
Lecture 9, version December 28, 2023 page 1

Math 221 Winter 2023, Lecture 9: Elementary
number theory

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

3. Elementary number theory

3.3. Division with remainder (cont’d)

3.3.5. Congruence in terms of remainders

Here is one more application of division with remainder: a new criterion for
congruence. Specifically, two integers a and b are congruent modulo a given
positive integer d if and only if they leave the same remainder when divided
by d (that is, satisfy a%d = b%d). In other words:

Proposition 3.3.15. Let d be a positive integer. Let a and b be two integers.
Then, a ≡ b mod d if and only if a%d = b%d.

Proof. Proposition 3.3.11 (a) from Lecture 8 (applied to n = a) yields that a%d ∈
{0, 1, . . . , d − 1} and a%d ≡ a mod d. Similarly, b%d ∈ {0, 1, . . . , d − 1} and
b%d ≡ b mod d.

We must prove the logical equivalence (a ≡ b mod d) ⇐⇒ (a%d = b%d). In
other words, we must prove the two implications

(a ≡ b mod d) =⇒ (a%d = b%d)

and
(a%d = b%d) =⇒ (a ≡ b mod d) .

Let us prove these implications separately:
Proof of (a ≡ b mod d) =⇒ (a%d = b%d): Assume that a ≡ b mod d. Thus,

b ≡ a mod d (by symmetry of congruence – i.e., by Proposition 3.2.4 (b) from
Lecture 7). Combining b%d ≡ b mod d with b ≡ a mod d, we obtain b%d ≡
a mod d (by transitivity of congruence – i.e., by Proposition 3.2.4 (c) from Lec-
ture 7).

Thus, we know that b%d ∈ {0, 1, . . . , d − 1} and b%d ≡ a mod d. Hence,
Proposition 3.3.11 (c) from Lecture 8 (applied to n = a and c = b%d) yields
b%d = a%d. In other words, a%d = b%d. Thus, we have proved the implication
(a ≡ b mod d) =⇒ (a%d = b%d).

Proof of (a%d = b%d) =⇒ (a ≡ b mod d): Assume that a%d = b%d. How-
ever, we know that a%d ≡ a mod d, so that a ≡ a%d mod d (by symmetry of
congruence). In view of a%d = b%d, we can rewrite this as a ≡ b%d mod d.
Combining this with b%d ≡ b mod d, we obtain a ≡ b mod d (by transitivity

https://www.cip.ifi.lmu.de/~grinberg/t/23wd

Lecture 9, version December 28, 2023 page 2

of congruence – i.e., by Proposition 3.2.4 (c) from Lecture 7). Thus, we have
proved the implication (a%d = b%d) =⇒ (a ≡ b mod d).

Now, both implications are proved, so that Proposition 3.3.15 is proved.

3.3.6. The birthday lemma

If you have lived for exactly n days, then you are n//365 years and n%365 days
old (assuming, for simplicity, that every year has exactly 365 days; leapyears
would complicate this a lot). On any “normal” day, the latter number (that
is, n%365) increases by 1 while the former number (that is, n//365) stays un-
changed. But on a birthday, the latter number gets reset to 0 while the former
number increases by 1. This simple and intuitive observation is not specific to
365, and is worth stating as a proposition:

Proposition 3.3.16 (birthday lemma). Let n ∈ Z, and let d be a positive inte-
ger. Then:

(a) If d | n, then

n//d = ((n − 1) //d) + 1 and
n%d = 0 and (n − 1)%d = d − 1.

(b) If d ∤ n, then

n//d = (n − 1) //d and n%d = ((n − 1)%d) + 1.

It should be easy to prove both parts of this lemma, but we give a proof for
the sake of completeness.

Proof of Proposition 3.3.16. (a) Assume that d | n. Thus, n = dq for some q ∈ Z. Con-
sider this q.

Recall Definition 3.3.2 from Lecture 8. We have q ∈ Z and 0 ∈ {0, 1, . . . , d − 1} and
n = qd + 0 (since qd + 0 = qd = dq = n). In other words, (q, 0) is a quo-rem pair of
n and d (by the definition of a quo-rem pair). Hence, Definition 3.3.2 from Lecture 8
shows that n//d = q and n%d = 0.

On the other hand, from n = dq, we obtain

n − 1 = dq − 1
= (q − 1) d + (d − 1) (since (q − 1) d + (d − 1) = qd − d + d − 1 = qd − 1) .

