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Math 221 Winter 2023, Lecture 17: Enumeration

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

4. An introduction to enumeration

4.9. Lacunar subsets

4.9.1. Definition

Another type of objects that can be counted are the so-called lacunar subsets
(also known as sparse subsets to some authors). Here is their definition:

Definition 4.9.1. A set S of integers is said to be lacunar if it contains no two
consecutive integers (i.e., if there is no integer i such that both i and i + 1
belong to S).

The word “lacunar” comes from Latin “lacuna” (= “gap”). The idea is that a
lacunar set has a “gap” (or “buffer zone”) between any two distinct elements.

For example, the set {2, 4, 7} is lacunar, but the set {2, 4, 5} is not (since 4 and
5 are consecutive integers). Any 1-element set of integers is lacunar, and so is
the empty set.

Now we can ask ourselves some natural questions: For given n ∈N,

1. how many lacunar subsets does the set [n] = {1, 2, . . . , n} have?

2. how many k-element lacunar subsets does [n] have for a given k ∈N?

3. what is the largest size of a lacunar subset of [n] ?

We shall answer all these three questions in this section.

4.9.2. The maximum size of a lacunar subset

We start with the third question, as it is the easiest one to answer. Recall the
floor notation (Definition 3.3.12 in Lecture 8).

Proposition 4.9.2. Let n ∈ N. Then, the maximum size of a lacunar subset

of [n] is
⌊

n + 1
2

⌋
.

Proof. The set

{all odd numbers in [n]} = {all odd integers between 1 and n (inclusive)}
= {all odd integers between 0 and n (inclusive)}
= {1, 3, 5, . . .} ∩ [n]

https://www.cip.ifi.lmu.de/~grinberg/t/23wd


Lecture 17, version December 24, 2023 page 2

is a lacunar subset of [n], and has size
⌊

n + 1
2

⌋
(by Proposition 4.2.1 in Lecture

12). Thus, the size
⌊

n + 1
2

⌋
is attainable (for a lacunar subset of [n]).

It remains to show that this size is the largest possible – i.e., that if L is a
lacunar subset of [n], then

|L| ≤
⌊

n + 1
2

⌋
.

So let L be a lacunar subset of [n]. Our goal is to prove that |L| ≤
⌊

n + 1
2

⌋
.

We shall first prove that |L| ≤ n + 1
2

.
Here are two different ways to prove this (each way illustrates a nice tech-

nique):

First proof of |L| ≤ n + 1
2

. Let ℓ1, ℓ2, . . . , ℓk be the elements of L, listed in increas-

ing order, so that L = {ℓ1, ℓ2, . . . , ℓk} and ℓ1 < ℓ2 < · · · < ℓk. Thus, |L| = k.
Now, we assume (for the moment) that k > 0. Thus, k ≥ 1 (since k is

an integer). We have ℓ1 ∈ L ⊆ [n], so that ℓ1 ≥ 1. Moreover, the elements
ℓ1 and ℓ2 of L satisfy ℓ1 < ℓ2 and ℓ2 ̸= ℓ1 + 1 (since L is lacunar), so that
ℓ2 ≥ ℓ1︸︷︷︸

≥1

+2 ≥ 1 + 2 = 3. Furthermore, the elements ℓ2 and ℓ3 of L satisfy

ℓ2 < ℓ3 and ℓ3 ̸= ℓ2 + 1 (since L is lacunar), so that ℓ3 ≥ ℓ2︸︷︷︸
≥3

+2 ≥ 3 + 2 = 5.

Proceeding in the same way, we find that

ℓi ≥ 2i− 1 for each i ∈ [k] . (1)

(Strictly speaking, this can be proved by induction on i. The base case follows
from ℓ1 ≥ 1 = 2 · 1− 1, whereas the induction step requires deriving ℓi+1 ≥
2 (i + 1)− 1 from ℓi ≥ 2i− 1, which can be done by observing that L is lacunar
and therefore ℓi+1 ≥ ℓi︸︷︷︸

≥2i−1

+2 ≥ 2i− 1 + 2 = 2 (i + 1)− 1.)

Now, we can apply (1) to i = k, and thus obtain ℓk ≥ 2k − 1. However,
ℓk ∈ L ⊆ [n], so that ℓk ≤ n. Thus, n ≥ ℓk ≥ 2k − 1, so that n + 1 ≥ 2k and

thus
n + 1

2
≥ k. We have proved this under the assumption that k > 0, but this

also holds in the opposite case (because if k ≤ 0, then
n + 1

2
≥ 0 ≥ k). Thus, we

always have
n + 1

2
≥ k (independently of any assumptions). In other words,

we have
n + 1

2
≥ |L| (since k = |L|). In other words, we have |L| ≤ n + 1

2
.
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Second proof of |L| ≤ n + 1
2

. Define a new set

L+ := {ℓ+ 1 | ℓ ∈ L} .

This set L+ consists of each element of L, incremented by 1. For example, if
L = {3, 5, 9}, then L+ = {4, 6, 10}. Another way to view L+ is as follows:

L+ = {i ∈ Z | i− 1 ∈ L}

(because an integer i satisfies i− 1 ∈ L if and only if it has the form ℓ+ 1 for
some ℓ ∈ L).

The set L+ is just L with each element incremented by 1. Thus, |L+| = |L|.
Moreover, since L is a subset of [n] = {1, 2, . . . , n}, we conclude that L+ is

a subset of {2, 3, . . . , n + 1}. Hence, both sets L and L+ are subsets of [n + 1].
Their union L ∪ L+ is thus a subset of [n + 1] as well. Therefore (by Theorem
4.6.7 (a) in Lecture 16, applied to S = [n + 1] and T = L ∪ L+), we conclude
that ∣∣L ∪ L+

∣∣ ≤ |[n + 1]| = n + 1.

