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Math 221 Winter 2023, Lecture 8: Elementary
number theory

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

3. Elementary number theory

3.3. Division with remainder

3.3.1. The theorem

What comes next is the most fundamental theorem of number theory:

Theorem 3.3.1 (division-with-remainder theorem). Let n be an integer. Let d
be a positive integer. Then, there exists a unique pair (q, r) of integers

q ∈ Z and r ∈ {0, 1, . . . , d − 1}

such that
n = qd + r.

We will prove this soon. First, let us introduce some notations:

Definition 3.3.2. Let n be an integer. Let d be a positive integer. Let (q, r) be
the pair whose existence and uniqueness is claimed in Theorem 3.3.1. Then:

• The number q is called the quotient of the division of n by d, and will
be denoted by n//d.

• The number r is called the remainder of the division of n by d, and will
be denoted by n%d.

• The pair (q, r) is called the quo-rem pair of n and d.

For now, of course, we do not yet know that these q and r exist and are
unique (because we haven’t proved the theorem yet). Thus, we will take care to
speak of “a quotient”, “a remainder” and “a quo-rem pair”, never taking their
existence and uniqueness for granted until we have proved it.

Example 3.3.3. What are 8//5 and 8%5 ? We have

8︸︷︷︸
=n

= 1︸︷︷︸
=q

· 5︸︷︷︸
=d

+ 3︸︷︷︸
=r∈{0,1,2,3,4}

,

so 8//5 = 1 and 8%5 = 3. (This is taking the uniqueness of 8//5 and 8%5
for granted, but we will prove this soon.)

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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Example 3.3.4. What are 19//5 and 19%5 ? We have 19 = 3 · 5 + 4, so
19//5 = 3 and 19%5 = 4.

Example 3.3.5. What are (−7) //5 and (−7)%5 ? We have

−7︸︷︷︸
=n

= (−2)︸ ︷︷ ︸
=q

· 5︸︷︷︸
=d

+ 3︸︷︷︸
=r∈{0,1,2,3,4}

,

so (−7) //5 = −2 and (−7)%5 = 3.

So Theorem 3.3.1 is saying that for any integer n and any positive integer d,
there is a unique quo-rem pair of n and d. Let us now prove this.

Proof of Theorem 3.3.1. We need to prove two things: that a quo-rem pair of n
and d exists, and that it is unique. Let me prove the uniqueness part first.

Proof of the uniqueness part: Fix an integer n and a positive integer d. We must
show that there is at most one quo-rem pair (q, r) of n and d. In other words,
we must show that there are no two distinct quo-rem pairs of n and d.

We shall prove this by contradiction. So we assume that (q1, r1) and (q2, r2)
are two distinct quo-rem pairs of n and d. We want to derive a contradiction.

Since (q1, r1) is a quo-rem pair of n and d, we have

q1 ∈ Z and r1 ∈ {0, 1, . . . , d − 1} and n = q1d + r1.

Since (q2, r2) is a quo-rem pair of n and d, we have

q2 ∈ Z and r2 ∈ {0, 1, . . . , d − 1} and n = q2d + r2.

Subtracting the equation n = q2d + r2 from n = q1d + r1, we find

0 = (q1d + r1)− (q2d + r2) = (r1 − r2)− (q2d − q1d)
= (r1 − r2)− (q2 − q1) d.

In other words,
r1 − r2 = (q2 − q1) d. (1)

We are in one of the following three cases:
Case 1: We have q1 < q2.
Case 2: We have q1 = q2.
Case 3: We have q1 > q2.
Let us first consider Case 1. In this case, we have q1 < q2, so that q2 − q1 >

0. Since q2 − q1 is an integer, this entails that q2 − q1 ≥ 1. We can multiply
this inequality by d (since d > 0), thus obtaining (q2 − q1) d ≥ 1d = d. In
view of (1), we can rewrite this as r1 − r2 ≥ d. However, r1 ≤ d − 1 (since
r1 ∈ {0, 1, . . . , d − 1}) and r2 ≥ 0 (since r2 ∈ {0, 1, . . . , d − 1}). Hence, r1 −
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r2︸︷︷︸
≥0

≤ r1 ≤ d − 1 < d. This contradicts r1 − r2 ≥ d. Thus, we have found a

contradiction in Case 1.
Let us next consider Case 2. In this case, we have q1 = q2. Hence, we can

rewrite (1) as r1 − r2 = (q2 − q2)︸ ︷︷ ︸
=0

d = 0, so that r1 = r2. Combining q1 = q2 with

r1 = r2, we obtain (q1, q2) = (r1, r2), which contradicts our assumption that
the two quo-rem pairs (q1, r1) and (q2, r2) are distinct. Thus, we have found a
contradiction in Case 2.

