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Math 221 Winter 2023, Lecture 11: Elementary
number theory

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

3. Elementary number theory

3.6. Prime numbers (cont’d)

3.6.6. p-valuations (cont’d)

Recall the last definition from Lecture 10:

Definition 3.6.8. Let p be a prime.

(a) Let n be a nonzero integer. Then, vp (n) shall denote the largest m ∈ N

such that pm | n. (Thus, vp (n) is the number of times that you can divide n
by p without getting a non-integer.)

This number vp (n) will be called the p-valuation (or the p-adic valuation)
of n.

(b) In order to have vp (n) defined for all integers n (as opposed to just for
nonzero n), we also define vp (0) to be ∞ (because 0 can be divided by p an
arbitrary number of times without any changes). This symbol ∞ is not an
actual number, but we shall pretend that it behaves like a number at least in
some regards. In particular, we will eventually add or compare it to other
numbers. In doing so, we shall follow the rules that

k + ∞ = ∞ + k = ∞ for all k ∈ Z;
∞ + ∞ = ∞;

k < ∞ and ∞ > k for all k ∈ Z;
max {∞, k} = max {k, ∞} = ∞ for all k ∈ Z;
min {∞, k} = min {k, ∞} = k for all k ∈ Z.

Thus, ∞ acts like a “mythical number that is larger than any actual number”.
We can keep up this charade as long as we only add and compare, but never
subtract ∞ from anything (since 1 + ∞ = ∞ would turn into 1 = 0 if you
subtracted ∞).

Here are some examples:

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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• We have

v3 (99) = 2
(

since 32 | 99 but 33 ∤ 99
)

;

v3 (98) = 0
(

since 30 | 98 but 31 ∤ 98
)

;

v3 (96) = 1
(

since 31 | 96 but 32 ∤ 96
)

;

v3 (0) = ∞.

We can restate the definition of vp (n) in yet another way: If p is a prime and
n is a positive integer, then vp (n) is the number of zeroes at the end of the
base-p representation of the number n. For example, the base-2 representation
of the number 344 is 101011000, which has three zeroes at its end (the other
zeroes don’t count!), so that v2 (344) = 3.

Note that Definition 3.6.8 can be generalized to any positive integer p > 1
(prime or not). But most of the useful properties of p-valuations hold only
when p is prime.

Let us now discuss some basic properties of p-valuations. We begin with a
lemma that is almost trivial, but quite helpful:

Lemma 3.6.9. Let p be a prime. Let i ∈ N and n ∈ Z. Then, pi | n if and only
if vp (n) ≥ i.

Proof. If n = 0, then this is clear (because in this case, we have both pi | 0 = n
and vp (n) = vp (0) = ∞ ≥ i).

It remains to deal with the case n ̸= 0. In this case, vp (n) is defined as the
largest m ∈ N such that pm | n. Thus, in this case, we have pi | pvp(n) | n
whenever i ≤ vp (n), whereas pi ∤ n whenever i > vp (n). In other words, we
have pi | n if and only if vp (n) ≥ i. Thus, Lemma 3.6.9 is proved in this case as
well.

Recall some standard notations: For any two numbers x and y, we let min {x, y}
denote the smaller of these two numbers, and we let max {x, y} denote the
larger of these two numbers. More generally, if S is a set of numbers, then
min S means the smallest element of S (if it exists), and max S means the largest
element of S (if it exists).

Now, we can state a bunch of rather important properties of p-valuations:

Theorem 3.6.10 (basic properties of p-valuations). Let p be a prime. Then:
(a) We have vp (ab) = vp (a) + vp (b) for any a, b ∈ Z.
(b) We have vp (a + b) ≥ min

{
vp (a) , vp (b)

}
for any a, b ∈ Z.

(c) We have vp (1) = 0.
(d) We have vp (p) = 1.
(e) We have vp (q) = 0 for any prime q ̸= p.
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Proof. (a) Let a, b ∈ Z. We must prove that vp (ab) = vp (a) + vp (b).
If a = 0, then this is saying that ∞ = ∞ + vp (b), which follows from our

rules for ∞ (specifically, from the rules saying that ∞ + k = ∞ for all k ∈ Z and
that ∞ + ∞ = ∞). Likewise, we can prove our claim if b = 0.

It thus remains to handle the case when neither a nor b is 0. So let us con-
sider this case. Since a and b are nonzero, the numbers vp (a) and vp (b) are
nonnegative integers. Let us call give them names: We set

n = vp (a) and m = vp (b) .

Thus, pn | a and pm | b. In other words, there are integers x and y such that
a = pnx and b = pmy. Consider these x and y.

If we had p | x, then we would readily obtain pn+1 | a (because p | x entails
that x = pz for some integer z, and thus this integer z must satisfy a = pn x︸︷︷︸

=pz

=

pn pz = pn+1z) and therefore vp (a) ≥ n + 1 (by Lemma 3.6.9, applied to n + 1
and a instead of i and n), which would contradict vp (a) = n < n + 1. Thus, we
cannot have p | x. For similar reasons, we cannot have p | y.

However, multiplying a = pnx with b = pmy, we obtain ab = pnx · pmy =
pn+mxy, and thus pn+m | ab. Therefore, vp (ab) ≥ n + m (by Lemma 3.6.9,
applied to ab and n + m instead of n and i).

Now, we shall show that this inequality is an equality. To do so, we must
show that pn+m+1 ∤ ab.

To prove this, we assume the contrary. Thus, pn+m+1 | ab = pn+mxy. Divid-
ing both sides of this divisibility by pn+m, we obtain p | xy.

However, the prime divisor separation theorem (Theorem 3.6.5 in Lecture
10) says that if the prime number p divides a product of two integers, then it
must divide one of these two integers. Therefore, from p | xy, we obtain either
p | x or p | y (since x and y are integers). But this contradicts the fact that we
cannot have p | x and we cannot have p | y. This contradiction shows that our
assumption must have been wrong. Thus, we have shown that pn+m+1 ∤ ab.

So we know that pn+m | ab but pn+m+1 ∤ ab. In other words, the largest
i ∈ N that satisfies pi | ab is n + m. In other words, vp (ab) = n + m (by the
definition of vp (ab)). Since n = vp (a) and m = vp (b), we can rewrite this as
vp (ab) = vp (a) + vp (b). This proves Theorem 3.6.10 (a).