Thus, we have q− 1 ∈ Z and d− 1 ∈ {0, 1, . . . , d − 1} and n− 1 = (q − 1) d+(d − 1). In
other words, the pair (q − 1, d − 1) is a quo-rem pair of n− 1 and d (by the definition of
a quo-rem pair). Hence, Definition 3.3.2 from Lecture 8 shows that (n − 1) //d = q − 1
and (n − 1)%d = d − 1.

Now, from (n − 1) //d = q − 1, we obtain ((n − 1) //d) + 1 = q = n//d. In other
words, n//d = ((n − 1) //d) + 1. Combining this with n%d = 0 and (n − 1)%d =
d − 1, we see that Proposition 3.3.16 (a) has been proved.

Lecture 9, version December 28, 2023 page 3

(b) Assume that d ∤ n. Let q = n//d and r = n%d. Then, by the definition of quotient
and remainder, we have

q ∈ Z and r ∈ {0, 1, . . . , d − 1} and n = qd + r.

If we had r = 0, then we would have n = qd + r︸︷︷︸
=0

= qd = dq, which would entail

d | n; but this would contradict d ∤ n. Hence, we cannot have r = 0. In other words, r
is not 0.

So r is an element of the set {0, 1, . . . , d − 1} but is not 0. Therefore, r is one of the
remaining elements 1, 2, . . . , d − 1. Therefore, r − 1 is one of the elements 0, 1, . . . , d − 2.
Thus, r − 1 ∈ {0, 1, . . . , d − 1}.

Also, from n = qd + r, we obtain n − 1 = (qd + r) − 1 = qd + (r − 1). So we
know that q ∈ Z and r − 1 ∈ {0, 1, . . . , d − 1} and n − 1 = qd + (r − 1). In other
words, the pair (q, r − 1) is a quo-rem pair of n − 1 and d (by the definition of a quo-
rem pair). Hence, Definition 3.3.2 from Lecture 8 shows that (n − 1) //d = q and
(n − 1)%d = r − 1.

Thus, (n − 1) //d = q = n//d, so that n//d = (n − 1) //d. Also, from (n − 1)%d =
r − 1, we obtain ((n − 1)%d) + 1 = r = n%d, so that n%d = ((n − 1)%d) + 1. Thus,
we have proved Proposition 3.3.16 (b).

Part of Proposition 3.3.16 can be restated using the floor notation:

Corollary 3.3.17. Let n ∈ Z, and let d be a positive integer. Then:
(a) If d | n, then ⌊n

d

⌋
=

⌊
n − 1

d

⌋
+ 1.

(b) If d ∤ n, then ⌊n
d

⌋
=

⌊
n − 1

d

⌋
.

Proof. Proposition 3.3.13 yields n//d =
⌊n

d

⌋
. The same argument (applied to n − 1

instead of n) yields (n − 1) //d =

⌊
n − 1

d

⌋
.

(a) Assume that d | n. Then, Proposition 3.3.16 (a) yields n//d = ((n − 1) //d) + 1.

In view of n//d =
⌊n

d

⌋
and (n − 1) //d =

⌊
n − 1

d

⌋
, we can rewrite this as

⌊n
d

⌋
=⌊

n − 1
d

⌋
+ 1. This proves Corollary 3.3.17 (a).

(b) Assume that d ∤ n. Then, Proposition 3.3.16 (b) yields n//d = (n − 1) //d.

In view of n//d =
⌊n

d

⌋
and (n − 1) //d =

⌊
n − 1

d

⌋
, we can rewrite this as

⌊n
d

⌋
=⌊

n − 1
d

⌋
. This proves Corollary 3.3.17 (b).

Lecture 9, version December 28, 2023 page 4

3.4. Greatest common divisors

3.4.1. Definition

The following definition plays a crucial role in number theory, particularly in
the study of prime numbers that will be the topic of next lecture.

Definition 3.4.1. Let a and b be two integers.
(a) The common divisors of a and b are the integers that divide a and

simultaneously divide b.
(b) The greatest common divisor of a and b is the largest among the com-

mon divisors of a and b, unless a = b = 0. In the case a = b = 0, it is defined
to be 0 instead.

We denote the greatest common divisor of a and b as gcd (a, b), and we
refer to it as the gcd of a and b.

We will soon see that this greatest common divisor is well-defined (see Re-
mark 3.4.2 below). But first, some examples:

• What is gcd (4, 6) ?