Finally, in Case 3, we have q1 > q2 and therefore q2 < q1. Thus, Case 3 is just
a copy of Case 1 with the roles of the two pairs (q1, r1) and (q2, r2) switched
(since the two quo-rem pairs (q1, r1) and (q2, r2) are playing identical roles).
Hence, we obtain a contradiction in Case 3.

We have now obtained contradictions in all three Cases 1, 2 and 3. Thus,
we always have a contradiction. Hence, our assumption was wrong. This
completes our proof of the uniqueness of the quo-rem pair of n and d.

Now, let us come to the existence part. It is reasonable to try induction, but
there is a hurdle: Induction on d does not work (there is no good way to use the
induction hypothesis), whereas induction on n cannot be used as long as n can
be negative. Fortunately, the latter hurdle is surmountable. One way around it
is to first prove the existence of a quo-rem pair in the case when n ∈ N (that is,
n ≥ 0), and afterwards generalize this result to arbitrary integers n.

So let us prove the n ∈ N case:

Lemma 3.3.6. Let n ∈ N, and let d be a positive integer. Then, there exists a
quo-rem pair of n and d.

Proof of Lemma 3.3.6. Fix d. We apply strong induction on n:
Induction step:1 Let n ∈ N. Assume (as the induction hypothesis) that Lemma

3.3.6 is proved for all nonnegative integers smaller than n instead of n. In other
words, assume that for each nonnegative integer k < n, there exists a quo-rem
pair of k and d. We must prove that Lemma 3.3.6 also holds for n, i.e., that there
exists a quo-rem pair of n and d.

If n < d, then such a pair can be explicitly constructed: it is (0, n). (Indeed,
n = 0d + n and n ∈ {0, 1, . . . , d − 1}).

Otherwise, we have n ≥ d, so that n − d ∈ N. Thus, we can apply the
induction hypothesis to n − d instead of n (since n − d < n). We conclude that
there exists a quo-rem pair of n − d and d. We denote this pair by (q, r). Then,
I claim that (q + 1, r) is a quo-rem pair of n and d. Indeed, since (q, r) is a
quo-rem pair of n − d and d, we have

n − d = qd + r.

1Recall that a strong induction needs no base case (§1.9.4, Lecture 4).
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Thus,
n = (qd + r) + d = qd + d + r = (q + 1) d + r,

which shows that (q + 1, r) is a quo-rem pair of n and d (since r ∈ {0, 1, . . . , d − 1}).
Thus, there exists a quo-rem pair of n and d. This completes our induction step,
and thus Lemma 3.3.6 is proved.

We now return to proving Theorem 3.3.1. We have shown that

• there is always at most one quo-rem pair of n and d, and

• there is at least one quo-rem pair of n and d if n ∈ N.

What remains to be done is proving that there is at least one quo-rem pair of
n and d if n < 0.

This can be done in several ways. One way is to proceed similarly to the
proof of Lemma 3.3.6, but using strong induction on −n.

Alternatively, there is a slicker argument: We can reduce the “negative n”
case to the “nonnegative n” case (which is already covered by Lemma 3.3.6).
Namely, let n ∈ Z be negative. Then, the product (1 − d) n is nonnegative
(since both factors 1 − d and n are ≤ 0), so we can apply Lemma 3.3.6 to
(1 − d) n instead of n. Thus, we conclude that there exists a quo-rem pair (q, r)
of (1 − d) n and d. This pair (q, r) satisfies

(1 − d) n = qd + r

(by the definition of a quo-rem pair). In other words,

n − dn = qd + r.

Hence,
n = dn + qd + r = (n + q) d + r.

This shows that (n + q, r) is a quo-rem pair of n and d. Hence, such a quo-rem
pair exists. Hence, we have proved the existence of a quo-rem pair in the case
when n is negative. This completes our proof of Theorem 3.3.1.