(b) Let a, b ∈ Z. We must prove that vp (a + b) ≥ min
{

vp (a) , vp (b)
}

.
If min

{
vp (a) , vp (b)

}
= ∞, then this inequality boils down to ∞ ≥ ∞ (be-

cause min
{

vp (a) , vp (b)
}
= ∞ yields vp (a) = ∞ and vp (b) = ∞, so that a = 0

and b = 0, and thus a + b = 0 as well, which in turn leads to vp (a + b) = ∞),
which is true.

Thus, it remains to handle the case when min
{

vp (a) , vp (b)
}
̸= ∞. Thus,

min
{

vp (a) , vp (b)
}
∈ N. Set k = min

{
vp (a) , vp (b)

}
. Then, k ≤ vp (a) and

k ≤ vp (b). From k ≤ vp (a), we obtain vp (a) ≥ k and thus pk | a (by Lemma
3.6.9, applied to n = a and i = k). Similarly, pk | b. Thus, a and b are multiples
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of pk. Hence, their sum a + b is also a multiple of pk. In other words, pk | a + b.
Using Lemma 3.6.9, this in turn entails vp (a + b) ≥ k = min

{
vp (a) , vp (b)

}
.

Thus, Theorem 3.6.10 (b) is proved.

(c) This follows from p0 = 1 | 1 and p1 = p ∤ 1.

(d) This follows from p1 = p | p and p2 ∤ p.

(e) Let q ̸= p be a prime. Then, the only positive divisors of q are 1 and q
(since q is a prime). Hence, p is not a positive divisor of q (since p ̸= 1 and
p ̸= q). Therefore, p is not a divisor of q (since p is positive). In other words,
p ∤ q. Now, from p0 = 1 | q and p1 = p ∤ q, we obtain vp (q) = 0. This proves
Theorem 3.6.10 (e).

Corollary 3.6.11. Let p be a prime. Then,

vp (a1a2 · · · ak) = vp (a1) + vp (a2) + · · ·+ vp (ak)

for any k integers a1, a2, . . . , ak.

Proof. Induct on k. The base case uses vp (1) = 0. The induction step relies on
Theorem 3.6.10 (a).

Note that Theorem 3.6.10 (a) would fail if p were allowed to be non-prime.
For instance, v4 (2 · 2) = 1 but v4 (2) + v4 (2) = 0 + 0 = 0.

Let us take a closer look at 2-valuations. The sequence

(v2 (1) , v2 (2) , v2 (3) , v2 (4) , v2 (5) , . . .)
= (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . .)

is called the ruler sequence, as it resembles the pattern of markings on a ruler
(a small marking at every inch, a slightly larger marking every 2 inches, an
even larger marking every 4 inches, and so on). It tends to appear every once
in a while in seemingly unexpected places. Case in point:

Proposition 3.6.12. Let n ∈ N.
In Section 1.1 (in Lecture 1), we proposed a strategy for solving the Tower

of Hanoi puzzle with n disks. Let Sn be this strategy.
Let k ∈ {1, 2, . . . , 2n − 1}. Then, the k-th move of the strategy Sn moves the

(v2 (k) + 1)-th smallest disk.

Thus, in particular, every odd move (i.e., the 1-st, the 3-rd, the 5-th, and so
on moves) moves the smallest disk (since v2 (k) = 0 when k is odd).

The proof of Proposition 3.6.12 relies on the following lemma about p-valuations:

https://en.wikipedia.org/wiki/Ruler_function
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Lemma 3.6.13. Let p be a prime. Let m ∈ N. Let k be an integer such that
pm ∤ k. Then, vp (pm + k) = vp (k).

Proof of Lemma 3.6.13. From pm ∤ k, we obtain k ̸= 0, so that vp (k) ̸= ∞. In other words,
vp (k) ∈ N.

Let i = vp (k). Thus, i ∈ N (since vp (k) ∈ N), and the definition of vp (k) shows that
pi | k and pi+1 ∤ k.

If we had m ≤ i, then we would have pm | pi | k, which would contradict pm ∤ k.
Thus, we cannot have m ≤ i. In other words, we have i < m. Thus, i ≤ m − 1 (since i
and m are integers), so that i + 1 ≤ m. Therefore, pi+1 | pm.

From the definition of p-valuations, it follows easily that vp (pm) = m and vp (−pm) =
m.

The numbers pm and k are multiples of pi (since pi | pi+1 | pm and pi | k). Thus, their
sum pm + k is a multiple of pi as well. In other words, pi | pm + k.

On the other hand, let us show that pi+1 ∤ pm + k. Indeed, assume the contrary. Thus,
pi+1 | pm + k.

Therefore, the numbers pm + k and −pm are multiples of pi+1 (since pi+1 | pm + k
and pi+1 | pm | pm · (−1) = −pm). Hence, their sum (pm + k) + (−pm) is a multiple of
pi+1 as well. In other words, k is a multiple of pi+1 (since (pm + k) + (−pm) = k). But
this contradicts pi+1 ∤ k.

This contradiction shows that our assumption was wrong. Hence, pi+1 ∤ pm + k is
proved.

Combining pi | pm + k with pi+1 ∤ pm + k, we see that i is the largest j ∈ N satisfying
pj | pm + k. In other words, i = vp (pm + k). Hence, vp (pm + k) = i = vp (k). This
proves Lemma 3.6.13.

Proof of Proposition 3.6.12. We will prove Proposition 3.6.12 by induction on n:
Base case: If n = 0, then there exists no k ∈ {1, 2, . . . , 2n − 1} (since the set {1, 2, . . . , 2n − 1} ={

1, 2, . . . , 20 − 1
}
= {1, 2, . . . , 0} is empty in this case). Thus, in this case, Proposition

3.6.12 is vacuously true (i.e., true because it makes a claim about non-existing objects).
Induction step: Let n be a positive integer. Assume (as the induction hypothesis) that

Proposition 3.6.12 holds for n − 1 instead of n. We must now prove that Proposition
3.6.12 holds for n as well.

So let k ∈ {1, 2, . . . , 2n − 1} be arbitrary. We must prove that the k-th move of the
strategy Sn moves the (v2 (k) + 1)-th smallest disk.