The divisors of 4 are −4,−2,−1, 1, 2, 4.

The divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6.

Thus, the common divisors of 4 and 6 are −2,−1, 1, 2.

So the greatest common divisor of 4 and 6 is 2. That is, gcd (4, 6) = 2.

• What is gcd (0, 5) ?

The divisors of 0 are all integers (you cannot list them all).

The divisors of 5 are −5,−1, 1, 5.

Thus, the common divisors of 0 and 5 are just the divisors of 5, which are
−5,−1, 1, 5.

So the gcd is 5. That is, gcd (0, 5) = 5.

• What is gcd (0, 0) ?

The common divisors of 0 and 0 are all integers, so there is no greatest one
among them, but we have defined gcd (0, 0) to be 0. (This is the reason
why we had to make an exception for the a = b = 0 case in Definition
3.4.1 (b).)

Let us now convince ourselves that gcd (a, b) is well-defined:

Lecture 9, version December 28, 2023 page 5

Remark 3.4.2. Let a, b ∈ Z. We want to show that gcd (a, b) is well-defined
in Definition 3.4.1 (b).

If a = b = 0, then this is clear, since we defined this gcd to be 0.
Consider the remaining case – i.e., the case when a ̸= 0 or b ̸= 0 (or both).
For instance, let us assume that a ̸= 0. Then, the divisors d of a all satisfy

|d| ≤ |a| (since Proposition 3.1.4 (b) from Lecture 7 shows that they satisfy
abs d ≤ abs a, which in our present notations means |d| ≤ |a|). In other
words, all these divisors are integers in the interval [− |a| , |a|]. Hence, there
are finitely many of them. Therefore, there are finitely many common di-
visors of a and b (since any common divisor of a and b is a divisor of a).
On the other hand, there is at least one common divisor of a and b (namely,
1). Therefore, the set of all common divisors of a and b is nonempty and
finite, and thus has a maximum element. In other words, there is a (literally)
largest among the common divisors of a and b. This shows that gcd (a, b) is
well-defined when a ̸= 0.

An analogous argument leads to the same conclusion when b ̸= 0. Thus,
we have shown that gcd (a, b) is always well-defined.

This argument also gives us a slow and stupid algorithm to compute gcd (a, b)
when a ̸= 0: We just go through all integers in the interval [− |a| , |a|], and
check which of them are common divisors of a and b. But there is a much
faster algorithm.

3.4.2. Basic properties

To find this algorithm, we first collect some basic properties of gcds:

Proposition 3.4.3. (a) We have gcd (a, b) ∈ N for any a, b ∈ Z.
(b) We have gcd (a, 0) = gcd (0, a) = |a| for any a ∈ Z.
(c) We have gcd (a, b) = gcd (b, a) for any a, b ∈ Z.
(d) If a, b, c ∈ Z satisfy b ≡ c mod a, then gcd (a, b) = gcd (a, c).
(e) We have gcd (a, b) = gcd (a, ua + b) for any a, b, u ∈ Z.
(f) We have gcd (a, b) = gcd (a, b%a) for any positive integer a and any

b ∈ Z.
(g) We have gcd (a, b) | a and gcd (a, b) | b for any a, b ∈ Z.
(h) We have gcd (−a, b) = gcd (a, b) and gcd (a,−b) = gcd (a, b) for any

a, b ∈ Z.
(i) If a, b ∈ Z satisfy a | b, then gcd (a, b) = |a|.

Proof. (a) Let a, b ∈ Z. We must prove that gcd (a, b) ∈ N.
If a = b = 0, then this follows from gcd (0, 0) = 0 ∈ N.
Thus, let us assume that not both of a and b are 0. Then, gcd (a, b) is

literally the greatest common divisor of a and b. If gcd (a, b) was negative,
then − gcd (a, b) would be an even greater common divisor of a and b (since

Lecture 9, version December 28, 2023 page 6

− gcd (a, b) divides whatever gcd (a, b) divides, but the negativity of gcd (a, b)
implies − gcd (a, b) > gcd (a, b)), which would contradict the previous sen-
tence. Hence, gcd (a, b) cannot be negative. Thus, gcd (a, b) ∈ N. This proves
Proposition 3.4.3 (a).