If the sets L and L+ had an element j in common, then both j− 1 and j would
belong to L (indeed, j ∈ L+ = {i ∈ Z | i− 1 ∈ L} would entail j − 1 ∈ L),
which would contradict the fact that L is lacunar (since j − 1 and j are two
consecutive integers). Thus, the sets L and L+ have no element in common.
In other words, they are disjoint. Hence, by the sum rule (Theorem 4.6.5 in
Lecture 16, applied to A = L and B = L+), we have |L ∪ L+| = |L|+

∣∣L+
∣∣︸︷︷︸

=|L|

=

|L|+ |L| = 2 · |L|. Hence,

2 · |L| =
∣∣L ∪ L+

∣∣ ≤ n + 1.

In other words, |L| ≤ n + 1
2

.

We have now proved (in two different ways) that |L| ≤ n + 1
2

. Now, recall

the definition of the floor of a real number: If x is a real number, then ⌊x⌋ is the

largest integer that is ≤ x. Hence,
⌊

n + 1
2

⌋
is the largest integer that is ≤ n + 1

2
.

Therefore, any integer that is ≤ n + 1
2

must also be ≤
⌊

n + 1
2

⌋
. Applying this

to the integer |L|, we conclude that |L| ≤
⌊

n + 1
2

⌋
(since |L| ≤ n + 1

2
). As

explained above, this completes the proof of Proposition 4.9.2.
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4.9.3. Counting all lacunar subsets of [n]

Now let us count the lacunar subsets of [n]. We shall first count them all, then
count the ones of a given size k.

First, a few words about how to find answers to counting questions like this.
For any specific value of n, finding the # of lacunar subsets of [n] is a “finite
problem”: You can just count them all. Or, better, you can have your computer
do this. In SageMath (a computer algebra system, one of the best suited to
combinatorial questions), this takes just a few lines:

def is_lacunar(S): # test if the set S is lacunar
return all(i+1 not in S for i in S)

def num_lacs(n): # number of lacunar subsets of [n]
return sum(1 for S in Subsets(n) if is_lacunar(S))

for n in range(10):
print("For n = " + str(n) + ", the number is " + str(num_lacs(n)))

The first two lines here speak for themselves (once you know that all is the
universal quantifier1). The function Subsets computes the set of all subsets
of a given set, or (if we provide it an integer n as input) all subsets of [n].
The sum(1 for S in SomeSet) construction is just a slick way of counting the
elements of SomeSet, exploiting the fact that a sum of the form 1 + 1 + · · ·+ 1
equals the number of its addends. The last two lines are prompting SageMath
to compute the # of lacunar subsets of [n] for each n ∈ [0, 9] (note that range(a,
b) means the integer interval [a, b− 1] in SageMath) and to output these 10
numbers. I refer to [19fco, §1.4.3] for more hints on the use of SageMath, and
to its documentation for a more systematic introduction. Note that you can
use SageMathCell to easily call SageMath from your browser (although the
computations you call are limited by 30 seconds each, since they happen on the
server).

The answers we get from SageMath are interesting:

n 0 1 2 3 4 5 6 7 8 9

# of lacunar subsets of [n] 1 2 3 5 8 13 21 34 55 89
.

Haven’t we seen these numbers before?
Yes, we have: In Lecture 2, we defined the Fibonacci sequence. This is the

sequence ( f0, f1, f2, . . .) of nonnegative integers defined recursively by setting

f0 = 0, f1 = 1, and
fn = fn−1 + fn−2 for each n ≥ 2.

1Generally, SageMath is built on top of the Python programming language, so you will recog-
nize a lot of Python syntax.

https://www.sagemath.org/
https://doc.sagemath.org/
https://sagecell.sagemath.org/


Lecture 17, version December 24, 2023 page 5

Its first few entries are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.

The two above tables have the same entries, if you discount the fact that the
first two Fibonacci numbers f0 = 0 and f1 = 1 are missing from the former
table. So we have good reasons to suspect that

(# of lacunar subsets of [n]) = fn+2

for each n ∈N. And indeed, this is true:

Theorem 4.9.3. For any integer n ≥ −1, we have

(# of lacunar subsets of [n]) = fn+2.

Here, we agree that [−1] := ∅. More generally, we agree that [k] := ∅ for
any k ≤ 0.

Example 4.9.4. The lacunar subsets of [4] are

∅, {1} , {2} , {3} , {4} , {1, 3} , {1, 4} , {2, 4} .

So there are 8 of them, as predicted by Theorem 4.9.3 (since f4+2 = f6 = 8).

(Are you wondering why we are allowing n to be −1 in Theorem 4.9.3? The
answer is “because we can”, and more precisely “because it will make our
induction easier”. The case n = −1 is not interesting by itself; the claim of
Theorem 4.9.3 in this case is just that the # of lacunar subsets of ∅ is 1.)

Proof of Theorem 4.9.3. For any integer n ≥ −1, let us set

ℓn := (# of lacunar subsets of [n]) .

Thus, we must prove that

ℓn = fn+2 for each n ≥ −1. (2)

We have ℓ−1 = 1 (since the set [−1] = ∅ has only one lacunar subset, namely
∅ itself) and f−1+2 = f1 = 1. Hence, ℓ−1 = 1 = f−1+2. In other words, (2) holds
for n = −1. A similar computation shows that (2) holds for n = 0.

