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Math 221 Winter 2023, Lecture 7: Elementary
number theory

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

3. Elementary number theory

Number theory is commonly understood to be the study of integers, and par-
ticularly of those properties and features of integers that do not make much
sense for rational, real or complex numbers. Divisibility is one such property;
prime numbers are another. In this course, we will only cover the very basics of
elementary number theory; there is no shortage of texts that go much deeper
(some freely available ones are [Stein08], [Shoup08] and [Martin17]).

3.1. Divisibility

3.1.1. Definition

We begin by defining the one most important concept in number theory:

Definition 3.1.1. Let a and b be two integers.
We write a | b (and we say that “a divides b”, or “b is divisible by a”, or

“b is a multiple of a”, or “a is a divisor of b”; yes, all these statements are
equivalent) if there exists an integer c such that b = ac.

We write a ∤ b if we don’t have a | b.

Example 3.1.2. (a) We have 4 | 12, because 12 = 4 · 3.
(b) We have 4 ∤ 11, because there exists no integer c such that 11 = 4c.
(c) We have 1 | b for every integer b, since b = 1 · b.
(d) We have a | a for every integer a, since a = a · 1. In particular, 0 | 0,

which is somewhat controversial (but true in our opinion). (Some authors

deliberately exclude 0 as a divisor on the grounds that
0
0

is not well-defined,
but I believe that making this an exception is more trouble than it is worth.)

(e) We have a | 0 for every integer a, since 0 = a · 0.
(f) An integer b satisfies 0 | b if and only if b = 0.

The well-known concepts of even and odd integers are instances of divisibil-
ity:

Definition 3.1.3. (a) An integer n is said to be even if 2 | n.
(b) An integer n is said to be odd if 2 ∤ n.

You probably know a few things about even and odd numbers already: e.g.,

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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1. The sum of two even numbers is even.

2. The sum of an even with an odd number is odd.

3. The sum of two odd numbers is even.

Strictly speaking, these claims (particularly the third one) are not at all ob-
vious. So we need to understand divisibility better to even convince ourselves
that such fundamental statements are true. We will do this in Lecture 8. First,
let us prove some basic facts about divisibility.

3.1.2. Basic properties

In the next proposition, we shall let abs x denote the absolute value of a real
number x. Thus,

abs x =

{
x, if x ≥ 0;
−x, if x < 0.

This absolute value abs x is normally called |x|, but I believe that writing “abs a |
abs b” is less confusing than writing “|a| | |b|” (where four of the bars stand for
absolute values, while the middle bar stands for divisibility).

Proposition 3.1.4. Let a and b be two integers. Then:
(a) We have a | b if and only if abs a | abs b.
(b) If a | b and b ̸= 0, then abs a ≤ abs b.
(c) If a | b and b | a, then abs a = abs b.

(d) Assume that a ̸= 0. Then, a | b if and only if
b
a
∈ Z.

Proof. (a) Proposition 3.1.4 (a) says that the divisibility a | b does not depend
on the signs of a and b; in other words, it says that we can replace the numbers
a and b by their absolute values without changing the truth (or falsity) of a | b.

Clearly, in order to prove this, it suffices to show the following two state-
ments:

1. We can replace a by −a without changing the truth (or falsity) of a | b;

2. We can replace b by −b without changing the truth (or falsity) of a | b;

But both of these statements are easy:
For the first statement, we assume that a | b. Thus, b = ac for some integer

c (by the definition of “a | b”). Hence, for this integer c, we have b = ac =
(−a) (−c), which allows us to conclude that −a | b (since −c is an integer, too).
Thus, we have shown that a | b implies −a | b. Conversely, a similar argument
shows that −a | b implies a | b (indeed, it is the same argument with the roles
of a and −a swapped, because − (−a) = a). Thus, the statements a | b and
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−a | b are equivalent. In other words, we can replace a by −a without changing
the truth (or falsity) of a | b. This proves the first of our above two statements.

