
Lecture 18, version December 16, 2023 page 1

Math 221 Winter 2023, Lecture 18: Enumeration

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

4. An introduction to enumeration

4.11. Selections

We now come back to a class of problems that we have posed at the start of
Chapter 4 (Lecture 12) but haven’t fully answered yet: counting the ways to
select a bunch of elements from a given set.

To be more specific, these are problems of the following form: Given an n-
element set S, how many ways are there to select k elements from S (where n
and k are fixed nonnegative integers)?

The words “k elements” in this question are ambiguous, as they allow for
several interpretations:

1. Do we want k arbitrary elements or k distinct elements?

2. Does the order of these k elements matter or not? (In other words, would
“1, 2” and “2, 1” count as two different selections?)

In total, these decisions leave you with 4 options, leading to 4 different prob-
lems. In this section, we shall address them all.

4.11.1. Unordered selections without repetition (= without replacement)

Let us begin with the case when we want to select k distinct elements, and the
order does not matter. This just means selecting a k-element subset of S. We
already know how to count these subsets (Theorem 4.7.4 in Lecture 16):

Theorem 4.11.1. Let n ∈ N, and let k be any number. Let S be an n-element
set. Then,

(# of k-element subsets of S) =
(

n
k

)
.

In other words, the # of ways to choose k distinct elements from a given

n-element set S, if the order does not matter, is
(

n
k

)
.

4.11.2. Ordered selections without repetition (= without replacement)

Now, let us consider the case when the order does matter. Thus, we are looking
not for subsets, but for k-tuples. But these k-tuples are not arbitrary k-tuples;
they are k-tuples of distinct elements. We shall call such k-tuples injective (in
analogy to injective functions):

https://www.cip.ifi.lmu.de/~grinberg/t/23wd

Lecture 18, version December 16, 2023 page 2

Definition 4.11.2. Let k ∈ N. A k-tuple (i1, i2, . . . , ik) is said to be injective if
its k entries i1, i2, . . . , ik are distinct (i.e., if we have ia ̸= ib for all a ̸= b).

For example, the 3-tuple (6, 1, 2) is injective, but (2, 1, 2) is not.
Note that injective k-tuples and injective functions are closely related: A func-

tion f : [k] → S (for a set S and a number k ∈ N) is injective if and only if the
k-tuple (f (1) , f (2) , . . . , f (k)) is injective.

Next, we introduce another convenient notation:

Definition 4.11.3. Let S be any set, and let k ∈ N. Then, Sk shall mean the
Cartesian product

S × S × · · · × S︸ ︷︷ ︸
k times

= {(a1, a2, . . . , ak) | a1, a2, . . . , ak ∈ S}

= {k-tuples whose all entries belong to S} .

For example, {5, 6}3 is the set

{5, 6} × {5, 6} × {5, 6}
= {(5, 5, 5) , (5, 5, 6) , (5, 6, 5) , (5, 6, 6) , (6, 5, 5) , (6, 5, 6) , (6, 6, 5) , (6, 6, 6)} .

None of the 3-tuples (i.e., triples) in this set is injective, but it is easy to find
an example where injective k-tuples do appear: For instance, the set {1, 2, 3, 4}3

contains both injective 3-tuples such as (1, 4, 3) and non-injective 3-tuples such
as (3, 3, 1).

Now, we can define rigorously what we are looking for: A way to select k
distinct elements from a given set S, if the order matters, is the same as an
injective k-tuple in Sk. We shall now count such ways:

Theorem 4.11.4. Let n ∈ N and k ∈ N. Let S be an n-element set. Then,(
of injective k-tuples in Sk

)
= n (n − 1) (n − 2) · · · (n − k + 1) .

Example 4.11.5. Applying Theorem 4.11.4 to n = 5, k = 3 and S =
{1, 2, 3, 4, 5}, we find that(

of injective 3-tuples in {1, 2, 3, 4, 5}3
)
= 5 (5 − 1) (5 − 2) = 5 · 4 · 3 = 60.

And indeed, there are 60 injective 3-tuples in {1, 2, 3, 4, 5}3. For example,
(2, 5, 4) and (5, 3, 2) are two of them.

Lecture 18, version December 16, 2023 page 3

Note that the right hand side in Theorem 4.11.4 is precisely the numerator

in the definition of the binomial coefficient
(

n
k

)
(Definition 2.4.1 in Lecture 5),

and thus can be rewritten as k! ·
(

n
k

)
(since k! is the denominator). Thus, the

claim of Theorem 4.11.4 can be restated as(
of injective k-tuples in Sk

)
= k! ·

(
n
k

)
.

Now, how do we prove the theorem? Let us first give an informal proof:

Informal proof of Theorem 4.11.4. Let us look at an example (which is representa-
tive of the general case): We let n = 5 and k = 3 and S = {a, b, c, d, e}. How
many injective k-tuples are there in Sk ? In other words (since k = 3): How
many injective 3-tuples are there in S3 ?

Such a 3-tuple has the form (x, y, z), where x, y, z are three distinct elements
of S. Let us see how such a 3-tuple can be chosen:

1. First, we choose its first entry x. There are 5 options for this, since S has 5
elements (and x can be any of these 5).