(b) Let a ∈ Z. Every integer is a divisor of 0. Thus, the common divisors of
a and 0 are just the divisors of a. However, the largest divisor of a is |a| (unless
a = 0, which case can be easily handled separately)1. Hence, the greatest
common divisor of a and 0 is |a|. In other words, we have gcd (a, 0) = |a|.
Similarly, we can see that gcd (0, a) = |a|. Thus, Proposition 3.4.3 (b) is proved.

(c) Proposition 3.4.3 (c) follows from observing that a and b play equal roles
in Definition 3.4.1.

(d) Let a, b, c ∈ Z satisfy b ≡ c mod a. We must prove that gcd (a, b) =
gcd (a, c).

If a = 0, then this is clearly true (because in this case, b ≡ c mod a becomes
b ≡ c mod 0, which entails b = c).

It thus remains to consider the case a ̸= 0 only. In this case, gcd (a, b) is
literally the greatest common divisor of a and b, whereas gcd (a, c) is literally
the greatest common divisor of a and c. Hence, in order to prove that these
two gcds are equal, it will suffice to show that the common divisors of a and b
are precisely the common divisors of a and c. To do this, in turn, it suffices to
prove the following two claims:

Claim 1: Each common divisor of a and b is a common divisor of a
and c.

Claim 2: Each common divisor of a and c is a common divisor of a
and b.

Before we prove these two claims, let us recall that b ≡ c mod a; in other
words, c ≡ b mod a (by the symmetry of congruence). Hence, the numbers b
and c play equal roles in our setting. Thus, Claims 1 and 2 are analogous, so
that any proof of one of the two will also prove the other (once the roles of b
and c are switched).

Proof of Claim 1. Let d be a common divisor of a and b. Thus, d | a and d | b
(by the definition of a common divisor). In other words, we have a = dx and
b = dy for some integers x and y. Consider these x and y.

But b ≡ c mod a. In other words, a | b − c. Hence, d | a | b − c (by the
transitivity of divisibility). In other words, b − c = dz for some integer z.
Consider this z.

1This fact is a consequence of Proposition 3.1.4 (b) in Lecture 7 (recalling that |a| was called
abs a back in that proposition).

Lecture 9, version December 28, 2023 page 7

Now, b − (b − c) = c, so that

c = b︸︷︷︸
=dy

− (b − c)︸ ︷︷ ︸
=dz

= dy − dz = d (y − z)︸ ︷︷ ︸
an integer

.

Therefore, d | c. From d | a and d | c, we conclude that d is a common divisor
of a and c.

So we have shown that if d is a common divisor of a and b, then d is a
common divisor of a and c. In other words, each common divisor of a and b is
a common divisor of a and c. This proves Claim 1.

Proof of Claim 2. As we said, we can obtain a proof of Claim 2 by switching the
roles of b and c in the above proof of Claim 1 (because we have c ≡ b mod a).

Combining Claim 1 with Claim 2, we see that the common divisors of a and
b are precisely the common divisors of a and c. Therefore, the greatest common
divisor of a and b equals the greatest common divisor of a and c. In other
words, gcd (a, b) = gcd (a, c). This proves Proposition 3.4.3 (d).

(e) Proposition 3.4.3 (e) follows from Proposition 3.4.3 (d) (applied to c =
ua + b), since b ≡ ua + b mod a (because b − (ua + b) = −ua is divisible by a).

(f) Proposition 3.4.3 (f) follows from Proposition 3.4.3 (d) (applied to c =
b%a), since b ≡ b%a mod a (because Proposition 3.3.11 (a) from Lecture 8 yields
b%a ≡ b mod a).

(g) is obvious when a = b = 0 (since 0 | 0), and otherwise follows from the
definition of gcd (a, b).

(h) The divisors of a are precisely the divisors of −a. The divisors of b are
precisely the divisors of −b. Thus, the common divisors of a and b remain
unchanged if we replace a by −a or replace b by −b. Therefore, Proposition
3.4.3 (h) follows from the definition of the gcd.

(i) Let a, b ∈ Z satisfy a | b. Then, b ≡ 0 mod a. Hence, Proposition 3.4.3 (d)
(applied to c = 0) yields gcd (a, b) = gcd (a, 0) = |a| (by Proposition 3.4.3 (b)).
This proves Proposition 3.4.3 (i).

Corollary 3.4.4 (Euclidean recursion for the gcd). Let a ∈ Z, and let b be a
positive integer. Then,

gcd (a, b) = gcd (b, a%b) .

Proof. Proposition 3.4.3 (c) yields

gcd (a, b) = gcd (b, a) = gcd (b, a%b)

(by Proposition 3.4.3 (f), applied to b and a instead of a and b). This proves
Corollary 3.4.4.