The proof of the second statement is similar. (This time, you need to argue
that a | b implies a | −b. Again, write b as b = ac, and conclude that −b =
−ac = a (−c), so that a | −b.)

Thus, both statements are proved, so that the proof of Proposition 3.1.4 (a) is
complete.

(b) Assume that a | b and b ̸= 0. We must show that abs a ≤ abs b.
Let x = abs a and y = abs b. Thus, x is a nonnegative integer and y is a

positive integer (since b ̸= 0). Thus, x ≥ 0 and y > 0.
Proposition 3.1.4 (a) yields that abs a | abs b (since a | b). In other words, x | y

(since x = abs a and y = abs b). In other words, y = xz for some integer z.
Consider this z.

If we had z ≤ 0, then we would have y = x︸︷︷︸
≥0

z︸︷︷︸
≤0

≤ 0 (by the standard

rules for inequalities), which would contradict y > 0. Hence, we cannot have
z ≤ 0. Thus, z > 0, so that z ≥ 1 (since z is an integer). Hence, xz ≥ x1
(since x ≥ 0 allows us to multiply any inequality by x without having to flip
the sign). Therefore, y = xz ≥ x1 = x. In other words, x ≤ y. In other words,
abs a ≤ abs b (since x = abs a and y = abs b). This proves Proposition 3.1.4 (b).

(c) Let a | b and b | a. We must prove that abs a = abs b.
If a = 0, then this is easily done (because if a = 0, then 0 = a | b quickly leads

to b = 0, and therefore a = 0 = b, so that abs a = abs b).
Likewise, this is easily done if b = 0.
It remains to handle the third possible case, which is when both a and b are

̸= 0. Consider this case. In this case, Proposition 3.1.4 (b) yields abs a ≤ abs b
(since a | b and b ̸= 0). However, we can also apply Proposition 3.1.4 (b) with
the roles of a and b interchanged (since b | a and a ̸= 0), and thus obtain abs b ≤
abs a. Combining this with abs a ≤ abs b, we find abs a = abs b. Proposition
3.1.4 (c) is thus proved.

(d) This is quite straightforward:
Assume that a | b. Thus, there exists some integer c such that b = ac (by the

definition of “a | b”). This c must then be
b
a

(since b = ac implies c =
b
a

in view

of a ̸= 0). Hence,
b
a

is an integer, i.e., we have
b
a
∈ Z.

Forget that we assumed a | b. We thus have shown that
b
a
∈ Z if a | b. The

same argument (done in reverse) yields that conversely, if
b
a
∈ Z, then a | b.

Combining these two facts, we conclude that a | b if and only if
b
a
∈ Z. This

proves Proposition 3.1.4 (d).
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This was a warm-up (if somewhat laborious to write up). Here are some
slightly more substantial properties of divisibility:

Theorem 3.1.5 (rules for divisibility). (a) We have a | a for each a ∈ Z. (This
is called reflexivity of divisibility.)

(b) If a, b, c ∈ Z satisfy a | b and b | c, then a | c. (This is called transitivity
of divisibility.)

(c) If a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2, then a1a2 | b1b2. (This is
called multiplying two divisibilities.)

(d) If d, a, b ∈ Z satisfy d | a and d | b, then d | a + b. (This is often restated
as “a sum of two multiples of d is again a multiple of d”.)

Proof. (a) Let a ∈ Z. Then, a = a · 1, so that a | a (since 1 is an integer). This
proves Theorem 3.1.5 (a).

(b) Let a, b, c ∈ Z satisfy a | b and b | c.
From a | b, we see that there exists an integer x such that b = ax.
From b | c, we see that there exists an integer y such that c = by.
Consider these integers x and y. Now,

c = b︸︷︷︸
=ax

y = axy.

Hence, there exists some integer z such that c = az (namely, z = xy). This
shows that a | c. Theorem 3.1.5 (b) is thus proven.