2. Then, we choose its second entry y. There are 4 options for it, since y
can be any of the 5 elements of S except for x (because the injectivity of
(x, y, z) demands y to be distinct from x).

3. Finally, we choose its third entry z. There are 3 options for it, since z can
be any of the 5 elements of S except for x and y (because the injectivity
of (x, y, z) demands z to be distinct from x and y) and since x and y are
already distinct.

Altogether, we have 5 options at the first step, then 4 options at the second
step (no matter which option has been chosen at the first step), and finally
3 options at the third step. Altogether, we can therefore choose our 3-tuple in
5 · 4 · 3 many different ways, because the numbers of options multiply. Here, we
have used a counting rule called “dependent product rule”, which informally
says that if we perform a multi-step construction, and we have

• exactly n1 options in step 1,

• exactly n2 options in step 2,

• . . .,

• exactly nk options in step k,

Lecture 18, version December 16, 2023 page 4

then the entire construction can be performed in n1n2 · · · nk many different
ways. We shall not formalize this rule (let alone prove it); the reader can find
rigorous versions of this rule in [Loehr11, §1.8] and in [Newste22, Theorem
8.1.19]. However, we shall next give a more rigorous proof of Theorem 4.11.4,
which uses induction on k instead of this “dependent product rule” (although
the underlying idea is the same).

Rigorous proof of Theorem 4.11.4. Forget that we fixed S and n. We thus must
prove the statement

P (k) :=

(
“for all n ∈ N and all n-element sets S, we have(

of injective k-tuples in Sk) = n (n − 1) (n − 2) · · · (n − k + 1) ”

)

for each k ∈ N. We shall prove this by induction on k.
Base case: We must prove that P (0) holds. In other words, we must prove

that for all n ∈ N and all n-element sets S, we have(
of injective 0-tuples in S0

)
= n (n − 1) (n − 2) · · · (n − 0 + 1) .

But this is an easy exercise in understanding emptiness: Let n ∈ N, and let S
be an n-element set. The only 0-tuple in S0 is (), and this 0-tuple is injective.
Thus, (

of injective 0-tuples in S0
)
= 1.

Comparing this with

n (n − 1) (n − 2) · · · (n − 0 + 1) = (empty product) = 1,

we obtain
(
of injective 0-tuples in S0) = n (n − 1) (n − 2) · · · (n − 0 + 1). Thus,

P (0) is proved. This completes the base case.
Induction step: Let k be a positive integer. Assume (as the induction hypothe-

sis) that P (k − 1) holds. Our goal is to prove P (k).
We have assumed that P (k − 1) holds. In other words, for all n ∈ N and all

n-element sets S, we have(
of injective (k − 1) -tuples in Sk−1

)
= n (n − 1) (n − 2) · · · (n − (k − 1) + 1) . (1)

Now, let us focus on proving P (k). Thus, we fix an n ∈ N and an n-element
set S. Our goal is then to prove that(

of injective k-tuples in Sk
)

?
= n (n − 1) (n − 2) · · · (n − k + 1) .

(Again, the question mark atop the equality sign reminds us that this is not
proved yet.)

Lecture 18, version December 16, 2023 page 5

Let s1, s2, . . . , sn be the n elements of S (listed without repetition). Then, any
k-tuple in Sk ends1 with exactly one of s1, s2, . . . , sn. Hence, by the sum rule, we
have (

of injective k-tuples in Sk
)

=
(

of injective k-tuples in Sk that end with s1

)
+
(

of injective k-tuples in Sk that end with s2

)
+ · · ·

+
(

of injective k-tuples in Sk that end with sn

)
=

n

∑
i=1

(
of injective k-tuples in Sk that end with si

)
. (2)

Now, we shall compute the addends in this sum.
Fix any i ∈ [n]. An injective k-tuple in Sk that ends with si must have the

form
(. . . , si) ,

where the “. . .” are k − 1 distinct elements of S \ {si} (not merely of S, but actu-
ally of S \ {si}, because if any of them was si, then our k-tuple would contain the
entry si twice and thus fail to be injective). In other words, an injective k-tuple
in Sk that ends with si is an injective (k − 1)-tuple in (S \ {si})k−1 followed by
the entry si. Thus, we obtain a map{

injective k-tuples in Sk that end with si

}
→
{

injective (k − 1) -tuples in (S \ {si})k−1
}

,

(. . . , si) 7→ (. . .)

(which removes the last entry from our k-tuple and leaves the other entries as
they are)2. Conversely, we have a map{

injective (k − 1) -tuples in (S \ {si})k−1
}
→
{

injective k-tuples in Sk that end with si

}
,

(. . .) 7→ (. . . , si)

(which inserts an si after the end of a (k − 1)-tuple; the result is still injective3)4.
These two maps are clearly inverses of each other5, and thus are bijections.

1We say that a k-tuple ends with a given element b if b is the last entry of this k-tuple. Note
that every k-tuple does indeed have a last entry, since k is positive.