Lecture 9, version December 28, 2023 page 8

3.4.3. The Euclidean algorithm

By applying Corollary 3.4.4 repeatedly, we can compute gcds rather quickly:
For example,

gcd (93, 18) = gcd

18, 93%18︸ ︷︷ ︸
=3

 (by Corollary 3.4.4)

= gcd (18, 3)

= gcd

3, 18%3︸ ︷︷ ︸
=0

 (by Corollary 3.4.4)

= gcd (3, 0) = |3| (by Proposition 3.4.3 (b))
= 3

Lecture 9, version December 28, 2023 page 9

and

gcd (1145, 739) = gcd

739, 1145%739︸ ︷︷ ︸
=406

 (by Corollary 3.4.4)

= gcd (739, 406)

= gcd

406, 739%406︸ ︷︷ ︸
=333

 (by Corollary 3.4.4)

= gcd (406, 333)

= gcd

333, 406%333︸ ︷︷ ︸
=73

 (by Corollary 3.4.4)

= gcd (333, 73)
= gcd (73, 333%73) (by Corollary 3.4.4)
= gcd (73, 41)
= gcd (41, 73%41) (by Corollary 3.4.4)
= gcd (41, 32)
= gcd (32, 41%32) (by Corollary 3.4.4)
= gcd (32, 9)
= gcd (9, 32%9) (by Corollary 3.4.4)
= gcd (9, 5)
= gcd (5, 9%5) (by Corollary 3.4.4)
= gcd (5, 4)
= gcd (4, 5%4) (by Corollary 3.4.4)
= gcd (4, 1)
= gcd (1, 4%1) (by Corollary 3.4.4)
= gcd (1, 0) = |1| (by Proposition 3.4.3 (b))
= 1.

These two computations are instances of a general algorithm for computing
gcd (a, b) for any two numbers a ∈ Z and b ∈ N. This algorithm proceeds as
follows:

• If b = 0, then the gcd is |a|.

• If b > 0, then we replace a and b by b and a%b and recurse (i.e., we apply
the method again to b and a%b instead of a and b).

In Python code, this algorithm looks as follows:

Lecture 9, version December 28, 2023 page 10

def gcd(a, b): # for b nonnegative
if b == 0:

return abs(a) # This is the absolute value of a.
return gcd(b, a%b)

This algorithm is called the Euclidean algorithm. Let us convince ourselves
that it really terminates (rather than getting stuck in an endless loop):

Proposition 3.4.5. Let a ∈ Z and b ∈ N. Then, the Euclidean algorithm
terminates after at most b steps. (Here, we count each time that the algorithm
replaces a and b by b and a%b as a “step”.)

Proof. In each step of the Euclidean algorithm, the second argument b gets
replaced by a%b. This has the consequence that b decreases by at least 1 (since
the definition of a remainder yields a%b ∈ {0, 1, . . . , b − 1} and thus a%b ≤
b − 1). But b remains nonnegative throughout the algorithm. Thus, b cannot
decrease (by at least 1) more than b0 times in succession, where b0 is the original
value of b (as it was fed into the algorithm). Hence, the algorithm cannot have
more than b0 steps. In other words, the algorithm must terminate after at most
b0 steps. This proves Proposition 3.4.5 (since b0 is precisely the original value
of b).

Proposition 3.4.5 greatly overestimates the actual time that the Euclidean al-
gorithm needs to terminate: In truth, it terminates after at most log2 (ab) + 2
steps (if a and b are positive)2, which is usually much fewer than b. Some vari-
ants of the Euclidean algorithm get to the goal even faster. This speediness is
part of the reason why the Euclidean algorithm (and greatest common divisors)
is so useful in practical applications of number theory.

The Euclidean algorithm can be easily adapted to arbitrary b ∈ Z instead of
just b ∈ N (by adding a first step in which we replace b by −b if b is negative):

2Hints to the proof. Recall that each step of the algorithm replaces the numbers a and b by b
and a%b. Since b > a%b (because a%b ∈ {0, 1, . . . , b − 1} entails a%b < b), this yields that
after each step of the algorithm, the “current” numbers a and b satisfy a > b.

Now, consider the product ab of the two numbers a and b. We claim that each step of
the algorithm, except perhaps the first one, decreases this number by a factor of at least 2.