(c) Let a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2.
From a1 | b1, we see that b1 = a1c1 for some integer c1.
From a2 | b2, we see that b2 = a2c2 for some integer c2.
Consider these integers c1 and c2. Now,

b1︸︷︷︸
=a1c1

b2︸︷︷︸
=a2c2

= a1c1a2c2 = (a1a2) (c1c2)︸ ︷︷ ︸
an integer

.

Thus, a1a2 | b1b2. This proves Theorem 3.1.5 (c).

(d) Let d, a, b ∈ Z satisfy d | a and d | b.
From d | a, we see that a = dx for some integer x.
From d | b, we see that b = dy for some integer y.
Consider these integers x and y. Now,

a + b = dx + dy = d (x + y)︸ ︷︷ ︸
an integer

.

Thus, d | a + b. This proves Theorem 3.1.5 (d).
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Theorem 3.1.5 (b) tells us that divisibilities can be chained together: If a | b
and b | c, then a | c. Therefore, you will often see a statement of the form “a | b
and b | c” rewritten as “a | b | c”, just like two inequalities a ≤ b and b ≤ c can
be chained together to form a ≤ b ≤ c. More generally, the statement

“a1 | a2 | · · · | ak”

shall mean that each of the numbers a1, a2, . . . , ak divides the next (i.e., that
a1 | a2 and a2 | a3 and so on, ending with ak−1 | ak). By induction on k, it is easy
to see that such a chain of divisibilities always entails a1 | ak.

How can you spot divisibilities between actual numbers? For small values of
a, there are several known divisibility criteria, which give simple methods to

check whether a given integer b is divisible by a (without computing
b
a

). Here
are some:

Theorem 3.1.6. Let b ∈ N. Write b in decimal notation. Then:
(a) We have 2 | b if and only if the last digit of b is 0 or 2 or 4 or 6 or 8.
(b) We have 5 | b if and only if the last digit of b is 0 or 5.
(c) We have 10 | b if and only if the last digit of b is 0.
(d) We have 3 | b if and only if the sum of the digits of b is divisible by 3.
(e) We have 9 | b if and only if the sum of the digits of b is divisible by 9.

Example 3.1.7. Let b = 10835. Then, 2 ∤ b, since the last digit of b is neither
0 nor 2 nor 4 nor 6 nor 8 (but 5). However, 5 | b, since the last digit of b is 0
or 5. Do we have 3 | b ? The sum of the digits of b is 1 + 0 + 8 + 3 + 5 = 17,
which is not divisible by 3. Thus, b is not divisible by 3. Hence, b is not
divisible by 9 either, because if we had 9 | b, then we would get 3 | 9 | b (by
Theorem 3.1.5 (b)), which would contradict the previous sentence.

How do we prove Theorem 3.1.6?
The easiest part is part (c): If you multiply a number (written in decimal) by

10, then its decimal representation just grows a new digit 0 at the end. Thus,
if 10 | b, then the last digit of b is 0. Conversely, if the last digit of b is 0, then
b = 10b′, where b′ is the number b with its last digit removed. For example,
390 = 10 · 39.

Parts (a) and (b) of Theorem 3.1.6 are somewhat trickier, and parts (d) and (e)
more so. To get simple proofs for these parts, we will now introduce another
type of relation between integers, known as congruence modulo n.

3.2. Congruence modulo n

3.2.1. Definition
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Definition 3.2.1. Let n, a, b ∈ Z. We say that a is congruent to b modulo n if
and only if n | a − b.

We shall use the notation “a ≡ b mod n” for “a is congruent to b modulo
n”.

We shall use the notation “a ̸≡ b mod n” for “a is not congruent to b mod-
ulo n”.

Example 3.2.2. (a) Is 3 ≡ 7 mod 2 ? This would mean that 2 | 3 − 7, which is
true (since 3 − 7 = −4 = 2 · (−2)). So yes, we do have 3 ≡ 7 mod 2.

