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Math 221 Winter 2023, Lecture 10: Elementary
number theory

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

3. Elementary number theory

3.4. Greatest common divisors (cont’d)

Last time, we proved two important properties of gcds:

Theorem 3.4.5 (Bezout’s theorem for integers). Let a and b be two integers.
Then, there exist two integers x and y such that

gcd (a, b) = xa + yb.

Theorem 3.4.8 (universal property of the gcd). Let a, b, m ∈ Z. Then, we have
the equivalence

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) .

We note that Theorem 3.4.8 is commonly used in the “=⇒” direction (since
the “⇐=” direction is trivial). That is, the following fact is used most of the
time:

Corollary 3.4.9 (universal property of the gcd, forward direction). Let
a, b, m ∈ Z. If m | a and m | b, then m | gcd (a, b).

Proof. This is the “=⇒” direction of Theorem 3.4.8.

3.4.6. Factoring out a common factor from a gcd

The following theorem has an “intuitively obvious” feel, but its proof is not as
simple as you might suspect:

Theorem 3.4.10. Let s, a, b ∈ Z. Then,

gcd (sa, sb) = |s| · gcd (a, b) .

This is saying that when two integers have a common factor s, then this
common factor can be pulled out of their gcd. (The caveat is, of course, that the
common factor must be replaced by its absolute value, since a gcd cannot be
negative by definition.)

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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Proof of Theorem 3.4.10. Let

g = gcd (a, b) and h = gcd (sa, sb) .

Thus, we must prove that h = |s| · g. Note that h and g are nonnegative (because
Proposition 3.4.3 (a) from Lecture 9 shows that gcds are always nonnegative).
Thus, h = |h| and g = |g|, so that |s| · g = |s| · |g| = |sg| (since |x| · |y| = |xy|
for any two real numbers x and y).

Our goal is to prove that h = |s| · g. Since h = |h| and |s| · g = |sg|, this
amounts to proving that |h| = |sg|. So this is our goal now.

One good way to prove that two integers p and q satisfy |p| = |q| is by
showing that p | q and q | p. Indeed, from p | q and q | p, it follows that
|p| = |q| (by Proposition 3.1.4 (c) in Lecture 7).

Thus, in order to prove that |h| = |sg|, it will suffice to show that h | sg and
sg | h. Now, let us do this.

• Proof of sg | h: We have g = gcd (a, b) | a. Multiplying both sides by s, we
thus obtain sg | sa 1. Similarly, sg | sb. Hence, Corollary 3.4.9 (applied to
sg, sa and sb instead of m, a and b) yields sg | gcd (sa, sb). In other words,
sg | h (since h = gcd (sa, sb)).

• First proof of h | sg: If s = 0, then the claim h | sg is obvious (since
s︸︷︷︸
=0

g = 0 = h · 0). Thus, let us consider the case when s ̸= 0.

We have just showed that sg | h, but we also clearly have s | sg. Thus,

s | sg | h. Since s ̸= 0, this entails that
h
s
∈ Z (by Proposition 3.1.4 (d) in

Lecture 7, applied to s and h instead of a and b).

This integer
h
s

satisfies s · h
s
= h = gcd (sa, sb) | sa. Dividing both sides by

s, we thus obtain
h
s
| a 2. Similarly,

h
s
| b. Hence, Corollary 3.4.9 (applied

to m =
h
s

) yields
h
s
| gcd (a, b). In other words,

h
s
| g (since g = gcd (a, b)).

Multiplying both sides by s, we thus obtain s · h
s
| sg. In other words,

h | sg. Thus, h | sg is proved.

• Second proof of h | sg: We have h = gcd (sa, sb) | sa. In other words, sa =
hu for some integer u. Similarly, sb = hv for some integer v. Consider
these integers u and v.

1“Multiplying both sides by s” means using the following simple fact: If two integers x and y
satisfy x | y, then sx | sy.

2“Dividing both sides by s” means using the following simple fact: If two integers x and y
satisfy sx | sy, then x | y. (Note that this relies on s ̸= 0.)
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However, Bezout’s theorem (Theorem 3.4.5) shows that there exist two
integers x and y such that gcd (a, b) = xa + yb. Consider these x and y.