2For example, if k = 4, then this map sends a k-tuple (a, b, c, si) to (a, b, c).
3Proof. We must show that if we insert an si after the end of an injective (k − 1)-tuple in
(S \ {si})k−1, then the result is still injective.

Indeed, the only way this could fail is if the newly inserted entry si would already appear
in the original (k − 1)-tuple. However, this is impossible, since the original (k − 1)-tuple
belongs to (S \ {si})k−1 and thus cannot contain the entry si.

4For example, if k = 4, then this map sends a (k − 1)-tuple (a, b, c) to (a, b, c, si).
5because a k-tuple that ends with si stays unchanged if we replace its last entry with si

Lecture 18, version December 16, 2023 page 6

Hence, the bijection principle yields(
of injective k-tuples in Sk that end with si

)
=
(

of injective (k − 1) -tuples in (S \ {si})k−1
)

.

However, recall our induction hypothesis (1). We have |S| = n (since S is an
n-element set). Since si is an element of S, the set {si} is a subset of S. Thus,
the difference rule (Theorem 4.6.7 (b) in Lecture 16) yields

|S \ {si}| = |S|︸︷︷︸
=n

− |{si}|︸ ︷︷ ︸
=1

= n − 1,

so that S \ {si} is an (n − 1)-element set, and we have n − 1 = |S \ {si}| ∈ N.
Hence, we can apply (1) to n − 1 and S \ {si} instead of n and S (because (1) is
a “for all n ∈ N” statement, not just a statement about the specific n that we
have fixed right now!). As a result, we obtain(

of injective (k − 1) -tuples in (S \ {si})k−1
)

= (n − 1) ((n − 1)− 1)︸ ︷︷ ︸
=n−2

((n − 1)− 2)︸ ︷︷ ︸
=n−3

· · · ((n − 1)− (k − 1) + 1)︸ ︷︷ ︸
=n−k+1

= (n − 1) (n − 2) (n − 3) · · · (n − k + 1) .

Combining what we have found, we obtain(
of injective k-tuples in Sk that end with si

)
=
(

of injective (k − 1) -tuples in (S \ {si})k−1
)

= (n − 1) (n − 2) (n − 3) · · · (n − k + 1) .

Now, forget that we fixed i. We have thus proved that(
of injective k-tuples in Sk that end with si

)
= (n − 1) (n − 2) (n − 3) · · · (n − k + 1) (3)

Lecture 18, version December 16, 2023 page 7

for every i ∈ [n]. Therefore, (2) becomes(
of injective k-tuples in Sk

)
=

n

∑
i=1

(
of injective k-tuples in Sk that end with si

)
︸ ︷︷ ︸

=(n−1)(n−2)(n−3)···(n−k+1)
(by (3))

=
n

∑
i=1

(n − 1) (n − 2) (n − 3) · · · (n − k + 1)

= n · (n − 1) (n − 2) (n − 3) · · · (n − k + 1)(
since

n

∑
i=1

a = na for any number a

)
= n (n − 1) (n − 2) · · · (n − k + 1) .

Forget that we fixed n and S. We thus have proved that for all n ∈ N and all
n-element sets S, we have(

of injective k-tuples in Sk
)
= n (n − 1) (n − 2) · · · (n − k + 1) .

In other words, we have proved P (k). Thus, the induction step is complete,
and Theorem 4.11.4 is proved.

4.11.3. Intermezzo: Listing n elements

Theorem 4.11.4 tells us that if S is an n-element set, then the # of ways to choose
k distinct elements from S, if the order matters, is

n (n − 1) (n − 2) · · · (n − k + 1) = k! ·
(

n
k

)
.

In particular, applying this to k = n, we conclude that the # of ways to choose
n distinct elements from S, if the order matters, is

n (n − 1) (n − 2) · · · (n − n + 1) = n! ·
(

n
n

)
︸︷︷︸
=1

(by Corollary 2.5.9
in Lecture 6)

= n!.

Of course, when we are choosing n distinct elements from an n-element set,
we are not actually choosing the elements (since all elements have to be cho-
sen6); we are only choosing the order in which we list them. So what we have
just shown (if somewhat informally) is the following result:

6This follows from Theorem 4.6.7 (c) in Lecture 16.

Lecture 18, version December 16, 2023 page 8

Corollary 4.11.6. Let n ∈ N. Let S be an n-element set. Then, the # of ways
to list the n elements of S in some order (that is, the # of n-tuples that contain
each element of S exactly once) is n!.

Example 4.11.7. Applying Corollary 4.11.6 to n = 3 and S = {1, 2, 3}, we see
that the # of ways to list the 3 numbers 1, 2, 3 in some order (i.e., the # of
3-tuples that contain each of the numbers 1, 2, 3 exactly once) is 3! = 6. And
indeed, here are these 6 ways:

(1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) .

Corollary 4.11.6 is one of the reasons why factorials are ubiquitous in com-
binatorics. The n! ways to list the n elements of a given n-element set S are
sometimes called the “permutations” of S, but this name is more frequently
used for the bijective maps from S to S. (The # of the latter maps is also n!, and
the two concepts are closely related. For details, see [Math222, §1.7.4 in Lecture
13]. See also [Math222, Lectures 26–28] for much more about permutations.)