Let us next show the following:

Claim 1: We have ℓn = ℓn−1 + ℓn−2 for each integer n ≥ 1.

Proof of Claim 1. Let n ≥ 1 be an integer. We shall call a subset of [n]
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• red if it contains n, and

• green if it does not contain n.

Then, the definition of ℓn shows that

ℓn = (# of lacunar subsets of [n])
= (# of red lacunar subsets of [n]) + (# of green lacunar subsets of [n])

(by the sum rule, since each lacunar subset of [n] is either red or green but
cannot be both at the same time2).

The green lacunar subsets of [n] are just the lacunar subsets of [n− 1] (since
“green” means “does not contain n”). Thus,

(# of green lacunar subsets of [n])
= (# of lacunar subsets of [n− 1]) = ℓn−1

(by the definition of ℓn−1).
Counting the red lacunar subsets is trickier. We shall show that their # is

ℓn−2.
If R is a red lacunar subset of [n], then R contains n (by the definition of

“red”), so that R does not contain n− 1 (by lacunarity), and therefore R \ {n}
is a lacunar subset of [n− 2] (since R \ {n} contains neither n nor n− 1). Thus,
we obtain a map

remn : {red lacunar subsets of [n]} → {lacunar subsets of [n− 2]} ,
R 7→ R \ {n} .

Conversely, if L is a lacunar subset of [n− 2], then L∪ {n} is a lacunar subset
of [n] (indeed, the integer n− 1 is a “buffer zone” between the elements of L
and the new element n, so that the lacunarity of L is preserved when we insert
n into the set), and is red (since n ∈ {n} ⊆ L ∪ {n}). Thus, we obtain a map

insn : {lacunar subsets of [n− 2]} → {red lacunar subsets of [n]} ,
L 7→ L ∪ {n} .

It is easy to see (just as in the proof of Theorem 4.7.2 in Lecture 16) that
the map remn is an inverse of insn. Thus, the map insn has an inverse, i.e., is
bijective (by Theorem 4.5.7 in Lecture 15). Hence, we have found a bijection

from {lacunar subsets of [n− 2]} to {red lacunar subsets of [n]}

(namely, insn). Therefore, by the bijection principle, we have

|{lacunar subsets of [n− 2]}| = |{red lacunar subsets of [n]}| .
2This is the same argument that has been used in the proof of Theorem 4.7.2 (in Lecture 16).
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In other words,

(# of lacunar subsets of [n− 2]) = (# of red lacunar subsets of [n]) .

Thus,

(# of red lacunar subsets of [n]) = (# of lacunar subsets of [n− 2]) = ℓn−2

(by the definition of ℓn−2).
Altogether,

ℓn = (# of red lacunar subsets of [n])︸ ︷︷ ︸
=ℓn−2

+ (# of green lacunar subsets of [n])︸ ︷︷ ︸
=ℓn−1

= ℓn−2 + ℓn−1 = ℓn−1 + ℓn−2.

This proves Claim 1.

Now we still need to prove (2). In other words, we need to prove that the two
sequences (ℓ−1, ℓ0, ℓ1, . . .) and ( f1, f2, f3, . . .) are identical. But at this point, this
is very easy: These two sequences

• have the same two starting entries ℓ−1 = f1 and ℓ0 = f2 (this can be easily
checked directly),

• and satisfy the same recursive equation: namely, each entry of either
sequence is the sum of the preceding two entries (since Claim 1 yields
ℓn = ℓn−1 + ℓn−2, whereas the definition of the Fibonacci numbers yields
fn+2 = fn+1 + fn).

Since a recursively defined sequence is uniquely determined by its starting
entries and its recursive equation, we thus conclude that the two sequences
(ℓ−1, ℓ0, ℓ1, . . .) and ( f1, f2, f3, . . .) are identical. Thus, (2) follows. This slightly
informal argument can be formalized as a straightforward strong induction3.

3Proof. Let us prove (2) by strong induction on n:
Base case: We have already checked that (2) holds for n = −1.
Induction step: Let n ≥ 0 be an integer. Assume (as the induction hypothesis) that the

claim (2) holds for each of −1, 0, 1, . . . , n− 1 instead of n. We must prove that (2) holds
for n as well, i.e., that we have ℓn = fn+2.

If n = 0, then this follows from the fact (observed above) that (2) holds for n = 0. It thus
remains to consider the case when n ̸= 0. So let us assume that n ̸= 0. Since n ≥ 0, we thus
obtain n ≥ 1, so that n− 1 ≥ 0 and n− 2 ≥ −1.

In particular, n− 1 ≥ 0 ≥ −1. Hence, our induction hypothesis yields that the claim (2)
holds for n− 1 instead of n. In other words, we have ℓn−1 = f(n−1)+2 = fn+1.

Also, our induction hypothesis yields that the claim (2) holds for n− 2 instead of n (since
n− 2 ≥ −1). In other words, we have ℓn−2 = f(n−2)+2 = fn.

Now, Claim 1 yields ℓn = ℓn−1︸︷︷︸
= fn+1

+ ℓn−2︸︷︷︸
= fn

= fn+1 + fn. But the recursive definition of the

Fibonacci sequence also yields fn+2 = fn+1 + fn. Comparing these two equalities, we find
ℓn = fn+2. In other words, (2) holds for n. This completes the induction step. Thus, (2) is
proved.
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Thus we have proved (2). In other words, we have proved Theorem 4.9.3
(because we have ℓn = (# of lacunar subsets of [n])).

4.9.4. Counting all k-element lacunar subsets of [n]

Let us now address the remaining question about lacunar subsets: counting
k-element lacunar subsets of [n] for given n and k.