Now, g = gcd (a, b) = xa + yb, so that

sg = s (xa + yb) = sxa+ syb = sa︸︷︷︸
=hu

x+ sb︸︷︷︸
=hv

y = hux+ hvy = h (ux + vy)︸ ︷︷ ︸
an integer

.

This again proves that h | sg.

We have now proved that h | sg (proved in two different ways) and sg | h.
Hence, as explained above, we obtain |h| = |sg|. As we also explained above,
this completes our proof of Theorem 3.4.10.

3.5. Coprime integers

3.5.1. Definition and examples

Greatest common divisors are at their most useful when they are 1. This is
called “coprimality”:

Definition 3.5.1. Two integers a and b are said to be coprime (or relatively
prime) if gcd (a, b) = 1.

Remark 3.5.2. This is a symmetric relation: If a and b are coprime, then b
and a are coprime (since gcd (b, a) = gcd (a, b)).

Example 3.5.3. (a) An integer n is coprime to 2 if and only if n is odd. Indeed,
we know that gcd (n, 2) is a divisor of 2 and is a nonnegative integer (since
any gcd is a nonnegative integer). Thus, gcd (n, 2) must be either 1 or 2 (since
the only nonnegative divisors of 2 are 1 and 2). Now:

• If gcd (n, 2) = 2, then n is even (since 2 = gcd (n, 2) | n).

• If gcd (n, 2) = 1, then n is odd (because otherwise, 2 would be a com-
mon divisor of n and 2, but this cannot happen when the greatest com-
mon divisor of n and 2 is 1).

(b) An integer n is coprime to 3 if and only if n is not divisible by 3. (This
can be proved just as part (a), since the only nonnegative divisors of 3 are 1
and 3.)

(c) An integer n is coprime to 4 if and only if n is odd. (If you expected
“... if n is not divisible by 4” here, then you were wrong. The nonnegative
divisors of 4 are not only 1 and 4 but also 2.)

(d) An integer n is coprime to 5 if and only if n is not divisible by 5. (This
can be proved just as part (a), since the only nonnegative divisors of 5 are 1
and 5.)
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Informally, I think of coprimality as some sort of “unrelatedness” or “inde-
pendence” or “orthogonality” or “noninterference” relation. In other words,
two integers a and b are coprime if and only if they have “nothing to do with
each other”, in some sense. This is nowhere near a rigorous statement, but it
motivates many properties of coprimality, including the ones we will see below.

3.5.2. Three theorems about coprimality

The following three theorems are useful properties of coprime integers:

Theorem 3.5.4 (coprime divisors theorem). Let a, b, c ∈ Z satisfy a | c and
b | c. Assume that a and b are coprime. Then, ab | c.

(In other words, a product of two coprime divisors of c is again a divisor
of c.)

Proof. We have ab | ac (since b | c) and ba | bc (because a | c). Since ba = ab and
ac = ca and bc = cb, we can rewrite this as follows: We have ab | ca and ab | cb.
Thus, Corollary 3.4.9 (applied to ab, ca and cb instead of m, a and b) yields

ab | gcd (ca, cb) = |c| · gcd (a, b)︸ ︷︷ ︸
=1

(since a is coprime to b)

(by Theorem 3.4.10)

= |c| .

Since divisibility does not depend on signs (Proposition 3.1.4 (a) in Lecture 7),
we thus obtain ab | c 3. This proves Theorem 3.5.4.

Example 3.5.5. We have 4 | 56 and 7 | 56. Since 4 and 7 are coprime, we can
thus conclude (by Theorem 3.5.4, applied to a = 4, b = 7 and c = 56) that
4 · 7 | 56.

In contrast, from 6 | 12 and 4 | 12, we cannot conclude that 6 · 4 | 12, since
6 and 4 are not coprime.

In terms of our “coprimality as independence” heuristic, Theorem 3.5.4 can be made
intuitive as follows: If a and b are two coprime divisors of c, then (because a and b are
coprime) a and b must divide “different parts” of c, and thus their product ab is still a
divisor of c. Of course, the notion of “different parts” here is not a real thing, but it is
helpful as a mnemonic device.