3.3.2. An application: even and odd integers

We shall now use this theorem to derive some basic properties of even and odd
numbers. Recall what these words mean:

Definition 3.3.7. (a) An integer n is said to be even if 2 | n.
(b) An integer n is said to be odd if 2 ∤ n.

In other words, an integer is called even if it is divisible by 2, and is called
odd if it is not even.

Now we shall show the following:
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Proposition 3.3.8. Let n be an integer.
(a) The integer n is even if and only if there exists some k ∈ Z such that

n = 2k.
(b) The integer n is odd if and only if there exists some k ∈ Z such that

n = 2k + 1.

Proof. Part (a) is a direct consequence of the definition of divisibility. But part
(b) is not!

So let us prove part (b). This is an “if and only if” statement, so we need to
prove both directions:

(n is odd) =⇒ (there exists some k ∈ Z such that n = 2k + 1)

and

(there exists some k ∈ Z such that n = 2k + 1) =⇒ (n is odd) .

For the sake of brevity, I shall refer to these two directions as the “=⇒” and
“⇐=” directions (respectively).

Proof of the “=⇒” direction: Assume that n is odd. By Theorem 3.3.1, there
exists a quo-rem pair (q, r) of n and 2. Consider this (q, r). By the definition of
a quo-rem pair, this pair satisfies

q ∈ Z and r ∈ {0, 1} and n = 2q + r.

If r were 0, then we would thus get n = 2q + r︸︷︷︸
=0

= 2q, which would show

that n is even; but this is impossible because n is odd. Therefore, we must have
r ̸= 0, so that r = 1 (since r ∈ {0, 1}). Thus, n = 2q + r︸︷︷︸

=1

= 2q + 1. Hence,

there exists some k ∈ Z such that n = 2k + 1 (namely, k = q). Thus we have
shown the “=⇒” direction.

Proof of the “⇐=” direction: Assume that there exists some k ∈ Z such that
n = 2k + 1. Consider this k.

We must show that n is odd. This means showing that 2 ∤ n. This means
proving that n cannot be written as 2c for an integer c.

To prove this, we assume the contrary. That is, we assume that n = 2c for
some integer c. Consider this c.

Now, the two pairs (k, 1) and (c, 0) both are quo-rem pairs of n and 2, because
we have n = 2k+ 1 and n = 2c = 2c+ 0 (and 1 and 0 belong to {0, 1}). However,
Theorem 3.3.1 says that the quo-rem pair of n and 2 is unique, so these two pairs
(k, 1) and (c, 0) must be identical. But this is absurd, since their second entries
1 and 0 are different. So we find a contradiction. This concludes our proof that
n is odd. Thus, we have shown the “⇐=” direction of Proposition 3.3.8 (b).

This completes the proof of Proposition 3.3.8 (b) (since both directions are
proved).
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Corollary 3.3.9. (a) The sum of any two even integers is even.
(b) The sum of any even integer with any odd integer is odd.
(c) The sum of any two odd integers is even.

Proof. We will only prove part (c), since the other two parts are analogous (and
even simpler).

(c) Let a and b be two odd integers. We must prove that a + b is even.
The integer a is odd. Hence, Proposition 3.3.8 (b) shows that we can write a

as a = 2k + 1 for some integer k.
Similarly, we can write b as b = 2ℓ+ 1 for some integer ℓ.
Consider these k and ℓ. Now, from a = 2k + 1 and b = 2ℓ+ 1, we obtain

a + b = (2k + 1) + (2ℓ+ 1) = 2k + 2ℓ+ 2 = 2 (k + ℓ+ 1) ,

which is clearly even. This proves Corollary 3.3.9 (c).

Remark 3.3.10. Corollary 3.3.9 (c) is a property specific to the number 2. For
example, it is not true that the sum of any two integers not divisible by 3 is
divisible by 3.

3.3.3. Basic properties of quotients and remainders

Here are some elementary facts about quotients and remainders:

Proposition 3.3.11. Let n ∈ Z, and let d be a positive integer. Then:
(a) We have n%d ∈ {0, 1, . . . , d − 1} and n%d ≡ n mod d.
(b) We have d | n if and only if n%d = 0.
(c) If c ∈ {0, 1, . . . , d − 1} satisfies c ≡ n mod d, then c = n%d.
(d) We have n = (n//d) d + (n%d).
(e) If n ∈ N, then n//d ∈ N.