Lemma 3.6.13 (applied to 2, n − 1 and k − 2n−1 instead of p, m and k) yields

v2

(
2n−1 + k − 2n−1

)
= v2

(
k − 2n−1

)
,

so that

v2

(
k − 2n−1

)
= v2

2n−1 + k − 2n−1︸ ︷︷ ︸
=k

 = v2 (k) . (1)

Recall that the strategy Sn was defined recursively: It consists of first performing the
strategy Sn−1 (but with pegs 2 and 3 swapped), then moving the largest disk (from peg
1 to peg 3), and then again performing the strategy Sn−1 (but now with pegs 1 and 2
swapped). Since strategy Sn−1 requires 2n−1 − 1 moves in total, we thus conclude that
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1. the first 2n−1 − 1 moves of strategy Sn are identical with the corresponding moves
of strategy Sn−1 (except that pegs 2 and 3 are swapped);

2. the 2n−1-th move of strategy Sn consists in moving the largest disk;

3. the next 2n−1 − 1 moves of strategy Sn (that is, the moves numbered 2n−1 +
1, 2n−1 + 2, . . . , 2n − 1) are identical with the moves of strategy Sn−1 (except
that pegs 1 and 2 are swapped).

Therefore, the k-th move of the strategy Sn

• moves the same disk as the k-th move of Sn−1 if k < 2n−1;

• moves the largest disk if k = 2n−1;

• moves the same disk as the
(
k − 2n−1)-th move of Sn−1 if k > 2n−1.

We thus distinguish between the following three cases:
Case 1: We have k < 2n−1.
Case 2: We have k = 2n−1.
Case 3: We have k > 2n−1.
Let us first consider Case 1. In this case, we have k < 2n−1. Thus, the k-th move of

the strategy Sn moves the same disk as the k-th move of Sn−1 (according to the first of
the three bullet points above). But our induction hypothesis shows that the latter move
moves the (v2 (k) + 1)-th smallest disk (since k ∈ {1, 2, . . . , 2n − 1} and k < 2n−1 entails
k ∈

{
1, 2, . . . , 2n−1 − 1

}
). Thus, the former move also moves the (v2 (k) + 1)-th smallest

disk. So the claim we are trying to prove has been proved in Case 1.
Let us now consider Case 2. In this case, we have k = 2n−1. Thus, the k-th move of

the strategy Sn moves the largest disk (according to the second of the three bullet points
above), i.e., the n-th smallest disk (since there are n disks in total, so the largest disk
is the n-th smallest). However, we have k = 2n−1 and thus v2 (k) = v2

(
2n−1) = n − 1,

so that n = v2 (k) + 1. Thus, the k-th move of the strategy Sn moves the (v2 (k) + 1)-th
smallest disk (because we have shown that it moves the n-th smallest disk). So the
claim we are trying to prove has been proved in Case 2.

Let us finally consider Case 3. In this case, we have k > 2n−1. Thus, the k-th move of
the strategy Sn moves the same disk as the

(
k − 2n−1)-th move of Sn−1 (according to the

third of the three bullet points above). But our induction hypothesis (applied to k− 2n−1

instead of k) yields that the latter move moves the
(
v2

(
k − 2n−1)+ 1

)
-th smallest disk

(since k ∈ {1, 2, . . . , 2n − 1} and k > 2n−1 entails k − 2n−1 ∈
{

1, 2, . . . , 2n−1 − 1
}

quite
easily1). Thus, the former move moves the

(
v2

(
k − 2n−1)+ 1

)
-th smallest disk as well.

In view of (1), we can restate this as follows: The former move moves the (v2 (k) + 1)-th
smallest disk. So the claim we are trying to prove has been proved in Case 3.

Thus, we have proved our claim in all three Cases 1, 2 and 3. In other words, we
have shown that the k-th move of the strategy Sn moves the (v2 (k) + 1)-th smallest
disk. Hence, we have proved that Proposition 3.6.12 holds for n. This completes the
induction step. Thus, Proposition 3.6.12 is proved.

1Here are the details: From k ∈ {1, 2, . . . , 2n − 1} ⊆ Z and k > 2n−1, we see immediately
that k − 2n−1 is a positive integer. Furthermore, from k ∈ {1, 2, . . . , 2n − 1}, we obtain
k ≤ 2n − 1 = 2 · 2n−1 − 1 = 2n−1 + 2n−1 − 1, so that k − 2n−1 ≤ 2n−1 − 1. Since k − 2n−1 is a
positive integer, this results in k − 2n−1 ∈

{
1, 2, . . . , 2n−1 − 1

}
.
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The ruler sequence also has an appearance in data storage:

Remark 3.6.14. A “Tower of Hanoi” backup scheme is a backup scheme
where you have several backup drives for your system. Every odd day, you
back up to the first drive. Every even day that is not divisible by 4, you back
up to the second drive. Every day that is divisible by 4 but not by 8, you
back up to the third drive. And so on. Thus, on the k-th day, you back up
to the (v2 (k) + 1)-th drive. This scheme ensures that at every point in time,
you have both a fresh backup and several levels of older backups available.

(Of course, I only said “day” for simplicity; you can use any unit of time
instead. Of course, the first drive will see the largest traffic and therefore will
wear out and need replacement.)

What is the p-valuation of a factorial n! ? There turns out to be a nice formula
for this:2

Theorem 3.6.15 (de Polignac’s formula). Let p be a prime. Let n ∈ N. Then,

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

=
(

n//p1
)
+

(
n//p2

)
+

(
n//p3

)
+ · · · .

Proof sketch. First, these sums are infinite sums. Why do they make sense?3

Because we can discard all the addends that are zero, and then only finitely
many nonzero addends remain. For instance, if p = 2 and n = 13, then⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

=

⌊
13
21

⌋
+

⌊
13
22

⌋
+

⌊
13
23

⌋
+ · · ·

= ⌊6.5⌋+ ⌊3.25⌋+ ⌊1.625⌋+ ⌊0.8125⌋+ ⌊0.40625⌋+ · · ·
= 6 + 3 + 1 + 0 + 0 + 0 + 0 + 0 + · · ·︸ ︷︷ ︸

These are zeroes, thus don’t contribute to the sum

= 6 + 3 + 1 = 10,

which is a well-defined (finite) value. More generally, for any prime p and any

n ∈ N, the sum
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · has only finitely many nonzero

2See Definition 3.3.12 and Definition 3.3.2 (in Lecture 8) for the notations we are using here.
The meaning of the infinite sums will be discussed in the proof of the theorem.