3Here is this argument in detail: We have just proved that ab | abs c (where we write abs x for
|x| in order to avoid confusing absolute-value bars with divisibility symbols). Proposition
3.1.4 (a) in Lecture 7 shows that we have ab | c if and only if abs (ab) | abs c. However, the
same proposition shows that we have ab | abs c if and only if abs (ab) | abs (abs c). Since
abs (abs c) = abs c, the latter statement can be rewritten as abs (ab) | abs c. Thus, both
statements ab | c and ab | abs c are equivalent to abs (ab) | abs c, and thus are equivalent to
each other. Hence, from ab | abs c, we obtain ab | c.



Lecture 10, version February 9, 2023 page 5

Theorem 3.5.6 (coprime removal theorem). Let a, b, c ∈ Z satisfy a | bc. As-
sume that a is coprime to b. Then, a | c.

Proof. We have a | ca and a | bc = cb. Thus, Corollary 3.4.9 (applied to a, ca and
cb instead of m, a and b) yields

a | gcd (ca, cb) = |c| · gcd (a, b)︸ ︷︷ ︸
=1

(since a is coprime to b)

(by Theorem 3.4.10)

= |c| .

Since divisibility does not depend on signs, this means that a | c. Thus, Theo-
rem 3.5.6 holds.

Example 3.5.7. We have 6 | 7 · 12, but 6 is coprime to 7. Thus, Theorem 3.5.6
(applied to a = 6, b = 7 and c = 12) yields 6 | 12 (as if you didn’t know this
already).

But we cannot obtain 6 | 7 from 6 | 12 · 7, since 6 is not coprime to 12.

Again, Theorem 3.5.6 can be motivated using the “independence” view on coprimal-
ity: If a is coprime to b, then b cannot be the “reason” for the divisibility a | bc, and
thus b can be removed from this divisibility. Again, this is neither a proof nor even a
rigorous statement, but it makes Theorem 3.5.6 looks less surprising.

Theorem 3.5.8 (coprime product theorem). Let a, b, c ∈ Z. Assume that each
of the numbers a and b is coprime to c. Then, ab is also coprime to c.

Proof. Let g = gcd (ab, c). Thus, we must prove that g = 1.
We have g = gcd (ab, c) | ab and g = gcd (ab, c) | c | ac. Hence, Corollary

3.4.9 (applied to g, ab and ac instead of m, a and b) yields

g | gcd (ab, ac) = |a| · gcd (b, c)︸ ︷︷ ︸
=1

(because b is coprime to c)

(by Theorem 3.4.10)

= |a| · 1 = |a| .

Hence, g | a (since divisibility does not depend on signs). Combining this with
g | c, we obtain g | gcd (a, c) (by Corollary 3.4.9, applied to g, a and c instead
of m, a and b). However, gcd (a, c) = 1 (since a is coprime to c), so we obtain
g | gcd (a, c) = 1.

However, g is a nonnegative integer (since any gcd is a nonnegative integer).
Thus, g is a nonnegative divisor of 1 (since g | 1). Since the only nonnegative
divisor of 1 is 1, we thus conclude that g = 1. Hence, gcd (ab, c) = g = 1. This
shows that ab is coprime to c, and we have proved Theorem 3.5.8.
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Example 3.5.9. Each of the numbers 3 and 4 is coprime to 5. Thus, Theorem
3.5.8 (applied to a = 3, b = 4 and c = 5) yields that 3 · 4 is coprime to 5.

Again, Theorem 3.5.8 can be viewed within the “independence” paradigm: If each
of a and b is coprime to c, then so should be ab, because any “dependence” between
ab and c should come from a or from b. Alternatively, if you think of coprimality as
an analogue of orthogonality, then you can view Theorem 3.5.8 as an analogue of the
fact that if two vectors −→a and

−→
b are both orthogonal to a given vector −→c , then so is

their sum −→a +
−→
b . Again, none of these metaphors should be mistaken for a proof of

Theorem 3.5.8.
Theorems 3.5.4, 3.5.6 and 3.5.8 can be generalized, dropping some of the coprimality

assumptions (but leading to less memorable results). Here is the generalization of
Theorem 3.5.4:

Theorem 3.5.10. Let a, b, c ∈ Z satisfy a | c and b | c. Then, ab | gcd (a, b) · c.

Proof. Read our above proof of Theorem 3.5.4 until the point where it shows that ab |
|c| · gcd (a, b). Now, observe that |c| divides c (since |c| is either c or −c), and thus
|c| · gcd (a, b) divides c · gcd (a, b). Hence,

ab | |c| · gcd (a, b) | c · gcd (a, b) = gcd (a, b) · c.