Again, we start by asking SageMath for some data:

def is_lacunar(S): # test if the set S is lacunar
return all(i+1 not in S for i in S)

def num_lacs(n, k): # number of k-element lacunar subsets of [n]
return sum(1 for S in Subsets(n, k) if is_lacunar(S))

for n in range(10):
print("For n = " + str(n) + ", the numbers are " + \

str([num_lacs(n, k) for k in range(n+1)]))

We obtain the following table:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 0 1

n = 1 1 1

n = 2 1 2

n = 3 1 3 1

n = 4 1 4 3

n = 5 1 5 6 1

n = 6 1 6 10 4

n = 7 1 7 15 10 1

n = 8 1 8 21 20 5

n = 9 1 9 28 35 15 1

(where each entry is the # of lacunar k-element subsets of [n] for the correspond-
ing values of n and k, and where an empty box means that the corresponding
# is 0). The many 0’s are unsurprising (they are predicted by Proposition 4.9.2),
and likewise the values for k = 0 and k = 1 are clear (since every subset that
has size ≤ 1 is lacunar). But staring at the table for a bit longer reveals some-
thing subtler: It is a sheared Pascal’s triangle! For example, the n = 7 row
contains the numbers 1, 7, 15, 10, 1, which appear along a diagonal in Pascal’s
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triangle. All the entries are binomial coefficients, and a bit of work reveals the
exact formula:

Theorem 4.9.5. Let n ∈ Z and k ∈N be such that k ≤ n + 1. Then,

(# of k-element lacunar subsets of [n]) =
(

n + 1− k
k

)
.

For instance, for n = 7 and k = 3, this yields

(# of 3-element lacunar subsets of [7]) =
(

7 + 1− 3
3

)
=

(
5
3

)
= 10,

which agrees with our above table.
Note that the condition k ≤ n + 1 in Theorem 4.9.5 is needed. If k > n + 1,

then the # of k-element lacunar subsets of [n] is 0 (since a subset of [n] cannot
have more than n elements, let alone more than n+ 1 elements, and even less so

when it is lacunar), but the binomial coefficient
(

n + 1− k
k

)
is nonzero (since

the n + 1− k on its top is negative).
You can prove Theorem 4.9.5 by induction on n, using a similar red/green

coloring as in our above proof of Theorem 4.9.3 (and carefully checking that the
condition k ≤ n + 1 is satisfied whenever you apply the induction hypothesis4).
Such a proof can be found in [17f-hw2s, Exercise 3 (a)]5.

There is, however, a nicer proof, which proceeds by constructing a bijection

from {k-element lacunar subsets of [n]}
to {k-element subsets of [n + 1− k]} ,

and observing that the # of k-element subsets of [n + 1− k] is
(

n + 1− k
k

)
(by

Theorem 4.7.4 in Lecture 16). Such a proof has the advantage of not just proving
Theorem 4.9.5 but also explaining “why” it holds (at least if you consider it as
a given that binomial coefficients count k-element subsets).

This second proof rests upon a basic feature of finite sets of integers:

Proposition 4.9.6. Let k ∈ N. Let S be a k-element set of integers. Then,
there exists a unique k-tuple (s1, s2, . . . , sk) of integers satisfying

{s1, s2, . . . , sk} = S and s1 < s2 < · · · < sk.

4This necessitates a bit of casework.
5To be very pedantic: [17f-hw2s, Exercise 3 (a)] only states Theorem 4.9.5 in the case when

n ∈ N. But the remaining case is trivial (since k ≤ n + 1 leads to k = 0 when n is negative,
and thus we have to count 0-element subsets of an empty set, which is not a deep question).
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This proposition is just saying that if you are given a k-element set S of
integers, then there is a unique way to list the elements of S in increasing order
(with no repetitions). Intuitively, this is clear (just write down the smallest
element of S, then the second-smallest element, then the third-smallest, and so
on, until you run out of elements; it’s not like you have any other options!).
But intuition is not proof. Nevertheless, we will not stoop down to this low a
foundational level here6, and just take Proposition 4.9.6 for granted.

In connection with Proposition 4.9.6, we introduce a notation:

Convention 4.9.7. Let s1, s2, . . . , sk be some integers. Then, the notation
“{s1 < s2 < · · · < sk}” shall mean the set {s1, s2, . . . , sk} and additionally sig-
nify that the chain of inequalities s1 < s2 < · · · < sk holds.

Thus, for example, {2 < 4 < 5} is the set {2, 4, 5}, whereas the expression
{4 < 2 < 5} is meaningless.

Proposition 4.9.6 can now be restated as follows: If k ∈N, then any k-element
set of integers can be written in the form {s1 < s2 < · · · < sk} for a unique k-
tuple (s1, s2, . . . , sk) of integers.

We are now ready to prove Theorem 4.9.5:

Proof of Theorem 4.9.5. Let m := n + 1 − k. Then, m = n + 1 − k ≥ 0 (since
k ≤ n + 1), so that [m] is an m-element set. Also, m = n + 1− k = n− (k− 1),
so that m + (k− 1) = n.

Now, if S = {s1 < s2 < · · · < sk} is a k-element lacunar subset of [n], then
←−
S

shall mean the set

{si − (i− 1) | i ∈ [k]}
= {s1, s2 − 1, s3 − 2, . . . , sk − (k− 1)} .

This set
←−
S is obtained from S by the following process:

• Leave the smallest element of S unchanged.

• Decrease the second-smallest element of S by 1.

• Decrease the third-smallest element of S by 2.

