Math 235: Mathematical Problem Solving: discussion session #3

Darij Grinberg

November 3, 2024

This document references the notes [mps] = Math 235: Mathematical Problem Solving in their version of 3 October 2024. Future versions of the notes might have a different numbering, in which case you can use the archived version http://web. archive.org/web/20241005224234/https://www.cip.ifi.lmu.de/~grinberg/t/20f/ mps.pdf to see what I am referencing.

Math 235 Fall 2024 discussion session #3

Topic: Farey series.

Define a **proper fraction** to be a rational number between 0 and 1 inclusive. By default, write every rational number as a reduced fraction, i.e., as $\frac{a}{b}$ with b > 0 and $a \perp b$.

For any positive integer *n*, let us list all proper fractions with denominator $\leq n$ in

increasing order. Let F_n be this list; it is called the *n*-th Farey series. For example:

$$\begin{split} F_1 &= \left(\frac{0}{1} < \frac{1}{1}\right); \\ F_2 &= \left(\frac{0}{1} < \frac{1}{2} < \frac{1}{1}\right); \\ F_3 &= \left(\frac{0}{1} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{1}{1}\right); \\ F_4 &= \left(\frac{0}{1} < \frac{1}{4} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{1}{1}\right); \\ F_5 &= \left(\frac{0}{1} < \frac{1}{5} < \frac{1}{4} < \frac{1}{3} < \frac{2}{5} < \frac{1}{2} < \frac{3}{5} < \frac{2}{3} < \frac{3}{4} < \frac{4}{5} < \frac{1}{1}\right); \\ F_6 &= \left(\frac{0}{1} < \frac{1}{6} < \frac{1}{5} < \frac{1}{4} < \frac{1}{3} < \frac{2}{5} < \frac{1}{2} < \frac{3}{5} < \frac{2}{3} < \frac{3}{4} < \frac{4}{5} < \frac{5}{6} < \frac{1}{1}\right); \\ F_7 &= \left(\frac{0}{1} < \frac{1}{7} < \frac{1}{6} < \frac{1}{5} < \frac{1}{4} < \frac{2}{7} < \frac{1}{3} < \frac{2}{5} < \frac{3}{7} < \frac{1}{2} < \frac{4}{7} \\ &< \frac{3}{5} < \frac{2}{3} < \frac{5}{7} < \frac{3}{4} < \frac{4}{5} < \frac{5}{6} < \frac{6}{7} < \frac{1}{1}\right). \end{split}$$

When constructing this sequence, you often have to cross-multiply fractions to compare them:

$$\left(\frac{a}{b} < \frac{c}{d}\right) \Longleftrightarrow (ad < bc)$$

(for b, d > 0). Making these tests, you may observe the following: Any two adjacent fractions $\frac{a}{b}, \frac{c}{d}$ in the above list satisfy ad - bc = -1. So we suspect the following:

Observation 1: Let us say that two fractions $\frac{a}{b}$, $\frac{c}{d}$ are **good neighbors** if ad - bc = -1. Then, any two consecutive fractions in the list F_n are good neighbors.

Is this true? How can we prove it?

Something else: Consider F_n , and look at the fractions that are "new" in F_n (that is, have denominator n). For example, for n = 5, we have

$$F_5 = \left(\frac{0}{1} < \frac{1}{5} < \frac{1}{4} < \frac{1}{3} < \frac{2}{5} < \frac{1}{2} < \frac{3}{5} < \frac{2}{3} < \frac{3}{4} < \frac{4}{5} < \frac{1}{1}\right).$$

We observe that each "new" fraction is the **mediant** of its two neighbors.

The **mediant** of two fractions $\frac{a}{b}$ and $\frac{c}{d}$ (both in reduced form) is defined to be the fraction $\frac{a+c}{b+d}$. So we observe:

Observation 2: Let n > 1. Then, any fraction with denominator n that appears in F_n is the mediant of its two neighbors in F_n . Moreover, these neighbors already appear in F_{n-1} .