4.11.4. Ordered selections with repetition (= with replacement)

We have now solved two variants of our “select k out of n” counting question.
We have two more variants to go: the ones where the k elements are arbitrary
(not necessarily distinct). Again, we have the choice of caring or not caring
about their order.

If we care about their order, then we are just counting all k-tuples in Sk. The
answer to this question is simple:

Theorem 4.11.8. Let n ∈ N and k ∈ N. Let S be an n-element set. Then,(
of all k-tuples in Sk

)
= nk.

Proof. The set S is an n-element set; in other words, |S| = n. Now,(
of all k-tuples in Sk

)
=
∣∣∣Sk
∣∣∣ =

∣∣∣∣∣∣S × S × · · · × S︸ ︷︷ ︸
k times

∣∣∣∣∣∣
since Sk is defined to be S × S × · · · × S︸ ︷︷ ︸

k times

= |S| · |S| · · · · · |S|︸ ︷︷ ︸

k times

(
by the product rule for k sets
(Theorem 4.6.9 in Lecture 16)

)
= |S|k = nk (since |S| = n) .

This proves Theorem 4.11.8.

Lecture 18, version December 16, 2023 page 9

4.11.5. Unordered selections with repetition (= with replacement)

Now only one question remains: What is the # of ways to choose k arbitrary
elements from an n-element set S if we don’t care about their order?

There are several equivalent ways to rigorously define what this means:

1. We can define the notion of a multiset, which is “like a finite set but
allowing an element to be contained multiple times”. This is done, e.g.,
in [Math222, §2.9 (Lectures 21–22)] or (in more detail) in [19fco, §2.11].
Then, a selection of k arbitrary elements from a set S, disregarding the
order, can be formalized as a size-k multisubset of the set S.

2. Alternatively, we can define the notion of an unordered k-tuple, which
is “a k-tuple up to reordering its entries”. Formally, these unordered
k-tuples are defined as the equivalence classes of usual (i.e., ordered) k-
tuples with respect to a certain equivalence relation. (See, e.g., [19fco,
Example 3.3.24] for the details.) Then, a selection of k arbitrary elements
from a set S, disregarding the order, can be formalized as an unordered
k-tuple of elements of S.

3. Finally, if we restrict ourselves to the case when S = [n] (which case
is sufficient for all practical purposes, since we can otherwise rename
the elements of S as 1, 2, . . . , n), then the following “low-tech” solution
becomes available: We say that a k-tuple (i1, i2, . . . , ik) ∈ Sk is weakly
increasing (aka sorted in weakly increasing order) if it satisfies i1 ≤
i2 ≤ · · · ≤ ik. Now, a selection of k arbitrary elements from S = [n],
disregarding the order, can be defined as a weakly increasing k-tuple in
Sk (because if we don’t care about the order of our k elements, then we
can just as well sort them in increasing order, and the result of such a
sorting operation is clearly unique7).

These three definitions yield different objects, but these objects are equiv-
alent, in the sense that there are bijections from each one to each other. In
particular, the # of selections of k arbitrary elements from S (without regard for
their order) does not depend on which way we define these selections. Thus,
when it comes to counting them, we can pick whatever definition we prefer.

Now that all the requisite warnings and disclaimers have been said, we can
finally count these selections:

Theorem 4.11.9. Let n ∈ N and k ∈ N. Let S be an n-element set. Then,

(# of all ways to select k elements from S (if order does not matter))

=

(
k + n − 1

k

)
7Clearly if you believe in common sense. Not so clearly if you want a formal proof. See, e.g.,

[19fco, Exercise 2.11.2] for such a proof.

Lecture 18, version December 16, 2023 page 10

(where our k elements don’t have to be distinct).

Example 4.11.10. Applying Theorem 4.11.9 to n = 5 and k = 2 and S = [5] =
{1, 2, 3, 4, 5}, we obtain

(# of all ways to select 2 elements from [5] (if order does not matter))

=

(
2 + 5 − 1

2

)
=

(
6
2

)
= 15.

And indeed, here are these 15 ways:

(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) ,
(2, 2) , (2, 3) , (2, 4) , (2, 5) ,

(3, 3) , (3, 4) , (3, 5) ,
(4, 4) , (4, 5) ,

(5, 5) .

Here, we have represented each of these selections as a weakly increasing
k-tuple in Sk (as explained above).

Informal proof of Theorem 4.11.9 (sketched). For the sake of simplicity, we assume
that S = [n] (since otherwise, we can rename the n elements of S as 1, 2, . . . , n).
Then, as we said above, a selection of k arbitrary elements from S = [n] (disre-
garding the order) can be defined as a weakly increasing k-tuple in Sk. But a
weakly increasing k-tuple in Sk must always look as follows:1, 1, . . . , 1︸ ︷︷ ︸

a1 many 1’s

, 2, 2, . . . , 2︸ ︷︷ ︸
a2 many 2’s

, . . . , n, n, . . . , n︸ ︷︷ ︸
an many n’s

for some numbers a1, a2, . . . , an ∈ N (in particular, each ai can be 0, which
means that i does not appear in our k-tuple) that satisfy a1 + a2 + · · ·+ an = k
(because we want a k-tuple). Such a k-tuple is uniquely determined by these
numbers a1, a2, . . . , an, and conversely, any choice of these numbers a1, a2, . . . , an
leads to a different k-tuple.