Note that part (a) of this proposition can be restated as follows: The remain-
der n%d is an element of {0, 1, . . . , d − 1} that is congruent to n modulo d. Part
(c) says that, conversely, any element c of {0, 1, . . . , d − 1} that is congruent to n
modulo d must be this remainder n%d. Thus, together, these two parts uniquely
characterize the remainder n%d as the only element of {0, 1, . . . , d − 1} that is
congruent to n modulo d. This characterization is good to keep in mind, as it
describes the remainder independently of the quotient.

Proof of Proposition 3.3.11. We set

q := n//d and r := n%d.

Thus, (q, r) is a quo-rem pair of n and d (by the definition of a quo-rem pair).
In other words, we have n = qd + r and q ∈ Z and r ∈ {0, 1, . . . , n − 1}. We can
now prove all five parts of the proposition:
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(d) We have n = q︸︷︷︸
=n//d

d+ r︸︷︷︸
=n%d

= (n//d) d+ (n%d). This proves Proposition

3.3.11 (d).

(a) We have n%d = r ∈ {0, 1, . . . , d − 1}. Moreover, from n = qd + r, we
obtain r − n = r − (qd + r) = −qd, which is clearly divisible by d. Hence,
d | r − n. Equivalently, r ≡ n mod d. In other words, n%d ≡ n mod d (since
r = n%d). Thus, Proposition 3.3.11 (a) is proved (since we have shown that
n%d ∈ {0, 1, . . . , d − 1} as well).

(c) Let c ∈ {0, 1, . . . , d − 1} satisfy c ≡ n mod d. We must show that c = n%d.
From c ≡ n mod d, we obtain d | c − n. In other words, c − n = de for

some e ∈ Z. Consider this e. From c − n = de, we obtain c = n + de, so that
n = c − de = (−e) d + c. This (combined with c ∈ {0, 1, . . . , d − 1}) shows that
(−e, c) is a quo-rem pair of n and d. However, (q, r) is also a quo-rem pair of
n and d (by its definition). Since there is only one quo-rem pair of n and d (by
Theorem 3.3.1), this shows that (−e, c) = (q, r). Hence, c = r = n%d. This
proves Proposition 3.3.11 (c).

(b) Again, this is an “if and only if” statement, and we shall prove its “=⇒”
and “⇐=” directions separately:
=⇒: Assume that d | n. We must prove that n%d = 0. In other words, we

must prove that r = 0.
Indeed, d | n yields that n ≡ 0 mod d (by Proposition 3.2.3 in Lecture 7). In

other words, 0 ≡ n mod d. Since we furthermore have 0 ∈ {0, 1, . . . , d − 1}, we
can thus apply Proposition 3.3.11 (c) to c = 0, and conclude that 0 = n%d. In
other words, n%d = 0. This proves the “=⇒” direction (i.e., it proves that if
d | n, then n%d = 0).
⇐=: If n%d = 0, then d | n because

n = qd + r︸︷︷︸
=n%d=0

= qd.

This proves the “⇐=” direction. Thus, both directions are proved, so that
Proposition 3.3.11 (b) holds.

(e) Assume that n ∈ N. Recall that r ∈ {0, 1, . . . , d − 1}, so that r ≤ d− 1 < d.
But n = qd + r︸︷︷︸

<d

< qd + d. Hence, qd + d > n ≥ 0 (since n ∈ N). In other

words, qd > −d.
If we had q < 0, then we would have q ≤ −1 (since q is an integer) and

therefore qd ≤ (−1) d (since we can multiply the inequality q ≤ −1 by the
positive number d); but this would contradict qd > −d = (−1) d. Hence, we
cannot have q < 0. Thus, q ≥ 0, so that q ∈ N. In other words, n//d ∈ N

(since q = n//d). This proves Proposition 3.3.11 (e).

Quotients and remainders are closely connected to the so-called floor func-
tion:

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
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Definition 3.3.12. The integer part (aka floor) of a real number x is defined
to be the largest integer that is ≤ x. It is denoted by ⌊x⌋.