3It is trivially easy to concoct an infinite sum that does not make sense: for instance, 1 + 1 +

1 + · · · , or
1
1
+

1
2
+

1
3
+ · · · . In general, “infinite” operations in mathematics do not usually

exist unless their existence has been justified.

https://en.wikipedia.org/wiki/Backup_rotation_scheme
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addends (because for every i ≥ n, we have pi ≥ pn > n and thus 0 ≤ n
pi < 1, so

that
⌊

n
pi

⌋
= 0), and thus becomes a finite sum once we discard all its addends

that are zero; but a finite sum obviously has a well-defined value.
Moreover, for every positive integer d, you have

⌊n
d

⌋
= n//d (by Proposition

3.3.13 in Lecture 8). Thus, the two infinite sums⌊
n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · and(

n//p1
)
+

(
n//p2

)
+

(
n//p3

)
+ · · ·

are equal.
It remains to prove that these two sums equal vp (n!). In other words, we

must prove that

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · . (2)

We can prove this by induction on n:
The base case (n = 0) boils down to 0 = 0 + 0 + 0 + · · · , which is true.
For the induction step, we proceed from n− 1 to n. So we fix a positive integer

n, and we assume (as our induction hypothesis) that

vp ((n − 1)!) =
⌊

n − 1
p1

⌋
+

⌊
n − 1

p2

⌋
+

⌊
n − 1

p3

⌋
+ · · · , (3)

and we set out to prove that

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · . (4)

We first compare the left hand sides: Let k = vp (n). We know that n! =
(n − 1)! · n, and therefore

vp (n!) = vp ((n − 1)! · n)
= vp ((n − 1)!) + vp (n)︸ ︷︷ ︸

=k

(by Theorem 3.6.10 (a))

= vp ((n − 1)!) + k.

In other words, the LHS4 of (4) equals the LHS of (3) plus k.
Now, we shall show that the RHSs of the two equations differ by k as well.
The main trick is to observe the following:

4The word “LHS” means “left hand side”.
The word “RHS” means “right hand side”.
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Claim 1: Let d be a positive integer. Then:

(a) If d ∤ n, then
⌊n

d

⌋
=

⌊
n − 1

d

⌋
.

(b) If d | n, then
⌊n

d

⌋
=

⌊
n − 1

d

⌋
+ 1.

Claim 1 is Corollary 3.3.17 from Lecture 9, so we need not prove it again.
Now, let k = vp (n). Then, for each i ∈ {1, 2, . . . , k}, we have pi | pk | n (since

k = vp (n)) and therefore⌊
n
pi

⌋
=

⌊
n − 1

pi

⌋
+ 1 (by Claim 1 (b)) .

On the other hand, for each i ∈ {k + 1, k + 2, k + 3, . . .}, we have pi ∤ n (since
i > k = vp (n)) and thus⌊

n
pi

⌋
=

⌊
n − 1

pi

⌋
(by Claim 1 (a)) .

These two equalities together yield⌊
n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · ·

=

(⌊
n − 1

p1

⌋
+ 1

)
+

(⌊
n − 1

p2

⌋
+ 1

)
+ · · ·+

(⌊
n − 1

pk

⌋
+ 1

)
+

⌊
n − 1
pk+1

⌋
+

⌊
n − 1
pk+2

⌋
+

⌊
n − 1
pk+3

⌋
+ · · ·

=

(⌊
n − 1

p1

⌋
+

⌊
n − 1

p2

⌋
+

⌊
n − 1

p3

⌋
+ · · ·

)
+ k.

In other words, the RHS of (4) equals the RHS of (3) plus k.
But previously, we have shown the same for the LHSs. Thus, the equality (4)

is just the equality (3) with each side increased by k. Since (3) holds (by the
induction hypothesis), it thus follows that (4) also holds. In other words,

vp (n!) =
⌊

n
p1

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ · · · .

But this completes the induction step, and thus Theorem 3.6.15 is proven.
(For another proof of Theorem 3.6.15, see [19s, Exercise 2.17.2 (c)] or [21f5,

Theorem 5.3.1].)

Theorem 3.6.15 is known as de Polignac’s formula or Legendre’s formula.
Various uses of this formula can be found in [21f5].
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3.6.7. Prime factorization

We are now ready to prove one of the most important properties of primes: the
fact that every positive integer can be uniquely decomposed into a product of
some primes. For instance,

200 = 2 · 100 = 2 · 2 · 50 = 2 · 2 · 5 · 10 = 2 · 2 · 5 · 2 · 5︸ ︷︷ ︸
a product of primes

.

The word “uniquely” means here that any two ways of decomposing a given
positive integer n into a product of primes are equal up to reordering the fac-
tors. For example, we can also decompose 200 as 5 · 2 · 2 · 5 · 2, but this is the
same product with the factors in a different order.

Let us state this fact in full generality. First, we introduce a name for these
decompositions:

Definition 3.6.16. Let n be a positive integer. A prime factorization of n
means a finite list (p1, p2, . . . , pk) of primes (not necessarily distinct) such
that

n = p1p2 · · · pk.

Thus, (2, 2, 5, 2, 5) and (5, 2, 2, 5, 2) are prime factorizations of 200. Another
such is (2, 2, 2, 5, 5). There are more (soon we will perhaps see how many), but
all of them contain the number 2 thrice and the number 5 twice (and no other
numbers), just as we said.

Let us state this as a general claim:

Theorem 3.6.17 (Fundamental Theorem of Arithmetic). Let n be a positive
integer. Then:

(a) There exists a prime factorization of n.

(b) This prime factorization is unique up to reordering its entries. In other
words, if (p1, p2, . . . , pk) and (q1, q2, . . . , qℓ) are two prime factorizations of
n, then (q1, q2, . . . , qℓ) can be obtained from (p1, p2, . . . , pk) by reordering the
entries.

(c) Let (p1, p2, . . . , pk) be a prime factorization of n. Let p be any prime.
Then, the number of times that p appears in the list (p1, p2, . . . , pk) (in other
words, the number of i ∈ {1, 2, . . . , k} satisfying pi = p) is vp (n).