Thus, there is a bijection

from
{

weakly increasing k-tuples in Sk
}

to {n-tuples (a1, a2, . . . , an) ∈ Nn satisfying a1 + a2 + · · ·+ an = k} .

Lecture 18, version December 16, 2023 page 11

Hence, the bijection principle yields(
of weakly increasing k-tuples in Sk

)
= (# of n-tuples (a1, a2, . . . , an) ∈ Nn satisfying a1 + a2 + · · ·+ an = k)
= (# of weak compositions of k into n parts) since the n-tuples (a1, a2, . . . , an) ∈ Nn

satisfying a1 + a2 + · · ·+ an = k
are precisely the weak compositions of k into n parts

=

(
k + n − 1

k

) (
by Theorem 4.10.6 in Lecture 17,

applied to k and n instead of n and k

)
.

This proves Theorem 4.11.9 (because these weakly increasing k-tuples in Sk are
the ways to select k elements from S (if order does not matter)).

For a rigorous proof, see [19fco, Corollary 2.11.3] (but note that the meanings
of the letters n and k are switched in [19fco, Corollary 2.11.3]).

Theorem 4.11.9 is our fifth combinatorial interpretation of binomial coeffi-
cients so far! Previously, we have seen that they count subsets (Theorem 4.7.4 in
Lecture 16), lacunar subsets (Theorem 4.9.5 in Lecture 17), compositions (The-
orem 4.10.3 in Lecture 17) and weak compositions (Theorem 4.10.6 in Lecture
17). This all is not too surprising, since we proved four of these five theorems
using the bijection principle (reducing them to previously proved theorems),
but it is impressive to see so many counting problems answered by the same
family of numbers.

We have now solved all our four selection problems. We now come to a
different counting problem.

4.12. Anagrams and multinomial coefficients

4.12.1. Counting anagrams

An anagram of a given word w means a word that consists of the same letters
as w but possibly in a different order. For example:

• The anagrams of the word “cat” are “act”, “atc”, “cat”, “cta”, “tac” and
“tca”.

• The word “labl” is an anagram of “ball” (and so are several others).

As you see here, we make no distinction between meaningful and meaning-
less words. (Also, being logically coherent at the expense of common sense, we
consider each word w to be an anagram of itself.)

Now, we can take a given word w and ask how many anagrams w has. For
instance:

Lecture 18, version December 16, 2023 page 12

• How many anagrams does the word “cat” have?

It has six (and we have just listed them above). In fact, we can put the
three letters in any order, and there are 6 possible orders (by Corollary
4.11.6).

• How many anagrams does the word “dud” have?

It has three (“dud”, “ddu”, “udd”). Note that the answer does not directly
follow from Corollary 4.11.6, since two of the three letters are equal.

• How many anagrams does the word “ball” have?

It has 12 of them: In fact, if the two “l”s were two different letters, then
it would have 24 anagrams (again by Corollary 4.11.6), but since the two
“l”s are the same, these 24 anagrams merge into pairs of equal words (you

get “ball” twice, you get “blal” twice, etc.), so the answer is
24
2

= 12.

(Not convinced? Good; it’s worth to be skeptical about arguments like
this. Still, this argument can be made precise and rigorous. See [Loehr11,
first proof of Theorem 1.46] for this.)

• How many anagrams does the word “bookkeeper” have?

Too many to list by brute force, and the “divide by 2” technique from
the previous example gets muddled somewhat as there are several equal
letters8.

Thus, let us try a new strategy. The word “bookkeeper” has 10 letters.
Hence, any anagram of it is a 10-letter word as well. Its letters are

1 “b”, 3 “e”s, 2 “k”s, 2 “o”s, 1 “p” and 1 “r”.

In order to choose an anagram of “bookkeeper”, we have to distribute all
these letters into 10 positions. In other words, we have to choose which
position the 1 “b” will occupy, which positions the 3 “e”s will occupy, and
so on. Let us do this step by step:

– We first choose the position of the 1 “b”. There are
(

10
1

)
many

options for this, since we need to choose a 1-element subset of the set
of all 10 positions.

– We then choose the positions of the 3 “e”s. There are
(

9
3

)
many

options for this, since we need to choose a 3-element subset of the set
of all 9 positions not already occupied.

8Actually, the technique can be salvaged, but this requires some carefulness that I am too lazy
for right now. (Once again, see [Loehr11, first proof of Theorem 1.46].)

Lecture 18, version December 16, 2023 page 13

– We then choose the positions of the 2 “k”s. There are
(

6
2

)
many

options for this, since we need to choose a 2-element subset of the set
of all 6 positions not already occupied.