Is this true? How do we prove this?

We also observe that F_n is symmetric around the middle: If x is the k-th fraction in F_n from the left, then 1 - x is the k-th fraction in F_n from the right. This is actually obvious. This is quite clear.

So let us prove our two observations. It is hard to argue about F_n given the way we have defined it – the definition is slick but not very usable. Let us instead work backwards: We redefine F_n through the observations, and then show that the list actually contains all the proper fractions with the denominator $\leq n$ in increasing order.

So we define, for every $n \in \mathbb{N}$, a list F'_n of proper fractions recursively:

- We let F'_1 be $\left(\frac{0}{1}, \frac{1}{1}\right)$.
- For any n > 1, if F'_{n-1} is defined, then we define F'_n as follows: For any two neighboring fractions $\frac{a}{b}$ and $\frac{c}{d}$ in F'_{n-1} , if b + d = n, then we insert the mediant $\frac{a+c}{b+d}$ between them.

We shall now show that the list F'_n

- is strictly increasing;
- consists of reduced fractions;
- contains each proper fraction with denominator $\leq n$.

If we can show all of this, then it will follow that this list F'_n is our Farey series F_n . This will yield Observation 2 immediately, and Observation 1 will also follow with a bit of work.

Let us get to work. Since our lists F'_n are defined recursively, we expect to prove everything by induction on n. We begin with the strict increase:

Claim 3: The list F'_n is strictly increasing for each $n \ge 1$.

Proof. This is true for n = 1 by definition. For the induction step, it suffices to show that if $\frac{a}{b} < \frac{c}{d}$ (with b, d > 0), then $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$. But this is very easy:

$$\begin{pmatrix} \frac{a}{b} < \frac{a+c}{b+d} \end{pmatrix} \iff (a(b+d) < b(a+c))$$

$$\iff (ab+ad < ab+bc)$$

$$\iff (ad < bc) \iff \left(\frac{a}{b} < \frac{c}{d}\right).$$

Similarly we can prove $\frac{a+c}{b+d} < \frac{c}{d}$.

More or less the same argument proves a stronger claim:

Claim 4: For any $n \ge 1$, any two consecutive fractions in F'_n are good neighbors.

Proof. This is true for n = 1 by definition. For the induction step, it suffices to show that if $\frac{a}{b}$ and $\frac{c}{d}$ are good neighbors, then so are $\frac{a}{b}$ and $\frac{a+c}{b+d}$, and so are $\frac{a+c}{b+d}$ and $\frac{c}{d}$. But this is very easy:

$$\begin{pmatrix} \frac{a}{b} \text{ and } \frac{a+c}{b+d} \text{ are good neighbors} \end{pmatrix}$$

$$\iff (a(b+d) - b(a+c) = -1)$$

$$\iff (ad - bc = -1)$$

$$\iff \left(\frac{a}{b} \text{ and } \frac{c}{d} \text{ are good neighbors}\right).$$

Similarly we can handle $\frac{a+c}{b+d}$ and $\frac{c}{d}$.

Claim 5: For any $n \ge 1$, any fraction in F'_n is reduced.

Proof. Consider a fraction $\frac{a}{b}$ in F'_n . We must show that it is reduced. If it is $\frac{1}{1}$, this is clear. Otherwise, it is followed by another fraction $\frac{c}{d}$ in F'_n . By Claim 4, these two fractions $\frac{a}{b}$ and $\frac{c}{d}$ are good neighbors. That is, ad - bc = -1. If $g = \gcd(a, b)$, then g divides a and b and thus also divides ad - bc = -1, which entails that g = 1. Thus, $\gcd(a, b) = 1$. In other words, the fraction $\frac{a}{b}$ is reduced.

We next need another property of mediants:

Claim 6: Let $\frac{a}{b}$ and $\frac{c}{d}$ be two reduced fractions that are good neighbors. Let $\frac{x}{y}$ be another fraction (with x, y positive integers) such that $\frac{a}{b} < \frac{x}{y} < \frac{c}{d}$. Then, $y \ge b + d$.