This proves Theorem 3.5.10.

Here is the generalization of Theorem 3.5.6:

Theorem 3.5.11. Let a, b, c ∈ Z satisfy a | bc. Then, a | gcd (a, b) · c.

Proof. Read our above proof of Theorem 3.5.6 until the point where it shows that a |
|c| · gcd (a, b). Now, observe that |c| divides c (since |c| is either c or −c), and thus
|c| · gcd (a, b) divides c · gcd (a, b). Hence,

a | |c| · gcd (a, b) | c · gcd (a, b) = gcd (a, b) · c.

This proves Theorem 3.5.11.

3.5.3. Reducing a fraction

Here is one more property of gcds:

Theorem 3.5.12. Let a and b be two integers that are not both 0. Let g =

gcd (a, b). Then, the integers
a
g

and
b
g

are coprime.

This theorem is important for understanding rational numbers. Indeed, a
ratio

u
v

of two integers is said to be in reduced form if u and v are coprime.
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Now, Theorem 3.5.12 shows that if we start with a ratio
a
b

of two integers, and

cancel gcd (a, b) from the numerator and the denominator, then the result will
be a ratio in reduced form. Hence, each rational number can be brought to a

reduced form. For example,
12
21

=
12/3
21/3

=
4
7

.

Proof of Theorem 3.5.12. Since a and b are not both 0, we have gcd (a, b) ̸= 0
(since 0 cannot divide any nonzero integer). Since we know that gcd (a, b) ∈
N, we thus conclude that gcd (a, b) > 0. In other words, g > 0 (since g =

gcd (a, b)). Thus,
a
g

and
b
g

are well-defined. Also, from g > 0, we obtain

|g| = g.

Since g = gcd (a, b), we have g | a and g | b. Hence,
a
g

and
b
g

are integers.

Moreover,

g = gcd (a, b) = gcd
(

g · a
g

, g · b
g

) (
since a = g · a

g
and b = g · b

g

)

= |g|︸︷︷︸
=g

· gcd
(

a
g

,
b
g

)  by Theorem 3.4.10,

since
a
g

and
b
g

are integers


= g · gcd

(
a
g

,
b
g

)
.

Dividing this equality by g, we find

1 = gcd
(

a
g

,
b
g

)
(since g ̸= 0) .

This shows that
a
g

and
b
g

are coprime. Thus, Theorem 3.5.12 is proven.

3.6. Prime numbers

3.6.1. Definition

The following is one of the most famous concepts in mathematics:

Definition 3.6.1. An integer n > 1 is said to be prime (or a prime) if the only
positive divisors of n are 1 and n.

The first few primes (= prime numbers) are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.

It can be shown that there are infinitely many primes (see Exercise 4 (b) on
homework set #4 for one proof).
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3.6.2. The friend-or-foe lemma

The first property of primes that we will show is an important result that we
call the friend-or-foe lemma:

Lemma 3.6.2 (friend-or-foe lemma). Let p be a prime. Let n ∈ Z. Then, n is
either divisible by p or coprime to p, but not both.

Proof. The number p is prime, and thus its only positive divisors are 1 and p.
Since gcd (n, p) is a positive divisor of p (this is easy to see4), we thus conclude
that gcd (n, p) must be either 1 or p. So we are in one of the following two
cases:

Case 1: We have gcd (n, p) = 1.
Case 2: We have gcd (n, p) = p.
Let us first consider Case 1. In this case, we have gcd (n, p) = 1. In other

words, n is coprime to p. Furthermore, the greatest common divisor of n and
p is gcd (n, p) = 1; therefore, p cannot be a common divisor of n and p (since
p > 1). Thus, n is not divisible by p (since this would entail that p is a common
divisor of n and p). So we have shown that n is coprime to p and not divisible
by p. Thus, Lemma 3.6.2 is proved in Case 1.

Let us now consider Case 2. In this case, we have gcd (n, p) = p ̸= 1. Thus,
n is not coprime to p. Also, p = gcd (n, p) | n shows that n is divisible by p. So
we have shown that n is divisible by p and not coprime to p. Hence, Lemma
3.6.2 is proved in Case 2.