– We then choose the positions of the 2 “o”s. There are
(

4
2

)
many

options for this, since we need to choose a 2-element subset of the set
of all 4 positions not already occupied.

– We then choose the positions of the 1 “p”. There are
(

2
1

)
many

options for this, since we need to choose a 1-element subset of the set
of all 2 positions not already occupied.

– We then choose the positions of the 1 “r”. There are
(

1
1

)
many

options for this, since we need to choose a 1-element subset of the set
of all 1 positions not already occupied.

By the dependent product rule (see the informal proof of Theorem 4.11.4
above), the total # of ways to perform this construction is therefore(

10
1

)
·
(

9
3

)
·
(

6
2

)
·
(

4
2

)
·
(

2
1

)
·
(

1
1

)
=

10!
1! · 9!

· 9!
3! · 6!

· 6!
2! · 4!

· 4!
2! · 2!

· 2!
1! · 1!

· 1!
1! · 0!

(by the factorial formula (Theorem 2.5.5 in Lecture 6))

=
10!

1! · 3! · 2! · 2! · 1! · 1! · 0!
(by cancellations)

=
10!

1! · 3! · 2! · 2! · 1! · 1!
(since 0! = 1)

= 151 200.

Thus, the word “bookkeeper” has 151 200 =
10!

1! · 3! · 2! · 2! · 1! · 1!
ana-

grams.

• How many anagrams does the word “anteater” have?

By the same logic as we just used, it has

8!
2! · 2! · 1! · 1! · 2!

= 5 040 anagrams.

The same argument works in the general case:

Lecture 18, version December 16, 2023 page 14

Theorem 4.12.1. Let s1, s2, . . . , sn be n distinct objects, and let a1, a2, . . . , an be
n nonnegative integers. Then, the # of tuples that consist of

a1 copies of s1,
a2 copies of s2,
. . . ,
an copies of sn

is
(a1 + a2 + · · ·+ an)!

a1! · a2! · · · · · an!
=

n

∏
k=1

(
ak + ak+1 + · · ·+ an

ak

)
.

Informal proof (sketched). Follow the same logic as we used for “bookkeeper”
above. To construct such a tuple, we

• first choose the positions for the a1 many s1’s among its entries (there are(
a1 + a2 + · · ·+ an

a1

)
many options for this);

• then choose the positions for the a2 many s2’s among its entries (there are(
a2 + a3 + · · ·+ an

a2

)
many options for this);

• then choose the positions for the a3 many s3’s among its entries (there are(
a3 + a4 + · · ·+ an

a3

)
many options for this);

• and so on, until finally choosing the positions for the an many sn’s among

its entries (there are
(

an

an

)
many options for this).

Lecture 18, version December 16, 2023 page 15

By the dependent product rule, the total # of such tuples is therefore(
a1 + a2 + · · ·+ an

a1

)(
a2 + a3 + · · ·+ an

a2

)(
a3 + a4 + · · ·+ an

a3

)
· · ·
(

an

an

)
=

n

∏
k=1

(
ak + ak+1 + · · ·+ an

ak

)
=

n

∏
k=1

(ak + ak+1 + · · ·+ an)!
ak! ((ak + ak+1 + · · ·+ an)− ak)!

(
by the factorial formula

(Theorem 2.5.5 in Lecture 6)

)
=

n

∏
k=1

(ak + ak+1 + · · ·+ an)!
ak! (ak+1 + ak+2 + · · ·+ an)!

=

n
∏

k=1
(ak + ak+1 + · · ·+ an)!(

n
∏

k=1
ak!
)(

n
∏

k=1
(ak+1 + ak+2 + · · ·+ an)!

)
=

(a1 + a2 + · · ·+ an)! · (a2 + a3 + · · ·+ an)! · · · · · an!(
n
∏

k=1
ak!
)
((a2 + a3 + · · ·+ an)! · (a3 + a4 + · · ·+ an)! · · · · · an! · 0!)

=
(a1 + a2 + · · ·+ an)!(

n
∏

k=1
ak!
)
· 0!

(
here, we have cancelled factors that appear
both in the numerator and the denominator

)

=
(a1 + a2 + · · ·+ an)!

n
∏

k=1
ak!

(since 0! = 1)

=
(a1 + a2 + · · ·+ an)!

a1! · a2! · · · · · an!
.

This proves Theorem 4.12.1.
(For a rigorous proof, see [19fco, Proposition 2.12.13]. Note that the objects

s1, s2, . . . , sn are required to be 1, 2, . . . , n in [19fco, Proposition 2.12.13], but this
makes no serious difference, since we can always rename them at will.)

Remark 4.12.2. We can now answer the question “how many prime factor-
izations does a given number have?” from Lecture 12. For example, consider
the number 600 = 23 · 3 · 52. A prime factorization of 600 is a tuple that
consists of three 2’s, one 3 and two 5’s, in an arbitrary order. Thus, the # of

such prime factorizations is
6!

3! · 1! · 2!
(by Theorem 4.12.1). Similarly, we can

proceed for any positive integer instead of 600.