Proof. (a) This is Theorem 1.9.6 in Lecture 4.

(c) By the definition of a prime factorization, we have n = p1p2 · · · pk. Thus,

vp (n) = vp (p1p2 · · · pk)

= vp (p1) + vp (p2) + · · ·+ vp (pk) (5)
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(by Corollary 3.6.11).
The right hand side of this equality is a sum of k addends. Each of these

addends has the form vp (pi) for some i ∈ {1, 2, . . . , k}. Each such addend
vp (pi) equals 1 if pi = p (by Theorem 3.6.10 (d)) and equals 0 if pi ̸= p (by
Theorem 3.6.10 (e)).

Thus, our sum vp (p1) + vp (p2) + · · ·+ vp (pk) has an addend equal to 1 for
each i ∈ {1, 2, . . . , k} that satisfies pi = p, and an addend equal to 0 for each i
that doesn’t.

Obviously, the addends that are equal to 0 do not affect the sum. Hence, the
sum equals the number of addends equal to 1. In other words, the sum equals
the number of i ∈ {1, 2, . . . , k} that satisfy pi = p.

In view of (5), we can restate this as follows: vp (n) equals the number of
i ∈ {1, 2, . . . , k} that satisfy pi = p. In other words, vp (n) equals the number of
times that p appears in the list (p1, p2, . . . , pk). This proves Theorem 3.6.17 (c).

(b) This follows easily from part (c). Namely:
Let (p1, p2, . . . , pk) and (q1, q2, . . . , qℓ) be two prime factorizations of n. We

must prove that (q1, q2, . . . , qℓ) can be obtained from (p1, p2, . . . , pk) by reorder-
ing the entries.

Each prime p appears vp (n) times in the list (p1, p2, . . . , pk) (by part (c)),
and appears vp (n) times in the list (q1, q2, . . . , qℓ) (similarly). Thus, each prime
p appears the same number of times in either list. Since both lists consist
of primes, this shows that the two lists contain the same numbers the same
number of times. Therefore, (q1, q2, . . . , qℓ) can be obtained from (p1, p2, . . . , pk)
by reordering the entries. This proves Theorem 3.6.17 (b).

(We have used the intuitively obvious fact that if two lists of numbers contain
the same numbers the same number of times, then one can be obtained from
the other by reordering. You are free to trust your intuition on this one; for a
formal proof, see [19s, Lemma 2.13.20].)

Theorem 3.6.17 (a) shows that every positive integer n has a prime factoriza-
tion. Finding this prime factorization is a classical hard computational problem.
(Quite a few encryption standards rely on its hardness.)

3.7. Least common multiples

In §3.4 (Lecture 9), we have studied greatest common divisors in some detail.
Let me now briefly discuss least common multiples: a kind of counterpart
to greatest common divisors. The greatest common divisor of two positive
integers a and b is usually smaller than both a and b; in contrast, the least
common multiple is usually larger than both.

Definition 3.7.1. Let a and b be two integers.
(a) The common multiples of a and b are the integers that are divisible by

a and simultaneously divisible by b.

https://en.wikipedia.org/wiki/Integer_factorization
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(b) The least common multiple (aka the lowest common multiple, or just
the lcm) of a and b is defined as follows:

• If a and b are nonzero, then it is the smallest positive common multiple
of a and b.

• Otherwise, it is 0.

It is denoted by lcm (a, b).

Some examples:

• We have lcm (3, 4) = 12.

• We have lcm (6, 4) = 12.

• We have lcm (6, 8) = 24.

• We have lcm (2, 4) = 4.

• We have lcm (0, 5) = 0.

• We have lcm (−2, 3) = 6.

Note that the lcm of two positive integers is a fairly well-known concept:
When you bring two fractions (of integers) to their lowest common denomina-
tor, this lowest common denominator is actually the lcm of the denominators
of the fractions.

Here are some properties of lcms:

Theorem 3.7.2. Let a and b be two integers. Then:
(a) The lcm of a and b exists.
(b) We have lcm (a, b) ∈ N.
(c) We have lcm (a, b) = lcm (b, a).
(d) We have a | lcm (a, b) and b | lcm (a, b).
(e) We have lcm (−a, b) = lcm (a, b) and lcm (a,−b) = lcm (a, b).

Proof sketch. Easy consequences of the definitions. (For part (a), observe that
two nonzero integers a and b have at least one positive common multiple –
namely, |ab|.)

Here is a counterpart to the universal property of the gcd (Theorem 3.4.8 in
Lecture 9):

Theorem 3.7.3 (universal property of the lcm). Let a, b, m ∈ Z. Then, we have
the equivalence

(a | m and b | m) ⇐⇒ (lcm (a, b) | m) .
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In other words, the common multiples of two integers a and b are precisely
the multiples of lcm (a, b).

Proof sketch. (See [19s, Theorem 2.11.7] for a detailed proof.)
⇐=: If lcm (a, b) | m, then a | m (since Theorem 3.7.2 (d) yields a | lcm (a, b) |

m) and b | m (similarly). Thus, the “⇐=” direction of the desired equivalence
is proved.
=⇒: Assume that a | m and b | m. We must show that lcm (a, b) | m.
If one of a and b is 0, then this is easy (in fact, let’s say that a = 0; then,

0 = a | m, thus m = 0, and therefore lcm (a, b) | 0 = m). Hence, we need only
to consider the case when a and b are nonzero.

In this case, set ℓ = lcm (a, b). Recall that ℓ is defined as the smallest positive
common multiple of a and b. Hence, ℓ is a positive integer and is a multiple of
a and of b. Let q and r be the quotient and the remainder of the division of m
by ℓ. Thus,

q ∈ Z and r ∈ {0, 1, . . . , ℓ− 1} and m = qℓ+ r

(by the definition of quotient and remainder). From r ∈ {0, 1, . . . , ℓ− 1}, we
obtain r < ℓ.