(b) Is 3 ≡ 6 mod 2 ? This would mean that 2 | 3 − 6, which is false (since
3 − 6 = −3 is not divisible by 2). So we have 3 ̸≡ 6 mod 2.

(c) We have a ≡ b mod 1 for any integers a and b. This is because 1 | a − b
(since 1 divides every integer).

(d) Two integers a and b satisfy a ≡ b mod 0 if and only if a = b (since 0
divides only 0 itself).

(e) For any two integers a and b, we have a + b ≡ a − b mod 2, since
(a + b)− (a − b) = 2b is clearly divisible by 2.

The word “modulo” in the phrase “a is congruent to b modulo n” has been
invented by Gauss and should be read as something like “with respect to”. You
can translate the statement “a is congruent to b modulo n” as “a equals b up
to a multiple of n”. Indeed, the definition of congruence can be restated as
follows:

a ≡ b mod n if and only if a = b + nc for some c ∈ Z.

As we will soon see, congruence modulo 2 is essentially parity:

• Two even numbers are always congruent (to each other) modulo 2.

• Two odd numbers are always congruent (to each other) modulo 2.

• An even number is never congruent to an odd number modulo 2.

We will soon prove this.

3.2.2. Basic properties

First, we shall prove some fundamental properties of congruence.

Proposition 3.2.3. Let n, a ∈ Z. Then, a ≡ 0 mod n if and only if n | a.

Proof. By the definition of congruence, we have the following equivalences:

(a ≡ 0 mod n) ⇐⇒ (n | a − 0) ⇐⇒ (n | a) .

Proposition 3.2.3 thus follows.
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Proposition 3.2.4. Let n ∈ Z. Then:
(a) We have a ≡ a mod n for every a ∈ Z. (This is called the reflexivity of

congruence.)
(b) If a, b ∈ Z satisfy a ≡ b mod n, then b ≡ a mod n. (This is called the

symmetry of congruence.)
(c) If a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

(This is called the transitivity of congruence.)
(d) If a1, a2, b1, b2 ∈ Z satisfy

a1 ≡ b1 mod n and a2 ≡ b2 mod n,

then

a1 + a2 ≡ b1 + b2 mod n; (1)
a1 − a2 ≡ b1 − b2 mod n; (2)

a1a2 ≡ b1b2 mod n. (3)

(In other words, two congruences modulo n can be added, subtracted or
multiplied.)

(e) Let m ∈ Z be such that m | n. If a, b ∈ Z satisfy a ≡ b mod n, then
a ≡ b mod m.

Proof. (a) Let a ∈ Z. Then, n | a − a because a − a = 0 = n · 0. But this means
that a ≡ a mod n. Thus, Proposition 3.2.4 (a) follows.

(b) Let a, b ∈ Z be such that a ≡ b mod n. Thus, n | a − b.
We must prove that b ≡ a mod n, i.e., that n | b − a.
However, b − a = (a − b) · (−1), so that a − b | b − a. Hence, n | a − b | b − a.

Therefore, by the transitivity of divisibility, n | b − a. But this means precisely
that b ≡ a mod n. Thus, Proposition 3.2.4 (b) is proved.

(c) Let a, b, c ∈ Z be such that a ≡ b mod n and b ≡ c mod n.
From a ≡ b mod n, we obtain n | a − b.
From b ≡ c mod n, we obtain n | b − c.
Recall that a sum of two multiples of n is again a multiple of n (this is Theo-

rem 3.1.5 (d)). Thus, from n | a − b and n | b − c, we obtain n | (a − b) + (b − c).
Since (a − b) + (b − c) = a − c, we can rewrite this as n | a − c. In other words,
a ≡ c mod n. This proves Proposition 3.2.4 (c).

(d) Let a1, a2, b1, b2 ∈ Z satisfy

a1 ≡ b1 mod n and a2 ≡ b2 mod n.