• And so on, until eventually decreasing the largest (= k-th-smallest) ele-
ment of S by k− 1.

We refer to this process as the compression process, as it causes the elements
of S to come closer together (in such a way that the distance between any two

6A boring and detailed (but ultimately very simple) proof of Proposition 4.9.6 can be found
in [Grinbe20, proof of Theorem 2.46].
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“positionally adjacent” elements7 of S shrinks by 1). Consequently, we call the
resulting set

←−
S the compression of S. For example, if S = {3 < 5 < 9 < 11},

then
←−
S = {3 < 4 < 7 < 8}. Let us illustrate this example graphically:

3 5 9 11S

3 4 7 8←−
S

(note that each of the red arrows is slightly more horizontal than the previous
one).

We note the following properties of compression: If S = {s1 < s2 < · · · < sk}
is a k-element lacunar subset of [n], then its compression

←−
S is still a k-element

set (i.e., the compression process does not cause any two distinct elements to
“collide”) and can be written as

{s1 < s2 − 1 < s3 − 2 < · · · < sk − (k− 1)}

(since S is lacunar, so that any two “positionally adjacent” elements si and si+1
of S satisfy si < si+1 − 1 and thus si − (i− 1) < (si+1 − 1)− (i− 1) = si+1 − i).
Furthermore,

←−
S is a subset of [m] (because its smallest element is s1 ≥ 1 (since

s1 ∈ S ⊆ [n]), whereas its largest element is sk︸︷︷︸
≤n

(since sk∈S⊆[n])

− (k− 1) ≤ n −

(k− 1) = m). Thus, we can define a map

compress : {k-element lacunar subsets of [n]} → {k-element subsets of [m]} ,

S 7→ ←−S .

Conversely, if T = {t1 < t2 < · · · < tk} is a k-element subset of [m], then
−→
T

shall mean the set

{ti + (i− 1) | i ∈ [k]}
= {t1, t2 + 1, t3 + 2, . . . , tk + (k− 1)} .

This set
−→
T is obtained from T by the following process:

• Leave the smallest element of T unchanged.

7We call two elements i and j of S “positionally adjacent” if they satisfy i < j but there are
no other elements of S lying between them (i.e., there are no elements s ∈ S satisfying
i < s < j). For example, the elements 4 and 6 of the set {2, 4, 6, 8} are positionally adjacent,
but the elements 4 and 6 of the set {2, 3, 4, 5, 6} are not (since the element 5 lies between
them).
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• Increase the second-smallest element of T by 1.

• Increase the third-smallest element of T by 2.

• And so on, until eventually increasing the largest (= k-th-smallest) element
of T by k− 1.

We refer to this process as the expansion process, as it causes the elements
of T to drift further apart (in such a way that the distance between any two
“positionally adjacent” elements of T increases by 1). Consequently, we call the
resulting set

−→
T the expansion of T. For example, if T = {3 < 4 < 7 < 8}, then

−→
T = {3 < 5 < 9 < 11}. Let us illustrate this example graphically:

3 4 7 8T

3 5 9 11−→
T

(note that each of the red arrows is slightly more horizontal than the previous
one).

We note the following properties of expansion: If T = {t1 < t2 < · · · < tk} is
a k-element subset of [m], then its expansion

−→
T is still a k-element set (i.e., the

expansion process does not cause any two distinct elements to “collide”) and
can be written as

{t1 < t2 + 1 < t3 + 2 < · · · < tk + (k− 1)}

(since each i ∈ [k− 1] satisfies ti < ti+1 and thus ti + (i− 1) < ti+1 + (i− 1) <
ti+1 + i). Furthermore,

−→
T is a subset of [n] (because its smallest element is t1 ≥

1 (since t1 ∈ T ⊆ [m]), whereas its largest element is tk︸︷︷︸
≤m

(since tk∈T⊆[m])

+ (k− 1) ≤

m + (k− 1) = n), and is lacunar (since the expansion process ensures that
the distance between any two “positionally adjacent” elements of T has been
increased by 1 in

−→
T , so they can no longer be consecutive integers). Thus, we

can define a map

expand : {k-element subsets of [m]} → {k-element lacunar subsets of [n]} ,

T 7→ −→T .
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It is easy to see that the map expand is an inverse of compress 8. Hence,
the map compress has an inverse, i.e., is bijective. Thus, it is a bijection from
{k-element lacunar subsets of [n]} to {k-element subsets of [m]}. Hence, the
bijection principle yields

(# of k-element lacunar subsets of [n])
= (# of k-element subsets of [m])

=

(
m
k

) (
by Theorem 4.7.4 in Lecture 16

(applied to m and [m] instead of n and S)

)
=

(
n + 1− k

k

)
(since m = n + 1− k) .

This proves Theorem 4.9.5.

4.9.5. A corollary

Combining Theorem 4.9.5 with Theorem 4.9.3, we obtain a curious formula for
the Fibonacci numbers in terms of binomial coefficients:

Corollary 4.9.8. Let n ∈N. Then, the Fibonacci number fn+1 is

fn+1 =
n

∑
k=0

(
n− k

k

)
=

(
n− 0

0

)
+

(
n− 1

1

)
+ · · ·+

(
n− n

n

)
.

8In fact, each k-element subset T of [m] satisfies compress (expand T) = T, because if we write
T as T = {t1 < t2 < · · · < tk}, then

expand T = expand ({t1 < t2 < · · · < tk}) = {t1 < t2 + 1 < t3 + 2 < · · · < tk + (k− 1)}

and therefore

compress (expand T) = compress ({t1 < t2 + 1 < t3 + 2 < · · · < tk + (k− 1)})
= {t1 < (t2 + 1)− 1 < (t3 + 2)− 2 < · · · < (tk + (k− 1))− (k− 1)}
= {t1 < t2 < · · · < tk} = T.