From m = qℓ+ r, we obtain r = m− qℓ. Since both m and ℓ are multiples of a,
we thus conclude that r is a multiple of a as well. Similarly, r is a multiple of b.
Thus, r is a common multiple of a and b. But ℓ is the smallest positive common
multiple of a and b. If r was positive, then r would contradict this minimality
(because r < ℓ). Hence, r cannot be positive. Since r ∈ {0, 1, . . . , ℓ− 1}, we
conclude that r must be 0. Hence, m = qℓ+ r︸︷︷︸

=0

= qℓ, so that ℓ | m. In other

words, lcm (a, b) | m (since ℓ = lcm (a, b)). This proves the “=⇒” direction of
the desired equivalence.

The gcd and the lcm of two integers are connected to each other by the
following formula:

Theorem 3.7.4. Let a and b be two integers. Then,

gcd (a, b) · lcm (a, b) = |ab| .

Proof sketch. (See [19s, Theorem 2.11.6] for a detailed proof.)
First, dispose of the case when a or b is 0. In the remaining case, argue that

ab
gcd (a, b)

is an integer and is a common multiple of a and b. By Theorem

3.7.3, this entails that lcm (a, b) | ab
gcd (a, b)

, so that gcd (a, b) · lcm (a, b) | ab. On

the other hand, argue (again using Theorem 3.7.3) that
ab

lcm (a, b)
is an integer
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and divides gcd (a, b) (because it divides each of a and b). Thus conclude that
ab | gcd (a, b) · lcm (a, b). Now, recall that two integers x and y that satisfy x | y
and y | x must satisfy |x| = |y|.

Both gcds and lcms have easily computable p-valuations:

Theorem 3.7.5. Let p be a prime. Let a and b be two integers. Then,

vp (gcd (a, b)) = min
{

vp (a) , vp (b)
}

and

vp (lcm (a, b)) = max
{

vp (a) , vp (b)
}

.

Proof sketch. This is a particular case of [19s, Proposition 5.2.15]. Anyway, the
proof is a nice exercise in using the universal properties of the gcd and the lcm
(and the definition of p-valuation), so you should do it yourself.

Theorem 3.7.5 gives an easy way to compute gcd (a, b) and lcm (a, b) if you
know prime factorizations of two positive integers a and b. For example, know-
ing that 18 = 2 · 32 and 12 = 22 · 3, we obtain

gcd (18, 12) = 2 · 3 = 6 and

lcm (18, 12) = 22 · 32 = 36.

If you don’t know the prime factorizations of a and b, the quickest way to
find lcm (a, b) is by using the Euclidean algorithm to find gcd (a, b) first, and
then solving the equality gcd (a, b) · lcm (a, b) = |ab| for lcm (a, b). This gives5

lcm (a, b) =
|ab|

gcd (a, b)
=

∣∣∣∣ a
gcd (a, b)

· b
∣∣∣∣ .

Gcds and lcms can be defined for multiple numbers (not just for two num-
bers). Their properties are mostly analogous to the case of two numbers, with
some exceptions (i.e., the formula gcd (a, b) · lcm (a, b) = |ab| does not general-
ize to gcd (a, b, c) · lcm (a, b, c) = |abc|, but rather to gcd (a, b, c) · lcm (bc, ca, ab) =
|abc|). See [19s, §2.11] for more details.

3.8. Sylvester’s xa + yb theorem (or the Chicken McNugget
theorem)

We come to a rather curious (although not overly important) topic in elemen-
tary number theory: the N-linear combinations of two positive integers.

For this entire section, we let a and b be two positive integers.

5Here we are assuming that a and b are nonzero. If a or b is 0, then lcm (a, b) is just 0.
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Definition 3.8.1. (a) A Z-linear combination (short: Z-LC) of a and b will
mean a number of the form

xa + yb with x, y ∈ Z.

In other words, it means a number of cents that you can pay with a-cent coins
and b-cent coins if you can get change.

(b) An N-linear combination (short: N-LC) of a and b will mean a number
of the form

xa + yb with x, y ∈ N.

In other words, it means a number of cents that you can pay with a-cent coins
and b-cent coins without getting change.

Thus, Proposition 1.9.7 (in Lecture 5) is saying that any integer n ≥ 8 is an
N-LC of 3 and 5. Moreover, as we saw just above that proposition, the numbers
0, 3, 5, 6 are N-LCs of 3 and 5 as well, whereas the numbers 1, 2, 4, 7 are not.
Thus the complete list of all N-LCs of 3 and 5 is

0, 3, 5, 6, 8, 9, 10, . . .︸ ︷︷ ︸
all integers n≥8

.

This should prompt us to study N-LCs of a and b in the general case. We
shall begin with the Z-LCs, however, since they are much easier to describe.

Note that the N-LCs of a and b are always ≥ 0 (because if x, y ∈ N, then
x︸︷︷︸
≥0

a︸︷︷︸
>0

+ y︸︷︷︸
≥0

b︸︷︷︸
>0

≥ 0), whereas the Z-LCs of a and b can have any sign.

Clearly, any N-LC of a and b is a Z-LC of a and b. However, a Z-LC of a and
b doesn’t have to be an N-LC of a and b, even if it is ≥ 0. For example, 1 is a
Z-LC of 3 and 5 (since 1 = 2 · 3 + (−1) · 5), but not an N-LC of 3 and 5.

We can easily describe the Z-LCs of a and b:

Proposition 3.8.2. The Z-LCs of a and b are exactly the multiples of gcd (a, b).

Proof. We must prove the following two claims:

Claim 1: Any Z-LC of a and b is a multiple of gcd (a, b).

Claim 2: Any multiple of gcd (a, b) is a Z-LC of a and b.

But both claims are easy:

Proof of Claim 1. Let n be a Z-LC of a and b. We must show that n is a multiple of
gcd (a, b).

Indeed, n is a Z-LC of a and b, and thus has the form n = xa + yb for some x, y ∈ Z.
Consider these x, y. We have gcd (a, b) | a | xa and gcd (a, b) | b | yb. In other
words, both numbers xa and yb are multiples of gcd (a, b). Hence, their sum xa + yb
is a multiple of gcd (a, b) as well. In other words, n is a multiple of gcd (a, b) (since
n = xa + yb). This proves Claim 1.



Lecture 11, version February 16, 2023 page 16

Proof of Claim 2. Let n be a multiple of gcd (a, b). We must prove that n is a Z-LC of a
and b.