Thus, n | a1 − b1 and n | a2 − b2.
From n | a1 − b1, we see that a1 − b1 = nc1 for some integer c1.
From n | a2 − b2, we see that a2 − b2 = nc2 for some integer c2.
Consider these integers c1 and c2.
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From a1 − b1 = nc1, we obtain a1 = b1 + nc1. Similarly, a2 = b2 + nc2.
Adding the equalities a1 = b1 + nc1 and a2 = b2 + nc2 together, we find

a1 + a2 = (b1 + nc1) + (b2 + nc2) = b1 + b2 + n (c1 + c2) .

Thus, a1 + a2 differs from b1 + b2 by a multiple of n (namely, by n (c1 + c2)). In
other words, n | (a1 + a2)− (b1 + b2). Hence,

a1 + a2 ≡ b1 + b2 mod n.

Subtracting the equalities a1 = b1 + nc1 and a2 = b2 + nc2 from one another,
we obtain

a1 − a2 = (b1 + nc1)− (b2 + nc2) = b1 − b2 + n (c1 − c2) .

Thus, a1 − a2 differs from b1 − b2 by a multiple of n (namely, by n (c1 − c2)).
Hence,

a1 − a2 ≡ b1 − b2 mod n.

Multiplying the equalities a1 = b1 + nc1 and a2 = b2 + nc2 together, we find

a1a2 = (b1 + nc1) (b2 + nc2) = b1b2 + b1nc2 + nc1b2 + nc1nc2

= b1b2 + n (b1c2 + c1b2 + nc1c2) .

Thus, a1a2 differs from b1b2 by a multiple of n (namely, by n (b1c2 + c1b2 + nc1c2)).
Therefore,

a1a2 ≡ b1b2 mod n.

Altogether, we have proved all claims of Proposition 3.2.4 (d) now.

(e) Let m ∈ Z be such that m | n. Let a, b ∈ Z satisfy a ≡ b mod n.
Thus, n | a − b. Hence, m | n | a − b, so that m | a − b (by the transitivity

of divisibility). But this means that a ≡ b mod m. Thus, Proposition 3.2.4 (e)
follows.

Proposition 3.2.4 (b) says that congruences can be turned around: From
a ≡ b mod n, we can always obtain b ≡ a mod n. (This is very different from
divisibilities, for which a | b almost never implies b | a.)

Proposition 3.2.4 (c) says that congruences can be chained together: From
a ≡ b mod n and b ≡ c mod n, we can always obtain a ≡ c mod n. This is
analogous to Theorem 3.1.5 (b), and leads to a similar convention: Instead
of writing “a ≡ b mod n and b ≡ c mod n”, we will often just write “a ≡ b ≡
c mod n”, understanding that (by Proposition 3.2.4 (c)) this chain of congruences
automatically implies a ≡ c mod n. More generally, the statement

“a1 ≡ a2 ≡ · · · ≡ ak mod n”
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shall mean that each of the numbers a1, a2, . . . , ak is congruent to the next mod-
ulo n (i.e., that ai ≡ ai+1 mod n for each i ∈ {1, 2, . . . , k − 1}). By induction on k,
it is easy to see that such a chain of congruences always entails a1 ≡ ak mod n
(and, better yet: ai ≡ aj mod n for all i and j).

Note that we can only chain together two congruences modulo the same n,
not two congruences modulo two different n’s. For example, if we know that
a ≡ b mod 2 and b ≡ c mod 3, then we cannot conclude any congruence between
a and c.

Proposition 3.2.4 (d) says that congruences modulo n (for a fixed integer n)
can be added, subtracted and multiplied together (just like equalities). Before
you get over-enthusiastic, keep in mind that

• they cannot be divided by one another: We have 2 ≡ 0 mod 2 and 2 ≡
2 mod 2 but 2/2 ̸≡ 0/2 mod 2.

• they cannot be taken to each other’s power: We have 2 ≡ 2 mod 2 and
2 ≡ 0 mod 2 but 22 ̸≡ 20 mod 2.