A similar argument shows that any k-element lacunar subset S of [n] satisfies
expand (compress S) = S.
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Example 4.9.9. For n = 5, Corollary 4.9.8 says that

f6 =

(
6− 0

0

)
+

(
6− 1

1

)
+

(
6− 2

2

)
+

(
6− 3

3

)
+

(
6− 4

4

)
+

(
6− 5

5

)
+

(
6− 6

6

)
=

(
6
0

)
+

(
5
1

)
+

(
4
2

)
+

(
3
3

)
+

(
2
4

)
+

(
1
5

)
+

(
0
6

)
= 1 + 5 + 6 + 1 + 0 + 0 + 0,

which is indeed true. Of course, the three summands that are 0 could just

as well be excluded from the sum, and the sum
n
∑

k=0

(
n− k

k

)
in Corollary

4.9.8 could be replaced by the smaller sum
⌊n/2⌋

∑
k=0

(
n− k

k

)
(since

(
n− k

k

)
= 0

whenever ⌊n/2⌋ < k ≤ n); but I find it more important to keep the sum
simple than to minimize the number of its addends.

Proof of Corollary 4.9.8. It is easy to see that any subset of [n− 1] has a size
between 0 and n (inclusive)9. (Actually, it cannot have size n unless n = 0,
but I find it more convenient to nevertheless include the “unnecessary” value
n among the theoretically possible sizes; I am not saying that all of these sizes
actually are achievable.)

Now, from n ∈ N, we obtain n ≥ 0, thus n− 1 ≥ −1. Hence, Theorem 4.9.3
(applied to n− 1 instead of n) yields

(# of lacunar subsets of [n− 1]) = f(n−1)+2 = fn+1.

9Proof. Let T be a subset of [n− 1]. We must show that T has a size between 0 and n (inclusive).
In other words, we must prove that |T| ∈ {0, 1, . . . , n}.

However, we have T ⊆ [n− 1] ⊆ [n] and therefore |T| ≤ |[n]| (by Theorem 4.6.7 (a) in
Lecture 16, applied to S = [n]). Hence, |T| ≤ |[n]| = n. Since |T| is a nonnegative integer,
we thus obtain |T| ∈ {0, 1, . . . , n}, as desired.
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Therefore,

fn+1 = (# of lacunar subsets of [n− 1])
= (# of lacunar subsets of [n− 1] having size 0)

+ (# of lacunar subsets of [n− 1] having size 1)
+ (# of lacunar subsets of [n− 1] having size 2)
+ · · ·
+ (# of lacunar subsets of [n− 1] having size n)(

by the sum rule (Theorem 4.6.6 in Lecture 6), since any
subset of [n− 1] has a size between 0 and n (inclusive)

)
=

n

∑
k=0

(# of lacunar subsets of [n− 1] having size k)︸ ︷︷ ︸
=(# of k-element lacunar subsets of [n−1])=

(
(n− 1) + 1− k

k

)
(by Theorem 4.9.5, applied to n−1 instead of n

(since k≤n=(n−1)+1))

=
n

∑
k=0

(
(n− 1) + 1− k

k

)
=

n

∑
k=0

(
n− k

k

)
(since (n− 1) + 1 = n)

=

(
n− 0

0

)
+

(
n− 1

1

)
+ · · ·+

(
n− n

n

)
.

This proves Corollary 4.9.8.

4.9.6. The domino tilings connection

At the beginning of Chapter 2, I asked for the # of ways to tile a 2× 15-rectangle
with dominos (i.e., rectangles of size 1× 2 or 2× 1), such as the following:

.

Of course, the same problem can be asked for n×m-rectangles for arbitrary n
and m, but we shall focus on the case n = 2 (that is, rectangle of height 2). (See
[19fco, §1.1] for some references on the much harder cases when n > 2.)

It turns out that the ways to tile a 2× m-rectangle with dominos are in bi-
jection with the lacunar subsets of [m− 1]. Indeed, if T is a way to tile the
2×m-rectangle, then we let C (T ) be the set of all columns (counted from the
left) in which horizontal dominos of T start (where we say that a horizontal
domino is a domino of height 1 and width 2, and it starts in the leftmost of the
two columns that it spans). For example, if T is the tiling shown above, then
C (T ) = {2, 6, 8, 11}. Now, it is not hard to see (but not completely obvious; see
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[19fco, §1.4.4, Second proof of Proposition 1.4.9]) that the map

{ways to tile a 2×m-rectangle with dominos} → {lacunar subsets of [m− 1]} ,
T 7→ C (T )

is a bijection, and therefore the bijection principle yields

(# of ways to tile a 2×m-rectangle with dominos)
= (# of lacunar subsets of [m− 1]) = fm+1

(by Theorem 4.9.3, applied to n = m− 1). In particular, for m = 15, we obtain

(# of ways to tile a 2× 15-rectangle with dominos) = f15+1 = f16 = 987.

4.10. Compositions and weak compositions

Two other useful objects to count are compositions and weak compositions.

4.10.1. Compositions

How many ways are there to write the integer 5 as a sum of 3 positive integers,
if the order matters? Since 5 and 3 are not very large numbers, we can just list
all these ways:

5 = 2 + 2 + 1 = 2 + 1 + 2 = 1 + 2 + 2
= 3 + 1 + 1 = 1 + 3 + 1 = 1 + 1 + 3.