For example,

⌊3.8⌋ = 3, ⌊4.2⌋ = 4, ⌊5⌋ = 5,
⌊√

2
⌋
= 1,

⌊π⌋ = 3, ⌊0.5⌋ = 0, ⌊−1.2⌋ = −2

(make sure you understand the last example! −1 is not ≤ −1.2, but −2 is).
Now, here is the connection to quotients and remainders:

Proposition 3.3.13 (“explicit formulas” for quotient and remainder). Let n ∈
Z, and let d be a positive integer. Then,

n//d =
⌊n

d

⌋
and n%d = n − d ·

⌊n
d

⌋
.

Proof. Proposition 3.3.11 (a) yields n%d ∈ {0, 1, . . . , d − 1}. Hence, n%d ≥ 0
and n%d ≤ d − 1 < d.

Proposition 3.3.11 (d) yields n = (n//d) d + (n%d). Thus,

n = (n//d) d + (n%d)︸ ︷︷ ︸
<d

< (n//d) d + d = ((n//d) + 1) d.

Dividing both sides of this inequality by d (we can do this, since d > 0), we
obtain

n
d
< (n//d) + 1.

On the other hand,

n = (n//d) d + (n%d)︸ ︷︷ ︸
≥0

≥ (n//d) d.

Dividing both sides of this inequality by d (we can do this, since d > 0), we
obtain

n
d
≥ n//d.

Now, the integer n//d is ≤ n
d

(since
n
d
≥ n//d), but the next-larger integer

(n//d) + 1 is not (since
n
d
< (n//d) + 1). Thus, n//d is the largest integer that

is ≤ n
d

. In other words, n//d =
⌊n

d

⌋
(by the definition of the floor

⌊n
d

⌋
).

Solving the equation n = (n//d) d + (n%d) for n%d, we find

n%d = n − (n//d)︸ ︷︷ ︸
=

⌊n
d

⌋ d = n −
⌊n

d

⌋
d = n − d ·

⌊n
d

⌋
.

Thus, Proposition 3.3.13 is proved.
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3.3.4. Base-b representation of nonnegative integers

Division with remainder is the main ingredient in a feature of integers that you
may well be taking for granted, but actually needs to proved: the fact that every
integer can be uniquely expressed in decimal notation, or, more generally, in
base-b notation for any given integer b > 1.

What does this mean? For example,

3401 = 3 · 1000 + 4 · 100 + 0 · 10 + 1 · 1

= 3 · 103 + 4 · 102 + 0 · 101 + 1 · 100.

Thus, we have written the fairly large number 3401 as a pretty short sum of
powers of 10, with the coefficients being integers between 0 and 9 (commonly
known as “digits”).

This can be done for any nonnegative integer. This can also be done with
any fixed integer b > 1 instead of 10, except that the coefficients (“generalized
digits”) will then be integers between 0 and b − 1. This is called the “base-b
representation” of the integer.

For instance, let us find the base-4 representation of the integer 3401: This
will be a representation of 3401 in the form

3401 = r646 + r545 + r444 + r343 + r242 + r141 + r040,

where each ri is a “base-4 digit” (i.e., an element of {0, 1, 2, 3}). Here, we are tac-
itly assuming that 46 is the highest power of 4 that we need; but we don’t actu-
ally know this yet, so we must be prepared to add higher powers (47, 48, 49, . . .)
if needed.

How do we find these base-4 digits r0, r1, . . . , r6?
We start by identifying r0. Indeed, on the RHS2 of the equation

3401 = r646 + r545 + r444 + r343 + r242 + r141 + r040,

all but the last addends are multiples of 4, whereas the last addend is r040 = r0.
Hence, we can rewrite this equation as follows (factoring out the 4):

3401 = 4 ·
(

r645 + r544 + r443 + r342 + r241 + r140
)
+ r0.

Since r0 ∈ {0, 1, 2, 3}, this equation reveals that the pair(
r645 + r544 + r443 + r342 + r241 + r140, r0

)
is a quo-rem pair of 3401 and 4. In particular, we must have

r0 = 3401%4 = 1 and

r645 + r544 + r443 + r342 + r241 + r140 = 3401//4 = 850.

2“RHS” means “right hand side”.
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Thus, we have identified the last base-4 digit r0 as 1. In order to find the
remaining digits, we analyze the latter equation

850 = r645 + r544 + r443 + r342 + r241 + r140.

In this equation, the only addend on the RHS not divisible by 4 is r140 = r1, so
we can rewrite this equation as

850 = 4 ·
(

r644 + r543 + r442 + r341 + r240
)
+ r1,

and thus conclude that

r1 = 850%4 = 2 and

r644 + r543 + r442 + r341 + r240 = 850//4 = 212.