In order to see this, you need to show that b (a%b) ≤ ab
2

whenever a > b. But this follows

from a%b ≤ a
2

, which in turn follows easily from a > b (why?).
Now you know that the product ab decreases by a factor of at least 2 at each step of the

algorithm except for the first one. In other words, its binary logarithm log2 (ab) decreases
by at least 1 at each step of the algorithm except for the first one. At the first step, it also
decreases or stays unchanged. From this, it follows easily that the algorithm cannot have
more than log2 (ab) + 1 steps until it reaches a situation in which log2 (ab) ≤ 0. But in such
a situation, we must have a = b = 1, and it will only take one more step to reach the end of
the algorithm.

Lecture 9, version December 28, 2023 page 11

def gcd(a, b): # for b arbitrary
if b < 0:

return gcd(a, -b) # replace b by -b.
if b == 0:

return abs(a) # This is the absolute value of a.
return gcd(b, a%b)

3.4.4. Bezout’s theorem and the extended Euclidean algorithm

The Euclidean algorithm can be adapted so that it doesn’t only compute gcd (a, b),
but also expresses gcd (a, b) as an “integer linear combination” of a and b (that
is, as a multiple of a plus a multiple of b). This allows us to prove the following
theorem:

Theorem 3.4.6 (Bezout’s theorem for integers). Let a and b be two integers.
Then, there exist two integers x and y such that

gcd (a, b) = xa + yb.

We will soon prove this theorem. First, we introduce a notation and give a
few examples:

Definition 3.4.7. Let a and b be two integers. Then, a Bezout pair for (a, b)
means a pair (x, y) of two integers satisfying gcd (a, b) = xa + yb.

For instance, a Bezout pair for (4, 7) is a pair (x, y) of integers satisfying
gcd (4, 7) = x · 4 + y · 7. In view of gcd (4, 7) = 1, this latter equation simplifies
to 1 = 4x + 7y. So a Bezout pair for (4, 7) is a solution to this equation 1 =
4x + 7y in integers x and y. This is similar to the coin problem from §1.9.1 (in
Lecture 5), in the sense that you can think of such a Bezout pair (x, y) as a way
to pay 1 cent with x many 4-cent coins and y many 7-cent coins, assuming that
you are allowed to get change (because x and y are allowed to be negative).
Without change, of course, you could not pay 1 cent using 4-cent coins and
7-cent coins. But with change, it works: You pay two 4-cent coins and get one
7-cent coin in return, and thus end up paying 2 · 4 + (−1) · 7 = 1 cent, which is
what you wanted. In other words, the pair (x, y) = (2,−1) satisfies 1 = 4x+ 7y.
In other words, (2,−1) is a Bezout pair for (4, 7). There are also other Bezout
pairs for (4, 7), for example (−5, 3) (since 4 (−5) + 7 · 3 = 1). So a Bezout pair
is usually not unique.

So Bezout’s theorem can be restated as follows: For any two integers a and
b, you can pay gcd (a, b) cents with a-cent coins and b-cent coins, if you can get
change3. What denominations can be paid without change is a more compli-
cated story, and we will return to this in §3.8 (Lecture 11).

3more precisely: if you can get change in a-cent coins and b-cent coins (and there are infinitely
many coins of either denomination available)

Lecture 9, version December 28, 2023 page 12

Here is another example: A Bezout pair for (6, 16) is (3,−1), since gcd (6, 16) =
2 = 6x + 16y for (x, y) = (3,−1).

So Bezout’s theorem (Theorem 3.4.6) is saying that for any two integers a, b ∈
Z, there exists a Bezout pair for (a, b).

How can we prove this theorem? Induction (particularly strong induction)
appears to be a reasonable method. Unfortunately, induction can only be used
to prove a statement about elements of a set of the form {k, k + 1, k + 2, . . .} for
a given integer k (that is, a statement about integers from a given lower bound
onwards). To put it differently, induction can only prove a statement that “starts
somewhere” (even if it is presented as a strong induction with no base case).
Meanwhile, in Bezout’s theorem, both a and b are just arbitrary integers, so
they can be arbitrarily low.

This hurdle can be surmounted: While we cannot prove Bezout’s theorem by
induction directly, we can first restrict it to the case when b ∈ N, and prove
this restriction by induction. In other words, we shall use induction to prove
the following particular case of Bezout’s theorem:

Lemma 3.4.8 (restricted Bezout’s theorem). Let a ∈ Z and b ∈ N. Then,
there exists a Bezout pair for (a, b).