We have now proved Lemma 3.6.2 in both Cases 1 and 2; thus, Lemma 3.6.2
is fully proved.

(The moniker “friend-or-foe lemma” is metaphorical: You can think of inte-
gers that are divisible by p as “friends of p”, and think of integers coprime to
p as “foes of p”. Thus, a prime number cleanly divides the integers into its
“friends” and its “foes”. In contrast, the non-prime number 4 has a more “nu-
anced” relationship with certain integers such as 2 (since 2 is neither divisible
by 4 nor coprime to 4).)

4Proof. The number gcd (n, p) is a divisor of p, and thus is nonzero (since 0 does not divide
p). Furthermore, gcd (n, p) is nonnegative (since any gcd is nonnegative). Thus, gcd (n, p)
is positive. Hence, gcd (n, p) is a positive divisor of p.
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3.6.3. Binomial coefficients and primes

The friend-or-foe lemma has myriad applications. As a first example, recall
Pascal’s triangle (which we first saw in §2.4 in Lecture 5):

k=0
↙

n = 0 → 1
k=1
↙

n = 1 → 1 1
k=2
↙

n = 2 → 1 2 1
k=3
↙

n = 3 → 1 3 3 1
k=4
↙

n = 4 → 1 4 6 4 1
k=5
↙

n = 5 → 1 5 10 10 5 1
k=6
↙

n = 6 → 1 6 15 20 15 6 1
k=7
↙

n = 7 → 1 7 21 35 35 21 7 1

n = 8 → 1 8 28 56 70 56 28 8 1

One property of Pascal’s triangle that you might have already noticed is the
following: All entries in its n = 7 row except for the two 1’s (i.e., all the binomial

coefficients
(

7
1

)
,
(

7
2

)
, . . . ,

(
7
6

)
) are divisible by 7; all entries in the n = 5 row

except for the two 1’s are divisible by 5; likewise for the n = 3 and n = 2 rows.
The pattern here can be generalized to any prime number instead of 7, 5, 3, 2:

Theorem 3.6.3. Let p be a prime. Let k ∈ {1, 2, . . . , p − 1}. Then, p |
(

p
k

)
.

Proof. Exercise 5 (a) on homework set #3 (applied to n = p) yields

k
(

p
k

)
= p

(
p − 1
k − 1

)
︸ ︷︷ ︸
an integer

(by Theorem 2.5.11
in Lecture 6)

.

Thus, p | k
(

p
k

)
.

From k ∈ {1, 2, . . . , p − 1}, we furthermore obtain p ∤ k (because if we had
p | k, then Proposition 3.1.4 (b) in Lecture 7 would entail |p| ≤ |k|, which would
contradict |k| = k ≤ p − 1 < p = |p|). In other words, k is not divisible by p.
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But the friend-or-foe lemma (Lemma 3.6.2, applied to n = k) says that k is
either divisible by p or coprime to p. Since k is not divisible by p, we thus
conclude that k must be coprime to p. In other words, p is coprime to k. Hence,

from p | k
(

p
k

)
, we obtain p |

(
p
k

)
using the coprime cancellation theorem

(Theorem 3.5.6, applied to a = p and b = k and c =

(
p
k

)
). This proves

Theorem 3.6.3.

3.6.4. Fermat’s little theorem

It is easy to see that every integer a satisfies a2 ≡ a mod 2. Indeed, the difference
a2 − a = a (a − 1) is divisible by 2, since at least one of the two consecutive
integers a and a − 1 must be even and thus contributes a factor of 2 to the
product a (a − 1).

Likewise, every integer a satisfies a3 ≡ a mod 3, since the difference a3 − a =
(a − 1) a (a + 1) is divisible by 3 (because at least one of the three consecutive
integers a − 1, a and a + 1 must be divisible by 3).

This pattern does not persist for 4: Indeed, a4 ≡ a mod 4 does not hold for
a = 2. However, for 5, the pattern emerges again: Every integer a satisfies
a5 ≡ a mod 5. This is not as easy to see as the analogous claims for a2 and
a3 (since a5 − a does not factor into linear factors any more), but still can be
checked with a bit of work (there are only 5 possible values for the remainder
a%5, and each of these values allows us to check a5 ≡ a mod 5 by reducing both
sides modulo 5).

The pattern is lost again for 6 (the congruence a6 ≡ a mod 6 fails for a = 2),
but reemerges for 7.