Thus, we have identified the base-4 digit r1 as 2. In order to find the remain-
ing digits, we analyze the latter equation

212 = r644 + r543 + r442 + r341 + r240.

In this equation, the only addend on the RHS not divisible by 4 is r240 = r2, so
we can rewrite this equation as

212 = 4 ·
(

r643 + r542 + r441 + r340
)
+ r2,

and thus conclude that

r2 = 212%4 = 0 and

r643 + r542 + r441 + r340 = 212//4 = 53.

Thus, we have identified the base-4 digit r2 as 0. In order to find the remain-
ing digits, we analyze the latter equation

53 = r643 + r542 + r441 + r340.

In this equation, the only addend on the RHS not divisible by 4 is r340 = r3, so
we can rewrite this equation as

53 = 4 ·
(

r642 + r541 + r440
)
+ r3,

and thus conclude that

r3 = 53%4 = 1 and

r642 + r541 + r440 = 53//4 = 13.
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Thus, we have identified the base-4 digit r3 as 1. In order to find the remain-
ing digits, we analyze the latter equation

13 = r642 + r541 + r440.

In this equation, the only addend on the RHS not divisible by 4 is r440 = r4, so
we can rewrite this equation as

13 = 4 ·
(

r641 + r540
)
+ r4,

and thus conclude that

r4 = 13%4 = 1 and

r641 + r540 = 13//4 = 3.

Thus, we have identified the base-4 digit r4 as 1. In order to find the remain-
ing digits, we analyze the latter equation

3 = r641 + r540.

In this equation, the only addend on the RHS not divisible by 4 is r540 = r5, so
we can rewrite this equation as

3 = 4 ·
(

r640
)
+ r5,

and thus conclude that

r5 = 3%4 = 3 and

r640 = 3//4 = 0.

Thus, we have identified the base-4 digit r5 as 3. Moreover, the equation
r640 = 0 shows that r6 = 0.

Thus, altogether, we have found the representation of 3401 we were looking
for:

3401 = r6︸︷︷︸
=0

46 + r5︸︷︷︸
=3

45 + r4︸︷︷︸
=1

44 + r3︸︷︷︸
=1

43 + r2︸︷︷︸
=0

42 + r1︸︷︷︸
=2

41 + r0︸︷︷︸
=1

40.

In analogy to the decimal system, we can state this as “the number 3401
written in base-4 is 0311021” (since the base-4 digits r6, r5, . . . , r0 have been
identified as 0, 3, 1, 1, 0, 2, 1). Commonly, one would omit the leading zeroes, so
this would become 311021.

The method we just used can be used for any given integer b > 1 instead of
4: To find the “base-b digits” of a nonnegative integer n, we first divide n by b
with remainder, then divide the resulting quotient again by b with remainder,
then divide the resulting quotient again by b with remainder, and so on, until
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we are left with the quotient 0. The remainders obtained in the process will
then be the base-b digits of n (from right to left). This process must eventually
come to an end because (since b > 1) each quotient will be smaller than the
preceding one.

We can summarize this as a theorem:

Theorem 3.3.14. Let b > 1 be an integer. Let n ∈ N. Then:
(a) We can write n in the form

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0

with
k ∈ N and r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .

(b) If n < bk+1 for some k ∈ N, then we can write n in the form

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0

with
r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .

(c) These r0, r1, . . . , rk are unique (when k is given). Moreover, they can be
explicitly computed by the formula

ri =
(

n//bi
)

%b for each i ∈ {0, 1, . . . , k} .

That is, they can be explicitly computed by

r0 = n%b,
r1 = (n//b)%b,

r2 =
(

n//b2
)

%b,

r3 =
(

n//b3
)

%b,

. . . ,

rk =
(

n//bk
)

%b.

Proof. Forget that n was fixed (but keep b fixed). We shall prove the following two
claims:

Claim 1: Let n ∈ N and k ∈ N be such that n < bk+1. Then, we can write n
in the form

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0

with
r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .
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Claim 2: Let n ∈ N and k ∈ N. Assume that n has been written in the form

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0

with
r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .

Then,
ri =

(
n//bi

)
%b for each i ∈ {0, 1, . . . , k} .