Once this lemma is proved, we will quickly deduce Bezout’s theorem in full
generality from it. So let us prove this lemma.

Proof of Lemma 3.4.8. We shall use strong induction on b. Here, we do not con-
sider a to be fixed. Thus, the statement that we will be proving for all b ∈ N

is
P (b) := (for each a ∈ Z, there exists a Bezout pair for (a, b)) .

Our goal is to prove this statement P (b) for all b ∈ N. We shall do this by
strong induction on b:

Base case: Let us prove the statement P (0). Indeed, for each a ∈ Z, let us set

sign a :=


1, if a > 0;
0, if a = 0;
−1, if a < 0.

Then, for each a ∈ Z, the pair (sign a, 0) is a Bezout pair for (a, 0), since

gcd (a, 0) = |a| (by Proposition 3.4.3 (b))

= (sign a) · a

 this is a general fact that holds for any real
number a, and can be easily verified by

checking the cases a > 0, a = 0 and a < 0


= (sign a) · a + 0 · 0.

Lecture 9, version December 28, 2023 page 13

Hence, for each a ∈ Z, there exists a Bezout pair for (a, 0). In other words, the
statement P (0) holds.

Induction step: Fix a positive integer b. We must prove the implication

(P (0) AND P (1) AND P (2) AND · · · AND P (b − 1)) =⇒ P (b) .

Thus, we assume (as the induction hypothesis) that P (0) AND P (1) AND P (2)
AND · · · AND P (b − 1) holds. In other words, we assume that the b statements
P (0) , P (1) , P (2) , . . . , P (b − 1) all hold. In other words, we assume that

(for each a ∈ Z, there exists a Bezout pair for (a, 0)) and
(for each a ∈ Z, there exists a Bezout pair for (a, 1)) and
(for each a ∈ Z, there exists a Bezout pair for (a, 2)) and
· · · and
(for each a ∈ Z, there exists a Bezout pair for (a, b − 1)) .

In other words, we assume that for each a ∈ Z and each d ∈ {0, 1, . . . , b − 1},
there exists a Bezout pair for (a, d). Renaming a as c here, we can restate this
as follows: We assume that for each c ∈ Z and each d ∈ {0, 1, . . . , b − 1}, there
exists a Bezout pair for (c, d). So this is our induction hypothesis (brought to
its most convenient form).

Our goal is now to prove P (b). In other words, we must prove that for each
a ∈ Z, there exists a Bezout pair for (a, b).

So we fix an a ∈ Z, and we set out to find a Bezout pair for (a, b).
The Euclidean recursion (Corollary 3.4.4) yields

gcd (a, b) = gcd (b, a%b) . (1)

However, a%b ∈ {0, 1, . . . , b − 1} (by Proposition 3.3.11 (a) from Lecture 8, ap-
plied to n = a and d = b).

Recall our induction hypothesis, which says that for each c ∈ Z and each
d ∈ {0, 1, . . . , b − 1}, there exists a Bezout pair for (c, d). We can apply this
to c = b and d = a%b (because b ∈ Z and a%b ∈ {0, 1, . . . , b − 1}), and thus
conclude that there exists a Bezout pair for (b, a%b). Let us denote this Bezout
pair by (u, v). Thus, by the definition of a Bezout pair, u and v are integers and
satisfy

gcd (b, a%b) = ub + v (a%b) . (2)

However, Proposition 3.3.11 (d) from Lecture 8 (applied to n = a and d = b)
yields

a = (a//b) b + (a%b) .

Solving this for a%b, we obtain

(a%b) = a − (a//b) b. (3)

Lecture 9, version December 28, 2023 page 14

Now, (1) becomes

gcd (a, b) = gcd (b, a%b) = ub + v (a%b)︸ ︷︷ ︸
=a−(a//b)b

(by (3))

(by (2))

= ub + v (a − (a//b) b)
= ub + va − v (a//b) b
= v︸︷︷︸

an integer

a + (u − v (a//b))︸ ︷︷ ︸
an integer

b.

Thus, we have written gcd (a, b) as a multiple of a plus a multiple of b. More
specifically, the pair

(v, u − v (a//b))

is a Bezout pair for (a, b). And so we conclude that there exists a Bezout pair
for (a, b) (because we just found one). This proves the statement P (b) for our
b, and thus completes the induction step.