Lecture 18, version December 16, 2023 page 16

4.12.2. Multinomial coefficients

The number
(a1 + a2 + · · ·+ an)!

a1! · a2! · · · · · an!
in Theorem 4.12.1 has a name: It is called a multinomial coefficient. By Theo-
rem 4.12.1, it is an integer (since it counts something), and can be rewritten as

n
∏

k=1

(
ak + ak+1 + · · ·+ an

ak

)
. Note that for n = 2, it becomes a binomial coeffi-

cient:
(a + b)!

a! · b!
=

(
a + b

a

)
.

Multinomial coefficients have some further properties. There is a standard
notation for them: Namely, if a1, a2, . . . , an ∈ N are any nonnegative integers,
and if we set b = a1 + a2 + · · ·+ an, then the multinomial coefficient

(a1 + a2 + · · ·+ an)!
a1! · a2! · · · · · an!

=
b!

a1! · a2! · · · · · an!

is denoted by (
b

a1, a2, . . . , an

)
.

As already mentioned, multinomial coefficients generalize the binomial co-
efficients that are found in Pascal’s triangle: With our new notation, a binomial

coefficient
(

n
k

)
with n ∈ N and k ∈ {0, 1, . . . , n} equals the multinomial co-

efficient
(

n
k, n − k

)
. Pascal’s identity (Theorem 2.5.3 in Lecture 6, at least for

n > 0 and k ∈ {0, 1, . . . , n}) thus can be rewritten as(
b

a1, a2

)
=

(
b − 1

a1 − 1, a2

)
+

(
b − 1

a1, a2 − 1

)
for b > 0 and a1, a2 ∈ N with a1 + a2 = b,

where we agree to interpret a multinomial coefficient with a negative number
at the bottom to mean 0. An analogue of this identity holds for multinomial
coefficients with more parameters:

Theorem 4.12.3 (Recurrence of the multinomial coefficients). Let b ∈ N and
a1, a2, . . . , an ∈ N be such that a1 + a2 + · · ·+ an = b > 0. Then,(

b
a1, a2, . . . , an

)
=

n

∑
i=1

(
b − 1

a1, . . . , ai−1, ai − 1, ai+1, . . . , an

)
︸ ︷︷ ︸

This should be interpreted as 0 if ai=0

.

Lecture 18, version December 16, 2023 page 17

Proof. Nice and fairly easy exercise! (See [19fco, Exercise 2.12.6] for a proof.)

Just like the binomial coefficients
(

n
k

)
with n ∈ N and k ∈ {0, 1, . . . , n} can

be arranged into Pascal’s triangle, the multinomial coefficients
(

b
a1, a2, . . . , an

)
(for a given n) can be arranged into an n-dimensional analogue of Pascal’s
triangle, called Pascal’s simplex (or, for n = 3, Pascal’s pyramid). Theorem
4.12.3 then says that each entry in this simplex (except for the 1 at the apex) is
the sum of its n adjacent entries just above it.

Multinomial coefficients owe their name to another fundamental property
they satisfy: a generalization of the binomial formula, called the multinomial
formula:

Theorem 4.12.4 (the multinomial formula). Let x1, x2, . . . , xn be n numbers.
Let b ∈ N. Then,

(x1 + x2 + · · ·+ xn)
b = ∑

(a1,a2,...,an)∈Nn;
a1+a2+···+an=b

(
b

a1, a2, . . . , an

)
xa1

1 xa2
2 · · · xan

n .

Proof. See [19fco, Theorem 2.12.17] (which gives two references). Here is the
simplest proof in a nutshell:

We expand (x1 + x2 + · · ·+ xn)
b and collect equal terms. For instance, if

n = 2 and b = 3, then

(x1 + x2 + · · ·+ xn)
b

= (x1 + x2)
3

= (x1 + x2) (x1 + x2) (x1 + x2)

= x1x1x1 + x1x1x2 + x1x2x1 + x1x2x2 + x2x1x1 + x2x1x2 + x2x2x1 + x2x2x2

= x3
1 + 3x2

1x2 + 3x1x2
2 + x3

2.

What terms do we get for general n and b ? Well, if we expand the product

(x1 + x2 + · · ·+ xn)
b

= (x1 + x2 + · · ·+ xn) (x1 + x2 + · · ·+ xn) · · · (x1 + x2 + · · ·+ xn)︸ ︷︷ ︸
b times

,

then we obtain the sum of all nb possible products of the form

xi1 xi2 · · · xib with i1, i2, . . . , ib ∈ [n] .

Each such product can be rewritten as the monomial xa1
1 xa2

2 · · · xan
n , where a1 is

the # of 1’s in the b-tuple (i1, i2, . . . , ib), where a2 is the # of 2’s in this b-tuple,

Lecture 18, version December 16, 2023 page 18

and so on. Moreover, this monomial satisfies a1 + a2 + · · ·+ an = b, since the
total # of entries of the b-tuple (i1, i2, . . . , ib) is b.

