Math 221 Winter 2023 (Darij Grinberg): midterm 1 due date: Sunday 2023-02-14 at 11:59PM on gradescope (https://www.gradescope.com/courses/487830). Please solve only 4 of the 6 exercises. NO collaboration allowed – this is a midterm! (But you can still ask me questions.)

Recall that $\mathbb{N} = \{0, 1, 2, ...\}.$

Exercise 1. Let $n \in \mathbb{N}$, and let *q* be any number distinct from 1. Prove that

$$\sum_{k=1}^{n} kq^{k} = q \cdot \frac{nq^{n+1} - (n+1)q^{n} + 1}{(q-1)^{2}}.$$

Exercise 2. Let $(a_0, a_1, a_2, ...)$ be a sequence of integers defined recursively by

$$a_0 = 2,$$
 $a_1 = 1,$
 $a_n = a_{n-1} + 6a_{n-2}$ for all $n \ge 2$

Prove that $a_n = 3^n + (-2)^n$ for each $n \in \mathbb{N}$.

Exercise 3. Let $n \in \mathbb{N}$. Prove that

$$\underbrace{1+2+\dots+n}_{k=1} = \underbrace{n^2 - (n-1)^2 + (n-2)^2 - (n-3)^2 \pm \dots + (-1)^{n-1} 1^2}_{k=1}.$$

Exercise 4. Let $n \in \mathbb{N}$. Prove that

$$\prod_{i=0}^{n} \binom{2i}{i} = 2^{n} \prod_{i=0}^{n} \binom{n+i}{n-i}.$$

Exercise 5. Let $(a_0, a_1, a_2, ...)$ be a sequence of integers defined recursively by

$$a_n = 1 + a_0 a_1 \cdots a_{n-1}$$
 for all $n \ge 0$.

(In particular, $a_0 = 1 + \underbrace{a_0 a_1 \cdots a_{0-1}}_{=(\text{empty product})=1} = 1 + 1 = 2$.) Here are the first few

entries of this sequence:

п	0	1	2	3	4	5	6
a _n	2	3	7	43	1807	3263443	10650056950807

(notice the astronomical growth!).

(a) Prove that

$$a_{n+1} = a_n^2 - a_n + 1$$
 for each $n \ge 0$.

(b) Prove that

$$\frac{1}{a_0} + \frac{1}{a_1} + \dots + \frac{1}{a_{n-1}} = 1 - \frac{1}{a_n - 1}$$
 for each $n \ge 0$.

Now, recall the Tower of Hanoi puzzle (as discussed in Lecture 1), and let m_n denote the # of moves needed to win (= solve this puzzle) with *n* disks. As we have seen in Theorem 1.2.2 (Lecture 2), we have $m_n = 2^n - 1$ for each $n \in \mathbb{N}$.

Consider the variant of the Tower of Hanoi puzzle in which we have 4 instead of 3 pegs, but otherwise the rules of the game are the same (and the goal is still is to move all n disks from peg 1 to peg 3). Let t_n denote the # of moves needed to win this variant with n disks.

Exercise 6. (a) Prove that

 $t_{a+b} \leq m_b + 2t_a$ for any $a, b \in \mathbb{N}$.

(b) Prove that $t_4 \leq 9$.