So there are 6 such ways.
What if we replace 5 and 3 by arbitrary nonnegative integers n and k ? So

we want to count the k-tuples (a1, a2, . . . , ak) of positive integers satisfying a1 +
a2 + · · ·+ ak = n. These tuples have a name:

Definition 4.10.1. (a) If n ∈ N, then a composition of n shall mean a tuple
(i.e., finite list) of positive integers whose sum is n.

(b) If n, k ∈ N, then a composition of n into k parts shall mean a k-tuple
of positive integers whose sum is n.

(The word “composition” here is completely unrelated to the notion of
composition of two functions.)

Example 4.10.2. (a) The compositions of 5 into 3 parts are

(2, 2, 1) , (2, 1, 2) , (1, 2, 2) ,
(3, 1, 1) , (1, 3, 1) , (1, 1, 3) .

These are exactly the 6 ways we found above (but written as 3-tuples).
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(b) The compositions of 3 are

(1, 1, 1) , (2, 1) , (1, 2) , (3) .

(c) The only composition of 0 is the empty list (), which is a 0-tuple. It is a
composition into 0 parts.

Let us now count compositions of n into k parts. (Later, we will count all
compositions of n.) Again, the answer turns out to be a binomial coefficient:

Theorem 4.10.3. Let n, k ∈N. Then,

(# of compositions of n into k parts) =
(

n− 1
n− k

)
. (3)

If n > 0, then we furthermore have

(# of compositions of n into k parts) =
(

n− 1
k− 1

)
. (4)

Proof sketch. The proof is straightforward in the case when n = 0. (Indeed,
if n = 0, then the only composition of n is the empty list (), and this is a
composition of n into 0 parts. Thus, if n = 0, then we have

(# of compositions of n into k parts) =

{
1, if k = 0;
0, if k ̸= 0;

but we also have(
n− 1
n− k

)
=

(
0− 1
0− k

)
=

(
−1
−k

)
=

{
1, if k = 0;
0, if k ̸= 0

(check this!)

in this case, and we obtain (3) by comparing these two equalities. Thus, The-
orem 4.10.3 holds for n = 0 (because the equality (4) is claimed for n > 0
only).)

Thus, we only need to consider the case when n ̸= 0. Let us thus focus on
this case. From n ̸= 0, we obtain n ≥ 1 (since n ∈N), thus n− 1 ∈N.

For any composition a = (a1, a2, . . . , ak) of n into k parts, we define the partial
sum set C (a) to be the set

{a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ ak−1}
= {a1 + a2 + · · ·+ ai | i ∈ [k− 1]} .

This set C (a) consists of all the “partial sums” a1 + a2 + · · · + ai of the sum
a1 + a2 + · · ·+ ak, except for the empty partial sum a1 + a2 + · · ·+ a0 (which is 0
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by definition) and the full sum a1 + a2 + · · ·+ ak (which is n, since a is a compo-
sition of n). Thus, all elements of C (a) are integers between 0 and n (exclusive)
(since they have more addends than the empty partial sum, but fewer than the
full sum10). In other words, C (a) is a subset of {1, 2, . . . , n− 1} = [n− 1].

We can visualize the partial sum set C (a) of a composition a = (a1, a2, . . . , ak)
as follows: The interval [0, n]R := {x ∈ R | 0 ≤ x ≤ n} on the real line has
length n. If we split this interval into blocks of lengths a1, a2, . . . , ak (from left
to right), then the elements of C (a) are precisely the endpoints of these blocks
(i.e., the points at which one block ends and the next begins), except for the
leftmost endpoint 0 and the rightmost endpoint n. See this picture:

a1 a2 · · · ak

0 s1 s2 · · · sk−1 n

(on which the partial sums a1 + a2 + · · ·+ ai are denoted by si).
It is thus easy to see that if a is a composition of n into k parts, then C (a) is

a (k− 1)-element subset of [n− 1]. Thus, we obtain a map

C : {compositions of n into k parts} → {(k− 1) -element subsets of [n− 1]} ,
a 7→ C (a) .

Furthermore, it is not hard to see that this map C has an inverse11, and thus is

10and since all these addends are positive (because a composition has positive entries)
11This is easiest to see using the visual description of C (a) that we showed above: Given a

(k− 1)-element subset I of [n− 1], we can use the elements of I to subdivide the interval
[0, n]R into k blocks. The lengths of these blocks (listed from left to right) form a composition
a of n into k parts, and this composition satisfies C (a) = I. Moreover, this composition is
the only one with this property. Thus, the map that sends each (k− 1)-element subset I
of [n− 1] to the corresponding composition a (whose construction we just explained) is an
inverse map of C.

Rigorously, this can be restated as follows: For each (k− 1)-element subset I =
{i1 < i2 < · · · < ik−1} of [n− 1] (where we are using Convention 4.9.7 again), we can define
a composition

A (I) := (i1 − i0, i2 − i1, i3 − i2, . . . , ik−1 − ik−2, ik − ik−1) ,

where we set i0 := 0 and ik := n. Then, the map

A : {(k− 1) -element subsets of [n− 1]} → {compositions of n into k parts} ,
I 7→ A (I)

is easily seen to be an inverse map of C. A detailed proof can be found in [19f-hw0s,
solution to Exercise 1 (b)] (except that the latter solution does not pay attention to the size
of the subset).
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a bijection. Hence, the bijection principle yields

(# of compositions of n into k parts)
= (# of (k− 1) -element subsets of [n− 1])

=

(
n− 1
k− 1

) (
by Theorem 4.7.4 in Lecture 16

(applied to k− 1, n− 1, and [n− 1] instead of k, n and S)

)
=

(
n− 1

(n− 1)− (k− 1)

) (
by the symmetry of Pascal’s triangle

(Theorem 2.5.7 in Lecture 6), since n− 1 ∈N

)
=

(
n− 1
n− k

)
(since (n− 1)− (k− 1) = n− k) .

