ for all } i \in [|T|]).$

For instance, $\{3, 5, 8, 10\} \preccurlyeq \{4, 5, 9\}.$

Let S and T be two finite sets of positive integers. Prove the following:

(a) We have $S \preccurlyeq T$ if and only if each positive integer k satisfies $|S \cap [k]| \ge |T \cap [k]|$.

(b) Let p be a positive integer. Assume that $S \preccurlyeq T$. Show that $[p] \setminus T \preccurlyeq [p] \setminus S$.

3.2 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Let a_1, a_2, \ldots, a_n be *n* distinct positive integers. Prove that

$$a_1^2 + a_2^2 + \dots + a_n^2 \ge \frac{2n+1}{3} (a_1 + a_2 + \dots + a_n).$$

(Note that this is an equality when $a_i = i$ for all i, due to the formulas

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
 and $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

4.2 Solution

5 EXERCISE 5

5.1 Problem

Using Euler's famous formula $\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$ (the answer to the Basel problem), prove that

$$\sum_{i=1}^{\infty} \frac{1}{i^2 (i+1)} = \frac{\pi^2}{6} - 1 \quad \text{and} \quad \sum_{i=2}^{\infty} \frac{1}{i^2 (i-1)} = 2 - \frac{\pi^2}{6}.$$

6 EXERCISE 6

6.1 PROBLEM

Let $n \geq 3$ be an integer. Prove that the number 1 can be written as

$$1 = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

for some *n* distinct positive integers a_1, a_2, \ldots, a_n . (For instance, for n = 3, we can write $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$.)

...

)

...

. . .

6.2 SOLUTION

7 EXERCISE 7

7.1 Problem

Let *n* be a positive integer. Let a_1, a_2, \ldots, a_n be *n* distinct positive reals. Consider the 2^n numbers of the form $\pm a_1 \pm a_2 \pm \cdots \pm a_n$. (There are *n* many \pm signs here, and each one can be either a + or a - independently of the others; thus, there are 2^n possible choices.) Prove that at least $\binom{n+1}{2}$ of these 2^n numbers are distinct.

8 EXERCISE 8

8.1 PROBLEM

Let (x_1, x_2, x_3, \ldots) be a sequence of integers that satisfies

$$x_1 = 1$$
 and
 $x_{2k} = -x_k$ for all $k \ge 1$, and
 $x_{2k-1} = (-1)^{k+1} x_k$ for all $k \ge 1$.

- (a) Prove that $x_1 + x_2 + \cdots + x_n = x_{n+1} + x_{n+2} + \cdots + x_{4n}$ for each $n \in \mathbb{N}$.
- (b) Prove that $x_1 + x_2 + \cdots + x_n \ge 0$ for each $n \in \mathbb{N}$.

...

REFERENCES