In other words, among all the rational numbers that lie strictly between the two good neighbors $\frac{a}{b}$ and $\frac{c}{d}$, the mediant $\frac{a+c}{b+d}$ has the smallest denominator. *Proof of Claim 6.* From $\frac{a}{b} < \frac{x}{y}$, we obtain ay < bx, so that ay - bx < 0. Since both sides are integers, this entails $ay - bx \le -1$, or equivalently $bx - ay \ge 1$. From $\frac{x}{y} < \frac{c}{d}$, we obtain dx < cy, so that cy - dx > 0. Hence, $cy - dx \ge 1$.

So we have found the two inequalities $bx - ay \ge 1$ and $cy - dx \ge 1$.

We eliminate x from these two inequalities by multiplying the former with d and the latter with b and adding them:

$$d\underbrace{(bx-ay)}_{\geq 1} + b\underbrace{(cy-dx)}_{\geq 1} \geq d+b = b+d.$$

Since

$$d (bx - ay) + b (cy - dx) = -\underbrace{(ad - bc)}_{\substack{=-1\\(\text{since } \frac{a}{b} \text{ and } \frac{c}{d}\\\text{are good neighbors})}} y = -(-1) y = y,$$

this rewrites as $y \ge b + d$, proving Claim 6.

Claim 7: Let $\frac{a}{b}$ and $\frac{c}{d}$ be two reduced fractions that are good neighbors. Let $\frac{x}{y}$ be another fraction (with x, y positive integers) such that $\frac{a}{b} < \frac{x}{y} < \frac{c}{d}$. Assume that y = b + d. Then, x = a + c.

Proof. Assume the contrary. Thus, x < a + c or x > a + c.

• In the former case, $x \le a + c - 1$ and therefore $\frac{a}{b} < \frac{x}{y} \le \frac{a + c - 1}{b + d}$ (since y = b + d). Thus, a (b + d) < b (a + c - 1). Expanding this, we obtain $ab + ad < ba + bc - \underbrace{b}_{\ge 1} \le ba + bc - 1$. Upon cancellation of ab, this becomes ad < bc - 1. But this contradicts ad - bc = -1 (which is because $\frac{a}{b}$ and $\frac{c}{d}$ are

good neighbor).

• In the latter case, $x \ge a + c + 1$ and therefore $\frac{c}{d} > \frac{x}{y} \ge \frac{a + c + 1}{b + d}$. Thus, c (b + d) > (a + c + 1) d. Upon expanding and cancelling *cd*, we transform this into $cb > ad + d \ge ad + 1$, thus ad < bc - 1, which again contradicts the good neighborliness of $\frac{a}{b}$ and $\frac{c}{d}$.

So we found a contradiction in both cases.

Now the hard part:

Claim 8: For any $n \ge 1$, the list F'_n contains each reduced proper fraction with denominator $\le n$.

Proof. Consider a reduced proper fraction $\frac{p}{q}$ with denominator $q \le n$. We want to show that it appears in F'_n . It suffices to show that it appears in F'_q , since F'_n is just F'_q with some extra fractions inserted.

We shall prove this by strong induction on *q*.

Induction step: Assume that each reduced proper fraction $\frac{u}{v}$ with denominator < q already appears in the corresponding F'_v . We must prove that $\frac{p}{q}$ appears in F'_q . WLOG assume that q > 1, since otherwise $\frac{p}{q}$ is $\frac{0}{1}$ or $\frac{1}{1}$ and already appears in F'_1 .

We expect $\frac{p}{q}$ to appear as the mediant $\frac{a+c}{b+d}$ for some good neighbors $\frac{a}{b}$ and $\frac{c}{d}$. What should these $\frac{a}{b}$ and $\frac{c}{d}$ be?