Bezout’s theorem (Theorem 3.4.5 in Lecture 9) says that there exist two integers x and
y such that gcd (a, b) = xa + yb. Consider these x and y. However, n is a multiple of
gcd (a, b); in other words, there exists an integer c such that n = gcd (a, b) · c. Consider
this c. Now,

n = gcd (a, b)︸ ︷︷ ︸
=xa+yb

· c = (xa + yb) · c = xac + ybc = (cx) a + (cy) b.

This shows that n is a Z-LC of a and b (since cx and cy are integers). This proves Claim
2.

Combining Claim 1 with Claim 2, we conclude that the Z-LCs of a and b are exactly
the multiples of gcd (a, b). Thus, Proposition 3.8.2 is proved.

Now we move on to the N-LCs. What are they? Can we describe them any
better than by their definition?

Let g = gcd (a, b). Then, g divides each of a and b, so that the numbers
a
g

and
b
g

are positive integers. We can simplify our problem by replacing a and b

with
a
g

and
b
g

. Clearly, the N-LCs of a and b are just the N-LCs of
a
g

and
b
g

,

multiplied by g. As we know (Theorem 3.5.12 in Lecture 10), the two integers
a
g

and
b
g

are coprime. Thus, understanding the N-LCs of the original integers a

and b is equivalent to understanding the N-LCs of the coprime integers
a
g

and

b
g

.

Hence, it suffices to solve our problem in the case when a and b are coprime.
In this case, Proposition 3.8.2 shows that every integer is a Z-LC of a and
b (since every integer is a multiple of 1 = gcd (a, b)). The N-LCs are more
interesting. We have already listed the N-LCs of 3 and 5 above; let us now give
a somewhat more complicated example: The N-LCs of 5 and 9 are

0, 5, 9, 10, 14, 15, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, . . .︸ ︷︷ ︸
all integers n≥32

.

Note that every integer n ≥ 32 is an N-LC of 3 and 5. Among the first 32
nonnegative integers 0, 1, . . . , 31, exactly half (that is, 16) are N-LCs of 5 and 9.
A similar phenomenon can be seen in our above example with 3 and 5, except
that 32 is replaced by 8.

This phenomenon generalizes:
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Theorem 3.8.3 (Sylvester’s two-coin theorem, or Chicken McNugget theo-
rem). Assume that the two positive integers a and b are coprime. Then:

(a) Every integer n > ab − a − b is an N-LC of a and b.

(b) The number ab − a − b is not an N-LC of a and b.

(c) Among the first (a − 1) (b − 1) nonnegative integers 0, 1, . . . , ab − a −
b, exactly half are N-LCs of a and b.

(d) Let n ∈ Z. Then, exactly one of the two numbers n and ab − a − b − n
is an N-LC of a and b.

This theorem was discovered by J. J. Sylvester in 1884, as a side-product of
his work in invariant theory. Its more recent moniker is due to the McDonald’s
Chicken McNuggets, which used to be sold in packs of 9 or 20, prompting
mathematicians to wonder what numbers of nuggets could be bought.

The theorem stops short of explicitly answering which of the first (a − 1) (b − 1)
nonnegative integers are N-LCs of a and b. There is no “easy formula” for this
answer. But Theorem 3.8.3 (a) gives you all the information you need to com-
pute all the N-LCs of a and b, since the first (a − 1) (b − 1) nonnegative integers
can be checked one by one.

The particular case of Theorem 3.8.3 (a) where a = p and b = p + 1 was
Exercise 4 on homework set #3.

Before we prove Theorem 3.8.3, we show a basic lemma:

Lemma 3.8.4. Assume that the two positive integers a and b are coprime. Let
n ∈ Z. Then, there exist two integers u and v such that 0 ≤ u ≤ b − 1 and
ua + vb = n.

Proof of Lemma 3.8.4. Bezout’s theorem (Theorem 3.4.5 in Lecture 9) says that there exist
two integers x and y such that gcd (a, b) = xa + yb. Consider these x and y. Thus,
xa + yb = gcd (a, b) = 1 (since a and b are coprime).

Recall that b is a positive integer. Thus, division with remainder by b is well-defined
(see Definition 3.3.2 in Lecture 8 for the terminology).

Let q = (nx) //b and r = (nx)%b. In other words, let q and r be the quotient and
the remainder of the division of nx by b. By the definition of quotient and remainder,
we thus have

q ∈ Z and r ∈ {0, 1, . . . , b − 1} and nx = qb + r.

From r ∈ {0, 1, . . . , b − 1}, we see that r is an integer satisfying 0 ≤ r ≤ b − 1.
On the other hand, nxa + nyb = n (xa + yb)︸ ︷︷ ︸

=1

= n, so that

n = nx︸︷︷︸
=qb+r

a + nyb = (qb + r) a + nyb

= qba + ra + nyb = ra + qba + nyb︸ ︷︷ ︸
=(qa+ny)b

= ra + (qa + ny) b.
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In other words, ra + (qa + ny) b = n.
Altogether, we now know that r and qa+ ny are two integers satisfying 0 ≤ r ≤ b− 1

and ra+ (qa + ny) b = n. Thus, there exist two integers u and v such that 0 ≤ u ≤ b− 1
and ua + vb = n (namely, u = r and v = qa + ny). This proves Lemma 3.8.4.

Proof of Theorem 3.8.3. We shall first prove part (b) and then part (d). The other two
parts will follow quite easily from these.

(b) Assume the contrary. Thus, ab − a − b is an N-LC of a and b. In other words,
there exist integers x and y such that ab − a − b = xa + yb. Consider these x and y.

From ab − a − b = xa + yb, we obtain ab = xa + yb + a + b = (x + 1) a + (y + 1) b =
a (x + 1) + b (y + 1). Hence,

b (y + 1) = ab − a (x + 1) = a · (b − (x + 1))︸ ︷︷ ︸
an integer

.

This shows that a | b (y + 1). Thus, the coprime removal theorem (Theorem 3.5.6 in

Lecture 10) yields that a | y + 1 (since a is coprime to b). Therefore,
y + 1

a
is an integer

(since a ̸= 0). Since y︸︷︷︸
≥0

+ 1 ≥ 1 > 0 and a > 0, this integer
y + 1

a
is furthermore

positive, and thus is ≥ 1. In other words, y + 1 ≥ a. Hence, y ≥ a − 1. Now,

ab − a − b = x︸︷︷︸
≥0

a + y︸︷︷︸
≥a−1

b ≥ 0a + (a − 1) b = ab − b.