As you may have guessed, there is a general result here:

Theorem 3.6.4 (Fermat’s Little Theorem). Let p be a prime. Let a ∈ Z. Then,

ap ≡ a mod p.

Proof. We shall induct on a. This will only cover the case a ≥ 0, so we will have
to handle the case a < 0 by a separate argument afterwards.

Base case: The congruence ap ≡ a mod p clearly holds for a = 0 (since 0p =
0 ≡ 0 mod p).

Induction step: Let a ∈ N. Assume (as the induction hypothesis) that ap ≡
a mod p. We must prove that (a + 1)p ≡ a + 1 mod p.
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But the binomial formula (Theorem 2.6.1 in Lecture 6) yields

(a + 1)p =
p

∑
k=0

(
p
k

)
ak 1p−k︸︷︷︸

=1

=
p

∑
k=0

(
p
k

)
ak

=

(
p
0

)
︸︷︷︸
=1

a0︸︷︷︸
=1

+
p−1

∑
k=1

(
p
k

)
ak +

(
p
p

)
︸︷︷︸
=1

ap

(
here, we have split off the addends

for k = 0 and for k = p from the sum

)
= 1 +

p−1

∑
k=1

(
p
k

)
ak + ap =

p−1

∑
k=1

(
p
k

)
ak + ap + 1.

In other words,

(a + 1)p − (ap + 1) =
p−1

∑
k=1

(
p
k

)
ak. (1)

However, Theorem 3.6.3 shows that each k ∈ {1, 2, . . . , p − 1} satisfies p |(
p
k

)
|
(

p
k

)
ak. In other words,

(
p
k

)
ak is a multiple of p for each k ∈ {1, 2, . . . , p − 1}.

Hence,
p−1
∑

k=1

(
p
k

)
ak is a sum of multiples of p, and thus itself a multiple of

p. That is, we have p |
p−1
∑

k=1

(
p
k

)
ak. In view of (1), we can rewrite this as

p | (a + 1)p − (ap + 1). In other words,

(a + 1)p ≡ ap + 1 mod p. (2)

However, the induction hypothesis says that ap ≡ a mod p. Adding the obvi-
ous congruence 1 ≡ 1 mod p to this, we obtain

ap + 1 ≡ a + 1 mod p.

Combining this congruence with (2), we obtain

(a + 1)p ≡ ap + 1 ≡ a + 1 mod p,

which shows that (a + 1)p ≡ a + 1 mod p (by the transitivity of congruence).
This completes the induction step.

Thus, Theorem 3.6.4 is proved for all a ≥ 0. It remains to prove it for all a < 0
now. This can be done with a neat trick:

Let a ∈ Z satisfy a < 0. Then, we must prove that ap ≡ a mod p.
But we already know that bp ≡ b mod p for all integers b ≥ 0 (because we

have already proved Theorem 3.6.4 for all a ≥ 0). We can apply this to b = a%p
(since the remainder a%p is ≥ 0), and thus obtain

(a%p)p ≡ a%p mod p.
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However, Proposition 3.3.11 (a) (applied to n = a and d = p) shows that
a%p ∈ {0, 1, . . . , p − 1} and a%p ≡ a mod p. We can take the congruence a%p ≡
a mod p to the p-th power, we obtain (a%p)p ≡ ap mod p (we have here used
Exercise 1 (b) on homework set #3). Therefore, ap ≡ (a%p)p mod p. Combining
all the congruences we have obtained so far, we obtain

ap ≡ (a%p)p ≡ a%p ≡ a mod p,

from which we can conclude that ap ≡ a mod p (by transitivity of congruence).
Thus, we have proved Theorem 3.6.4 for a < 0. This completes the proof of
Theorem 3.6.4.

Fermat’s Little Theorem has a bunch of applications, some of which we might
see later.

One wrinkle in the pattern we have discussed above: Theorem 3.6.4 shows that
every prime p satisfies ap ≡ a mod p for all a ∈ Z. But there are some positive integers
p that satisfy this even though they are not prime! The smallest such integers are
1, 561, 1105, 1729, 2465. See Carmichael numbers for more details.

3.6.5. Prime divisor separation theorem

You can think of the primes as “inseparable” positive integers: They cannot be
written as products of two smaller positive integers. (Of course, 1 also has this
property but does not count as a prime. In a way, 1 is inseparable because there
is nothing to separate, so it doesn’t count as a prime.)