Once these two claims are proved, Theorem 3.3.14 will follow, because

• Theorem 3.3.14 (b) follows directly from Claim 1.

• Theorem 3.3.14 (c) follows directly from Claim 2.

• Theorem 3.3.14 (a) follows from Claim 1 (since we can pick k ∈ N high enough
that n < bk+1 holds3).

Hence, it remains to prove Claim 1 and Claim 2.

Proof of Claim 1. We proceed by induction on k:
Base case: For k = 0, Claim 1 is saying that every n ∈ N satisfying n < b can be

written in the form n = r0 · b0 with r0 ∈ {0, 1, . . . , b − 1}. But this is obvious: Since
n ∈ N and n < b, we have n ∈ {0, 1, . . . , b − 1}, and thus we can just pick r0 = n and
have n = r0 · b0 (since r0 · b0︸︷︷︸

=1

= r0 = n). Hence, Claim 1 is proved for k = 0.

Induction step: We make a step from k − 1 to k. Thus, we let k be a positive integer.
Assume (as the induction hypothesis) that Claim 1 holds for k − 1 instead of k. We
must now show that Claim 1 holds for k as well.

So let n ∈ N be such that n < bk+1. Then, Proposition 3.3.11 (e) (applied to d = b)
yields n//b ∈ N. Moreover, n%b ∈ {0, 1, . . . , b − 1} (by the definition of a remainder).
Hence, n%b ≥ 0. Now, Proposition 3.3.11 (d) (applied to d = b) yields

n = (n//b) b + (n%b)︸ ︷︷ ︸
≥0

≥ (n//b) b.

Hence, (n//b) b ≤ n < bk+1. Dividing this inequality by the positive number b, we
obtain n//b < bk+1/b = bk.

Now, recall our induction hypothesis, which says that Claim 1 holds for k− 1 instead
of k. In other words, if m ∈ N is such that m < b(k−1)+1, then we can write m in the
form4

m = sk−1 · bk−1 + sk−2 · bk−2 + · · ·+ s1 · b1 + s0 · b0

3Indeed, the assumption b > 1 ensures that the sequence
(
b0, b1, b2, . . .

)
is strictly increasing

and thus eventually outgrows any given integer, including our n. Or we can argue this
directly: An easy induction (on n) shows that n < bn+1, and thus we can simply take k = n.

4We are deliberately using the letters m and si instead of n and ri here, since the letter n is
already taken (and the letters ri will be needed for something different).
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with
s0, s1, . . . , sk−1 ∈ {0, 1, . . . , b − 1} .

We can apply this to m = n//b (since n//b ∈ N and n//b < bk = b(k−1)+1), and
conclude that we can write n//b in the form

n//b = sk−1 · bk−1 + sk−2 · bk−2 + · · ·+ s1 · b1 + s0 · b0

with
s0, s1, . . . , sk−1 ∈ {0, 1, . . . , b − 1} .

Let us do this. Thus,

n = (n//b)︸ ︷︷ ︸
=sk−1·bk−1+sk−2·bk−2+···+s1·b1+s0·b0

b + (n%b)

=
(

sk−1 · bk−1 + sk−2 · bk−2 + · · ·+ s1 · b1 + s0 · b0
)

b + (n%b)

= sk−1 · bk + sk−2 · bk−1 + · · ·+ s1 · b2 + s0 · b1 + (n%b)︸ ︷︷ ︸
=(n%b)·b0

= sk−1 · bk + sk−2 · bk−1 + · · ·+ s1 · b2 + s0 · b1 + (n%b) · b0.

Note that the coefficients n%b, s0, s1, . . . , sk−1 on the right hand side here all belong to
{0, 1, . . . , b − 1} (as we know). Thus, through this equality, we have written n in the
form

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0

with
r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1}

(namely, with r0 = n%b and r1 = s0 and r2 = s1 and . . . and rk−1 = sk−2 and rk = sk−1).
Hence, n can be written in this form.

We have thus proved that if n ∈ N is such that n < bk+1, then we can write n in the
form

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0

with
r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1} .

In other words, we have proved Claim 1 for our k. This completes the induction step.
Thus, Claim 1 is proved by induction.

Proof of Claim 2. We could prove this by induction as well, but let us instead go for a
direct proof.

By assumption, we have

n = rk · bk + rk−1 · bk−1 + · · ·+ r1 · b1 + r0 · b0 =
k

∑
j=0

rj · bj =
k

∑
j=0

rjbj.