Subtracting ab − a − b from both sides of this inequality, we obtain 0 ≥ a, which con-
tradicts the positivity of a. This contradiction shows that our assumption was false.
Thus, Theorem 3.8.3 (b) is proved.

(d) Let m = ab − a − b − n. Hence, n + m = ab − a − b. Thus, n + m is not an N-LC
of a and b (since Theorem 3.8.3 (b) shows that ab − a − b is not an N-LC of a and b).

We shall now prove the following two claims:

Claim 1: At least one of the two numbers n and m is an N-LC of a and b.

Claim 2: At most one of the two numbers n and m is an N-LC of a and b.

Proof of Claim 1. Lemma 3.8.4 shows that there exist two integers u and v such that
0 ≤ u ≤ b − 1 and ua + vb = n. Consider these u and v. Now,

(b − 1 − u) a + (−v − 1) b = ba − a − ua − vb − b
= ba︸︷︷︸

=ab

−a − b − (ua + vb)︸ ︷︷ ︸
=n

= ab − a − b − n = m (6)

(by the definition of m). We are in one of the following two cases:
Case 1: We have v ≥ 0.
Case 2: We have v < 0.
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Let us first consider Case 1. In this case, we have v ≥ 0. Thus, v ∈ N. Also, u ∈ N

(since 0 ≤ u). Recall that ua + vb = n, so that n = u︸︷︷︸
∈N

a + v︸︷︷︸
∈N

b. This shows that n is

an N-LC of a and b. Thus, at least one of the two numbers n and m is an N-LC of a
and b. So we have proved Claim 1 in Case 1.

Let us next consider Case 2. In this case, we have v < 0. Hence, −v > 0, so that
−v ≥ 1 (since −v is an integer) and therefore −v− 1 ≥ 0. Thus, −v− 1 ∈ N. Moreover,
from u ≤ b − 1, we obtain b − 1 − u ≥ 0, so that b − 1 − u ∈ N. However, (6) yields

m = (b − 1 − u)︸ ︷︷ ︸
∈N

a + (−v − 1)︸ ︷︷ ︸
∈N

b.

This shows that m is an N-LC of a and b. Thus, at least one of the two numbers n and
m is an N-LC of a and b. So we have proved Claim 1 in Case 2.

Thus, Claim 1 holds in each of Cases 1 and 2. The proof of Claim 1 is therefore
complete.

Proof of Claim 2. Assume the contrary. Thus, both numbers n and m are N-LCs of a
and b. Therefore, we can write n as n = xa + yb for some x, y ∈ N (since n is an N-LC
of a and b). Furthermore, we can write m as m = za + wb for some z, w ∈ N (since m is
an N-LC of a and b). Consider these x, y, z, w. Now, adding the equalities n = xa + yb
and m = za + wb together, we obtain

n + m = (xa + yb) + (za + wb) = (x + z)︸ ︷︷ ︸
∈N

a + (y + w)︸ ︷︷ ︸
∈N

b.

This shows that n + m is an N-LC of a and b. This contradicts the fact that n + m is not
an N-LC of a and b. This contradiction shows that our assumption was wrong. Hence,
Claim 2 is proved.

Combining Claim 1 with Claim 2, we see that exactly one of the two numbers n
and m is an N-LC of a and b. In other words, exactly one of the two numbers n and
ab − a − b − n is an N-LC of a and b (since m = ab − a − b − n). This proves Theorem
3.8.3 (d).

(a) Let n > ab − a − b. Then, the integer ab − a − b − n is negative, and thus cannot
be an N-LC of a and b (since any N-LC of a and b is ≥ 0). However, Theorem 3.8.3 (d)
yields that exactly one of the two numbers n and ab − a − b − n is an N-LC of a and b.
Since ab − a − b − n cannot be an N-LC of a and b, we thus conclude that n is an N-LC
of a and b. This proves Theorem 3.8.3 (a).

(c) Consider the following table of integers:

0 1 2 · · · · · · · · · ab − a − b − 1 ab − a − b

ab − a − b ab − a − b − 1 ab − a − b − 2 · · · · · · · · · 1 0

(whose first row is listing the numbers 0, 1, 2, . . . , ab − a − b in increasing order, while
the second row is listing the same numbers in decreasing order). This table has ab −
a − b + 1 = (a − 1) (b − 1) many columns.
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Each column of this table contains the numbers n and ab − a − b − n for some n ∈
{0, 1, . . . , ab − a − b}. Thus, each column of this table contains exactly one N-LC of a
and b (by Theorem 3.8.3 (d)). Hence, in total, exactly (a − 1) (b − 1) entries of our table
are N-LCs of a and b (since our table has (a − 1) (b − 1) many columns). Since our
table contains each element of the set {0, 1, . . . , ab − a − b} exactly twice, this entails

that exactly
(a − 1) (b − 1)

2
elements of this set are N-LCs of a and b. In other words,

among the elements of the set {0, 1, . . . , ab − a − b}, exactly half are N-LCs of a and
b. But this is precisely the claim of Theorem 3.8.3 (c). Thus, Theorem 3.8.3 (c) is
proved.

Theorem 3.8.3 is one of the deepest results we will see in this course, but it
is only the beginning of a theory! See the Wikipedia page for “Coin problem”
for more general (and trickier) questions, such as describing the N-LCs of three
integers a, b, c. See also the slides of Drew Armstrong’s talk at FPSAC 2017 for
deep connections to algebraic combinatorics (and a visual proof different from
ours).

References

[19s] Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019 Math
4281 notes), 29 June 2019.
http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf

[21f5] Darij Grinberg, Math 235 Fall 2021, Worksheet 5: p-valuations, 29 Decem-
ber 2021.
https://www.cip.ifi.lmu.de/~grinberg/t/21f/lec5.pdf

https://en.wikipedia.org/wiki/Coin_problem
https://www.math.miami.edu/~armstrong/Talks/RCC_FPSAC_17.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/21f/lec5.pdf

	Elementary number theory
	Prime numbers (cont'd)
	p-valuations (cont'd)
	Prime factorization

	Least common multiples
	Sylvester's xa+yb theorem (or the Chicken McNugget theorem)