One useful consequence of this “inseparability” is that if a prime p divides a
product ab of two integers, then it must divide one of the two factors a and b,
since (speaking heuristically) it cannot be “separated” into a part that divides
a and a part that divides b. Nevermind that this is not a valid argument, the
conclusion is a true fact:

Theorem 3.6.5 (prime divisor separation theorem). Let p be a prime. Let
a, b ∈ Z be such that p | ab. Then, p | a or p | b.

Proof of Theorem 3.6.5. We shall prove the claim of Theorem 3.6.5 in the follow-
ing equivalent form: “If p ∤ a, then p | b.”

Assume that p ∤ a. We must then prove that p | b.
The friend-or-foe lemma (Lemma 3.6.2) yields that a is either divisible by p

or coprime to p. Thus, a is coprime to p (since p ∤ a). In other words, p is
coprime to a. Hence, we can use the coprime cancellation theorem (Theorem
3.5.6, applied to p, a and b instead of a, b and c) to obtain p | b from p | ab. This
is precisely what we wanted to prove. Theorem 3.6.5 is thus proved.

Theorem 3.6.5 shows that if a prime number p divides a product ab, then it
must divide a or b (or both). In contrast, a non-prime number like 4 can divide
a product ab without dividing a or b. For example, 4 | 2 · 6 but 4 ∤ 2 and 4 ∤ 6.

We can extend Theorem 3.6.5 to products of several factors:

https://en.wikipedia.org/wiki/Carmichael_number
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Corollary 3.6.6 (prime divisor separation theorem for k factors). Let p be a
prime. Let a1, a2, . . . , ak ∈ Z be such that p | a1a2 · · · ak. Then, p | ai for some
i ∈ {1, 2, . . . , k}.

(In words: If a prime divides a product of several integers, then it must
divide at least one of the factors.)

Proof sketch. Induct on k. In the induction step, use Theorem 3.6.5. (The base
case is the case k = 0, in which case Corollary 3.6.6 is vacuously true because
p ∤ 1.)

3.6.6. p-valuations

We will need the following simple lemma:

Lemma 3.6.7. Let p be a prime. Let n be a nonzero integer. Then, there exists
a largest m ∈ N such that pm | n.

Proof. The relation pm | n means that
n

pm ∈ Z. In other words, it means that

we can divide n by p at least m times without obtaining a non-integer. So the
claim of Lemma 3.6.7 is saying that there is a largest number of times that we
can divide n by p without obtaining a non-integer. But this is clear: Every time
we divide n by p, the absolute value |n| decreases (since p > 1), and obviously
this cannot go on forever without eventually yielding a non-integer.

(See [19s, Proof of Lemma 2.13.22] for a more formal proof of Lemma 3.6.7.)

Lemma 3.6.7 allows us to make the following definition:

Definition 3.6.8. Let p be a prime.

(a) Let n be a nonzero integer. Then, vp (n) shall denote the largest m ∈ N

such that pm | n. (This is well-defined by Lemma 3.6.7. Thus, vp (n) is the
number of times that you can divide n by p without getting a non-integer.)

This number vp (n) will be called the p-valuation (or the p-adic valuation)
of n.

(b) In order to have vp (n) defined for all integers n (as opposed to just for
nonzero n), we also define vp (0) to be ∞ (because 0 can be divided by p an
arbitrary number of times without any changes). This symbol ∞ is not an
actual number, but we shall pretend that it behaves like a number at least in
some regards. In particular, we will eventually add or compare it to other
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numbers. In doing so, we shall follow the rules that

k + ∞ = ∞ + k = ∞ for all k ∈ Z;
∞ + ∞ = ∞;

k < ∞ and ∞ > k for all k ∈ Z;
max {∞, k} = max {k, ∞} = ∞ for all k ∈ Z;
min {∞, k} = min {k, ∞} = k for all k ∈ Z.

Thus, ∞ acts like a “mythical number that is larger than any actual number”.
We can keep up this charade as long as we only add and compare, but never
subtract ∞ from anything (since 1 + ∞ = ∞ would turn into 1 = 0 if you
subtracted ∞).

Next time, we will learn more about p-valuations.
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