Clearly, the denominators *b* and *d* should be $\leq q - 1$ (since they are positive and their sum b + d should be *q*). So the fractions $\frac{a}{b}$ and $\frac{c}{d}$ should appear in F'_{q-1} . Moreover, these fractions should be consecutive in F'_{q-1} , so that their mediant $\frac{a+c}{b+d}$ gets inserted in F'_q .

This gives us an idea how to find $\frac{a}{b}$ and $\frac{c}{d}$: We let $\frac{a}{b}$ be the largest fraction in F'_{q-1} that is $< \frac{p}{q}$, and we let $\frac{c}{d}$ be the smallest fraction in F'_{q-1} that is $> \frac{p}{q}$. These two fractions $\frac{a}{b}$ and $\frac{c}{d}$ must be consecutive in F'_{q-1} , since $\frac{p}{q}$ does not appear in F'_{q-1} (its denominator is too high). Therefore, they are good neighbors (by Claim 4), and we have $\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$. Thus, Claim 6 yields $q \ge b + d$.

If b + d was < q, then b and d would be $\le b + d - 1$ (since b and d are positive), and therefore would already appear in F'_{b+d-1} (by the induction hypothesis), which would cause their mediant $\frac{a+c}{b+d}$ to already be inserted in F'_{b+d} and thus appear in

 F'_{q-1} (since $b + d \le q - 1$), which would contradict the fact that they are consecutive in F'_{q-1} . So $q \ge b + d$ but b + d is not < q. Therefore, q = b + d. Therefore, Claim 7 yields p = a + c. Hence, $\frac{p}{q} = \frac{a + c}{b + d}$, which is the mediant of the consecutive fractions $\frac{a}{b}$ and $\frac{c}{d}$ in F'_{q-1} and thus gets inserted in F'_q . So we have shown that $\frac{p}{q}$ appears in F'_q . This completes the induction, and proves Claim 8.

Claims 3 and 8 together entail that F'_n is the list of all reduced fractions between 0 and 1 with denominator $\leq n$ in increasing order. In other words, $F'_n = F_n$. Thus, Observation 1 and Observation 2 follow.

Here come three more properties of the Farey series:

cc

Exercise 0.0.1. For any $n \ge 1$, show that

$$\sum_{\substack{a \\ b \\ n \text{ secutive fractions in } F_n}} \frac{1}{bd} = 1$$

Exercise 0.0.2. Prove the following claim: If $\frac{a}{b}$ and $\frac{c}{d}$ are two reduced fractions in the interval [0, 1] that are good neighbors (i.e., that satisfy ad - bc = -1), then $\frac{a}{b}$ and $\frac{c}{d}$ appear as consecutive entries of the Farey series F'_n for some $n \in \mathbb{N}$ (indeed, for all n with max $\{b, d\} \le n < b + d$).

Exercise 0.0.3. Prove that **any** fraction in F_n , except for the leftmost and the rightmost, is the mediant of its two neighbors (upon reducing).

(For example, in $F_5 = \left(\dots < \frac{2}{5} < \frac{1}{2} < \frac{3}{5} < \dots \right)$, the fraction $\frac{1}{2}$ is the mediant of its two neighbors $\frac{2}{5}$ and $\frac{3}{5}$, since the latter mediant is $\frac{2+3}{5+5} = \frac{5}{10} = \frac{1}{2}$.)

Various other properties of the Farey series can be found, e.g., in [GrKnPa94, §4.5 and §4.9]. For example, the length (= number of entries) of F_n (that is, the number of all reduced fractions in [0, 1] with denominator $\leq n$) is approximately $\frac{3n^2}{\pi^2}$ (up to an error of $O(n \log n)$).

A more geometric view of Farey series can be found in [Hatche24, Chapter 1].

References

[GrKnPa94] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, *Concrete Mathematics, Second Edition*, Addison-Wesley 1994. See https://www-cs-faculty.stanford.edu/~knuth/gkp.html for errata.

[Hatche24] Allen Hatcher, *Topology of Numbers*, AMS, September 2024. https://pi.math.cornell.edu/~hatcher/TN/TNbook.pdf