Hence, by induction, we have shown that P (b) holds for all b ∈ N. But this
is saying precisely that there exists a Bezout pair for (a, b) whenever a ∈ Z and
b ∈ N. Thus, Lemma 3.4.8 is proved.

This inductive proof contains a recursive algorithm for finding a Bezout pair
for (a, b) whenever a ∈ Z and b ∈ N. Written in Python, this algorithm looks
as follows:4

def bezout_pair(a, b): # for b nonnegative
if b == 0:

return (sign(a), 0)
(u, v) = bezout_pair(b, a%b)
return (v, u - v * (a//b))

This algorithm is known as the extended Euclidean algorithm.

Now that Lemma 3.4.8 has been proven, Bezout’s theorem in the general case
(Theorem 3.4.6) easily follows:

Proof of Theorem 3.4.6. We are in one of the following two cases:
Case 1: We have b ≥ 0.

4Here, sign(a) is what was called sign a in the above proof. In Python, this can be defined as
follows:

def sign(a):
if a < 0:

return -1
if a == 0:

return 0
if a > 0:

return 1

Lecture 9, version December 28, 2023 page 15

Case 2: We have b < 0.
Let us first consider Case 1. In this case, b ≥ 0. Hence, b ∈ N. Thus, Lemma

3.4.8 yields that there exists a Bezout pair for (a, b). In other words, there exists
a pair (x, y) of two integers satisfying gcd (a, b) = xa + yb (by the definition
of a Bezout pair). But this is precisely what Theorem 3.4.6 is claiming. Thus,
Theorem 3.4.6 is proved in Case 1.

Let us now consider Case 2. In this case, b < 0. Hence, −b > 0, so that −b ∈
N. Hence, Lemma 3.4.8 (applied to −b instead of b) yields that there exists a
Bezout pair for (a,−b). Let (u, v) be this Bezout pair. Then, by the definition of
a Bezout pair, u and v are integers and satisfy gcd (a,−b) = ua + v (−b).

However, Proposition 3.4.3 (h) yields gcd (a,−b) = gcd (a, b). Thus,

gcd (a, b) = gcd (a,−b) = ua + v (−b)︸ ︷︷ ︸
=(−v)b

= ua + (−v) b.

Thus, there exist two integers x and y such that gcd (a, b) = xa + yb (namely,
x = u and y = −v). This proves Theorem 3.4.6 in Case 2.

We have now proved Theorem 3.4.6 in both Cases 1 and 2, so that the theorem
always holds.

3.4.5. The universal property of the gcd

Bezout’s theorem is helpful for proving properties of gcds. Here is the most
important one, which is called the universal property of the gcd:

Theorem 3.4.9 (universal property of the gcd). Let a, b, m ∈ Z. Then, we have
the equivalence

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) .

In other words, the common divisors of a and b are precisely the divisors of
gcd (a, b). In other words, gcd (a, b) is not just the greatest among the common
divisors of a and b (if a and b are not both 0), but it also is divisible by all of
them.

Proof of Theorem 3.4.9. We must prove the two implications

(m | a and m | b) =⇒ (m | gcd (a, b))

and
(m | gcd (a, b)) =⇒ (m | a and m | b) .

The second of these two implications is easy to prove: If m | gcd (a, b), then
m | a (since m | gcd (a, b) | a) and m | b (similarly).

Lecture 9, version December 28, 2023 page 16

It thus remains to prove the first implication: i.e., to prove that

(m | a and m | b) =⇒ (m | gcd (a, b)) .

To prove this, we assume that m | a and m | b. We must show that m |
gcd (a, b).

Bezout’s theorem (Theorem 3.4.6) tells us that there exist two integers x and y
such that gcd (a, b) = xa + yb. Consider these x and y. Then, m | a | xa, so that
xa is a multiple of m. Similarly, yb is a multiple of m. Thus, xa+ yb is a multiple
of m as well (since a sum of two multiples of m is again a multiple of m). But
this is saying that gcd (a, b) is a multiple of m (since gcd (a, b) = xa + yb). In
other words, m | gcd (a, b). But this is precisely what we wanted to show. Thus,
the first implication is proved, and the proof of Theorem 3.4.9 is complete.

	Elementary number theory
	Division with remainder (cont'd)
	Congruence in terms of remainders
	The birthday lemma

	Greatest common divisors
	Definition
	Basic properties
	The Euclidean algorithm
	Bezout's theorem and the extended Euclidean algorithm
	The universal property of the gcd