Thus, expanding (x1 + x2 + · · ·+ xn)
b, we obtain a sum of monomials of the

form xa1
1 xa2

2 · · · xan
n with a1 + a2 + · · · + an = b, but each such monomial can

appear several times in this sum. The total # of copies of a given monomial
xa1

1 xa2
2 · · · xan

n that appear in this sum equals the # of all b-tuples that consist of

a1 copies of 1,
a2 copies of 2,
. . . ,
an copies of n

(because of the previous paragraph). But this latter # equals

(a1 + a2 + · · ·+ an)!
a1! · a2! · · · · · an!

(by Theorem 4.12.1)

=
b!

a1! · a2! · · · · · an!

(
since a1 + a2 + · · ·+ an = b (because

our b-tuple (i1, i2, . . . , ib) has b entries in total)

)
=

(
b

a1, a2, . . . , an

) (
by the definition of

(
b

a1, a2, . . . , an

))
.

Thus, each monomial xa1
1 xa2

2 · · · xan
n with a1 + a2 + · · ·+ an = b appears exactly(

b
a1, a2, . . . , an

)
times in the sum that we obtain by expanding (x1 + x2 + · · ·+ xn)

b.

Collecting all copies of each monomial in this expansion, we thus obtain

(x1 + x2 + · · ·+ xn)
b = ∑

(a1,a2,...,an)∈Nn;
a1+a2+···+an=b

(
b

a1, a2, . . . , an

)
xa1

1 xa2
2 · · · xan

n .

This proves Theorem 4.12.4.

We note that this yields a new proof of the binomial formula (Theorem 2.6.1
in Lecture 6), since the latter formula is the particular case of Theorem 4.12.4
for n = 2.

Remark 4.12.5. We note that Theorem 4.12.3 can be used to give a second proof of
Theorem 4.12.1. Here is a rough outline of this proof:

A tuple that consists of

a1 copies of s1,
a2 copies of s2,
. . . ,
an copies of sn

Lecture 18, version December 16, 2023 page 19

will be called an
(

s1 s2 · · · sn
a1 a2 · · · an

)
-tuple. Thus, Theorem 4.12.3 is claiming that

the # of
(

s1 s2 · · · sn
a1 a2 · · · an

)
-tuples is

(
b

a1, a2, . . . , an

)
, where b := a1 + a2 + · · ·+ an.

We shall now prove this by induction on b. The base case (b = 0) is trivial (since
b = 0 entails a1 = a2 = · · · = an = 0, so we are counting 0-tuples). In the induction

step (from b− 1 to b), we separate the
(

s1 s2 · · · sn
a1 a2 · · · an

)
-tuples according to their

last entry (just as in our above rigorous proof of Theorem 4.11.4). This last entry is
either s1 or s2 or · · · or sn. Hence, the sum rule yields(

of
(

s1 s2 · · · sn
a1 a2 · · · an

)
-tuples

)
=

n

∑
i=1

(
of

(
s1 s2 · · · sn
a1 a2 · · · an

)
-tuples that end with si

)
︸ ︷︷ ︸

=

of

 s1 s2 · · · si−1 si si+1 · · · sn
a1 a2 · · · ai−1 ai − 1 ai+1 · · · an

-tuples

(by a bijection argument, just as in the proof of Theorem 4.11.4,

using the bijection that removes the last entry from a tuple)

=
n

∑
i=1

(
of

(
s1 s2 · · · si−1 si si+1 · · · sn
a1 a2 · · · ai−1 ai − 1 ai+1 · · · an

)
-tuples

)
︸ ︷︷ ︸

=

(
b − 1

a1, . . . , ai−1, ai − 1, ai+1, . . . , an

)
(by the induction hypothesis if ai>0, and for obvious reasons if ai=0)

=
n

∑
i=1

(
b − 1

a1, . . . , ai−1, ai − 1, ai+1, . . . , an

)
=

(
b

a1, a2, . . . , an

)
(by Theorem 4.12.3) ,

which completes the induction step. This proof is less conceptual than the proof
we sketched above, but it is easier to formalize, since it does not use the dependent
product rule.

References

[19fco] Darij Grinberg, Enumerative Combinatorics: class notes (Drexel Fall
2019 Math 222 notes), 11 September 2022.
http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf

[Loehr11] Nicholas A. Loehr, Bijective Combinatorics, Chapman & Hall/CRC
2011.

[Math222] Darij Grinberg, Math 222: Enumerative Combinatorics, Fall 2022.
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/

http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf
http://www.math.vt.edu/people/nloehr/bijbook.html
http://www.math.vt.edu/people/nloehr/bijbook.html
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/

Lecture 18, version December 16, 2023 page 20

[Newste22] Clive Newstead, An Infinite Descent into Pure Mathematics, version
1.0 preview, 26 December 2022.
https://infinitedescent.xyz

https://infinitedescent.xyz

	An introduction to enumeration
	Selections
	Unordered selections without repetition (= without replacement)
	Ordered selections without repetition (= without replacement)
	Intermezzo: Listing n elements
	Ordered selections with repetition (= with replacement)
	Unordered selections with repetition (= with replacement)

	Anagrams and multinomial coefficients
	Counting anagrams
	Multinomial coefficients