Now, we must prove that ri =
(
n//bi)%b for each i ∈ {0, 1, . . . , k}. So let us fix an

i ∈ {0, 1, . . . , k}.
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We have

n =
k

∑
j=0

rjbj =
i−1

∑
j=0

rjbj +
k

∑
j=i

rjbj (2)

(here, we have split our sum into two parts: one part which contains the addends for
j ∈ {0, 1, . . . , i − 1}, and one part which contains the addends for j ∈ {i, i + 1, . . . , k}).
We can rewrite the second sum as follows:

k

∑
j=i

rj bj︸︷︷︸
=bibj−i

=
k

∑
j=i

rjbibj−i = bi
k

∑
j=i

rjbj−i.

Thus, we can rewrite (2) as

n =
i−1

∑
j=0

rjbj + bi
k

∑
j=i

rjbj−i. (3)

Let us set

q′ :=
k

∑
j=i

rjbj−i and r′ :=
i−1

∑
j=0

rjbj.

With these notations, we can rewrite (3) as

n = r′ + biq′ = q′bi + r′. (4)

Note that both sums q′ =
k
∑
j=i

rjbj−i and r′ =
i−1
∑

j=0
rjbj are integers (indeed, bj−i is always

an integer in the first sum, since j ≥ i entails j − i ∈ N).
We have assumed that r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1}. In particular, the integers

r0, r1, . . . , rk are all ≥ 0 and ≤ b − 1. In other words, each j ∈ {0, 1, . . . , k} satisfies

rj ≥ 0 and rj ≤ b − 1. Hence, r′ =
i−1
∑

j=0
rjbj ≥ 0 (since all the integers rj are ≥ 0, and so

is b) and

r′ =
i−1

∑
j=0

rj︸︷︷︸
≤b−1

bj ≤
i−1

∑
j=0

(b − 1) bj = (b − 1)
i−1

∑
j=0

bj

︸ ︷︷ ︸
=b0+b1+···+bi−1

=
bi − 1
b − 1

(by Corollary 1.6.3 from Lecture 3,
applied to b and i instead of q and n)

= (b − 1) · bi − 1
b − 1

= bi − 1.

Thus, r′ ∈
{

0, 1, . . . , bi − 1
}

.
The equality (4) says that n = q′bi + r′. In light of q′ ∈ Z and r′ ∈

{
0, 1, . . . , bi − 1

}
,

this shows that (q′, r′) is a quo-rem pair of n and bi. Therefore, in particular, q′ is the
quotient of the division of n by bi. In other words,

q′ = n//bi.
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However,

q′ =
k

∑
j=i

rjbj−i = rib0 + ri+1b1 + ri+2b2 + · · ·+ rkbk−i

= ri b0︸︷︷︸
=1

+
(

ri+1b1 + ri+2b2 + · · ·+ rkbk−i
)

︸ ︷︷ ︸
=(ri+1b0+ri+2b1+···+rkbk−i−1)b

= ri +
(

ri+1b0 + ri+2b1 + · · ·+ rkbk−i−1
)

b.

Thus, q′ − ri =
(
ri+1b0 + ri+2b1 + · · ·+ rkbk−i−1) b, which is clearly divisible by b. That

is, b | q′ − ri. In other words, q′ ≡ ri mod b. In other words, ri ≡ q′ mod b. Since
we furthermore have ri ∈ {0, 1, . . . , b − 1} (because r0, r1, . . . , rk ∈ {0, 1, . . . , b − 1}), we
thus conclude that ri = q′%b (by Proposition 3.3.11 (c), applied to q′, b and ri instead
of n, d and c). In view of q′ = n//bi, we can rewrite this as ri =

(
n//bi)%b.

Forget that we fixed i. We thus have shown that ri =
(
n//bi)%b for each i ∈

{0, 1, . . . , k}. This proves Claim 2.

Now, both Claims 1 and 2 are proved. As explained above, this completes the proof
of Theorem 3.3.14.

The inductive proof of Claim 1 in the above proof is just a formal avatar of the
algorithm for writing a nonnegative integer n in base b that we demonstrated on an
example before the theorem. The formula ri =

(
n//bi)%b from Claim 2, on the other

hand, gives an alternative way of computing each base-b digit of n directly.
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