However, we can take a congruence to a k-th power for a fixed k ∈ N:

Exercise 1. Let n, a, b ∈ Z be such that a ≡ b mod n. Let k ∈ N. Prove that
ak ≡ bk mod n.

This exercise is Exercise 1 (b) on homework set #3.

Now, let us prove Theorem 3.1.6 (e), restating it as follows:

Proposition 3.2.5. Let m ∈ N. Let s be the sum of the digits of m written in
decimal. (For instance, if m = 302, then s = 3 + 0 + 2 = 5.)

Then, 9 | m if and only if 9 | s.

Proof. Let the integer m have decimal representation mdmd−1 · · ·m0 (where md
is the leading digit). Thus,

m = md · 10d + md−1 · 10d−1 + · · ·+ m0 · 100 and
s = md + md−1 + · · ·+ m0.

However, 10 ≡ 1 mod 9 (since 10 − 1 = 9 is divisible by 9). Hence, by Ex-
ercise 1, we have 10k ≡ 1k mod 9 for every k ∈ {0, 1, . . . , d}. Multiplying this
congruence with the obvious congruence mk ≡ mk mod 9, we obtain1

mk · 10k ≡ mk · 1k mod 9 for every k ∈ {0, 1, . . . , d} .

1The reason why we can multiply two congruences together is Proposition 3.2.4 (d) (specifi-
cally, (3)).
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In other words,

mk · 10k ≡ mk mod 9 for every k ∈ {0, 1, . . . , d}

(since mk · 1k︸︷︷︸
=1

= mk). In other words, we have

md · 10d ≡ md mod 9;

md−1 · 10d−1 ≡ md−1 mod 9;

md−2 · 10d−2 ≡ md−2 mod 9;
. . . ;

m0 · 100 ≡ m0 mod 9.

Adding these d + 1 many congruences together, we obtain2

md · 10d + md−1 · 10d−1 + · · ·+ m0 · 100 ≡ md + md−1 + · · ·+ m0 mod 9.

In other words,
m ≡ s mod 9

(since m = md · 10d + md−1 · 10d−1 + · · ·+ m0 · 100 and s = md + md−1 + · · ·+
m0). Turning this congruence around (i.e., applying Proposition 3.2.4 (b)), we
obtain s ≡ m mod 9.

Now, if 9 | m, then m ≡ 0 mod 9 (by Proposition 3.2.3), whence s ≡ m ≡
0 mod 9 (here we are tacitly using Proposition 3.2.4 (c)), which entails 9 | s
(again by Proposition 3.2.3). Thus, we have shown that if 9 | m, then 9 | s.

Conversely, if 9 | s, then s ≡ 0 mod 9 (by Proposition 3.2.3), whence m ≡
s ≡ 0 mod 9, which in turn entails 9 | m (by Proposition 3.2.3). Thus, we have
shown that if 9 | s, then 9 | m.

Now we have proved that each of the statements 9 | m and 9 | s implies
the other. In other words, we have 9 | m if and only if 9 | s. This proves the
proposition.

In other words, Theorem 3.1.6 (e) is proven. A similar argument (with 9
replaced by 3) can be used to prove Theorem 3.1.6 (d). In fact, s ≡ m mod 9
entails s ≡ m mod 3 by Proposition 3.2.4 (e), because 3 | 9.

Parts (a) and (b) of Theorem 3.1.6 can be proved along similar lines, but are
in fact easier. Indeed, if m ∈ N has decimal representation mdmd−1 · · ·m0,
then m ≡ m0 mod 10 (since the number m − m0 has decimal representation
mdmd−1 · · ·m10 and thus is divisible by 10), and therefore (by Proposition 3.2.4
(e)) we have m ≡ m0 mod 2 and m ≡ m0 mod 5 as well.

2The reason why we can add two congruences together is Proposition 3.2.4 (d) (specifically,
(1)). To be very pedantic, we have to apply (1) several times, since we are adding not two
but d + 1 many congruences together.
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