Thus, both (3) and (4) have been proved. This completes the proof of Theorem
4.10.3.

We can also count all compositions of a given n:

Theorem 4.10.4. Let n be a positive integer. Then, the # of all compositions
of n is 2n−1.

Proof sketch. This can be proved using a similar argument as in Theorem 4.10.3
(but now we need to count all subsets of [n− 1]). See [19f-hw0s, Exercise 1 (b)]
for details.

Note that Theorem 4.10.4 does not hold for n = 0 (since 0 has 1 composition,

but 20−1 =
1
2

).

4.10.2. Weak compositions

One particularly useful variant of compositions are the so-called weak compo-
sitions. These are defined as tuples of nonnegative integers (i.e., they differ
from compositions in that their entries are allowed to be 0). In other words:

Definition 4.10.5. (a) If n ∈ N, then a weak composition of n shall mean a
tuple of nonnegative integers whose sum is n.

(b) If n, k ∈ N, then a weak composition of n into k parts shall mean a
k-tuple of nonnegative integers whose sum is n.

For instance:

• The weak compositions of 2 into 3 parts are

(1, 1, 0) , (1, 0, 1) , (0, 1, 1) ,
(2, 0, 0) , (0, 2, 0) , (0, 0, 2) .
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• The weak compositions of 2 into 2 parts are

(2, 0) , (1, 1) , (0, 2) .

(Note that any composition is a weak composition, but there are usually
more weak compositions than that.)

• The weak compositions of 1 are all tuples of the form 0, 0, . . . , 0︸ ︷︷ ︸
any number of zeroes

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
any number of zeroes

 .

Here, “any number” allows for the possibility of “none”, and in particular
the 1-tuple (1) is a weak composition of 1.

Counting all weak compositions of a given n is no longer possible, since
there are infinitely many (as we just saw). But we can still count all weak
compositions of a given n into k parts for a given k.

Theorem 4.10.6. Let n, k ∈N. Then,

(# of weak compositions of n into k parts) =
(

n + k− 1
n

)
.

Moreover, if n + k > 0 (that is, if n and k are not both 0), then

(# of weak compositions of n into k parts) =
(

n + k− 1
k− 1

)
.

Proof. We shall deduce this from Theorem 4.10.3.
Indeed, if b is a nonnegative integer, then b + 1 is a positive integer. Thus,

if (a1, a2, . . . , ak) is a weak composition of n into k parts, then the k-tuple
(a1 + 1, a2 + 1, . . . , ak + 1) is a composition of n + k into k parts (since the
sum of its entries is

(a1 + 1) + (a2 + 1) + · · ·+ (ak + 1) = (a1 + a2 + · · ·+ ak)︸ ︷︷ ︸
=n

(since (a1,a2,...,ak) is a weak composition of n)

+ k

= n + k

). Thus, the map

{weak compositions of n into k parts} → {compositions of n + k into k parts} ,
(a1, a2, . . . , ak) 7→ (a1 + 1, a2 + 1, . . . , ak + 1)
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is well-defined. Similarly, the map

{compositions of n + k into k parts} → {weak compositions of n into k parts} ,
(a1, a2, . . . , ak) 7→ (a1 − 1, a2 − 1, . . . , ak − 1)

is well-defined. These two maps are clearly inverses of each other (since adding
1 and subtracting 1 are inverse operations). Therefore, they are bijections. The
bijection principle thus yields

(# of weak compositions of n into k parts)
= (# of compositions of n + k into k parts)

=

(
n + k− 1
n + k− k

)
(by (3), applied to n + k instead of n)

=

(
n + k− 1

n

)
.

If n + k > 0, then n + k ≥ 1 and thus n + k− 1 ∈N, so that this becomes

(# of weak compositions of n into k parts)

=

(
n + k− 1

n

)
=

(
n + k− 1

(n + k− 1)− n

) (
by the symmetry of Pascal’s triangle

(Theorem 2.5.7 in Lecture 6), since n + k− 1 ∈N

)
=

(
n + k− 1

k− 1

)
in this case.

Thus, Theorem 4.10.6 is fully proved.

References

[17f-hw2s] Darij Grinberg, UMN Fall 2017 Math 4707 & Math 4990 homework set
#2 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/17f/
hw2s.pdf

[19fco] Darij Grinberg, Enumerative Combinatorics: class notes (Drexel Fall
2019 Math 222 notes), 11 September 2022.
http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf

[19f-hw0s] Darij Grinberg, Drexel Fall 2019 Math 222 homework set #0 with solu-
tions, http://www.cip.ifi.lmu.de/~grinberg/t/19fco/hw0s.pdf

[Grinbe20] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 15
September 2022, arXiv:2008.09862v3.

[Math222] Darij Grinberg, Math 222: Enumerative Combinatorics, Fall 2022.
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19fco/hw0s.pdf
https://arxiv.org/abs/2008.09862v3
https://arxiv.org/abs/2008.09862v3
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/

	An introduction to enumeration
	Lacunar subsets
	Definition
	The maximum size of a lacunar subset
	Counting all lacunar subsets of [ n] 
	Counting all k-element lacunar subsets of [ n] 
	A corollary
	The domino tilings connection

	Compositions and weak compositions
	Compositions
	Weak compositions



