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Math 221 Winter 2023, Lecture 5: Induction

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

1. Induction and recursion (cont’d)

1.9. Strong induction (cont’d)

1.9.1. Example: Paying with 3-cent and 5-cent coins

Last time, we discussed the following variant(s) of mathematical induction:

Theorem 1.9.3 (Principle of Strong Induction, standard form). Let b be an
integer.

Let P (n) be a mathematical statement defined for each integer n ≥ b.
Assume the following:

1. “Base case”: The statement P (b) holds.

2. “Induction step”: For each integer n > b, the implication

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (n − 1)) =⇒ P (n)

holds.

Then, the statement P (n) holds for every integer n ≥ b.

Theorem 1.9.4 (Principle of Strong Induction, baseless form). Let b be an
integer.

Let P (n) be a mathematical statement defined for each integer n ≥ b.
Assume the following:

• “Induction step:” For each integer n ≥ b, the implication

(P (b) AND P (b + 1) AND P (b + 2) AND · · · AND P (n − 1)) =⇒ P (n)

holds.

Then, the statement P (n) holds for every integer n ≥ b.

Here is another example of how strong induction can be used:

Exercise 1. Assume that you have 3-cent coins and 5-cent coins (each in infi-
nite supply). What denominations can you pay with these coins?

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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Let’s make a table (“yes” means that you can pay it; “no” means that you
can’t):

0 cents yes

1 cents no

2 cents no

3 cents yes

4 cents no

5 cents yes

6 cents yes: 2 · 3

7 cents no

8 cents yes: 3 + 5

9 cents yes: 3 · 3

10 cents yes: 2 · 5

11 cents yes: 2 · 3 + 5

12 cents yes: 4 · 3

13 cents yes: 3 + 2 · 5

· · · · · ·

.

Experimentally, we seem to observe that any denomination ≥ 8 cents can be
paid. Why?

We can notice that if a denomination k (that is, k cents) can be paid, then
so can k + 3 (just add a 3-cent coin). Thus, because we can pay 8 cents, we
can also pay 11, 14, 17, . . . cents. Because we can pay 9 cents, we can also pay
12, 15, 18, . . . cents. Because we can pay 10 cents, we can also pay 13, 16, 19, . . .
cents. Together, these three sequences account for all the integers ≥ 8. Thus,
any denomination of ≥ 8 cents can be paid.

Let us formalize this argument as an induction proof.
We define N to be the set of all nonnegative integers:

N = {0, 1, 2, . . .} .

Proposition 1.9.7. For any integer n ≥ 8, we can pay n cents with 3-cent and
5-cent coins. In other words, any integer n ≥ 8 can be written as n = 3a + 5b
with a, b ∈ N.

Proof. We proceed by strong induction on n:
Base case: For n = 8, the claim is true, since 8 = 3 · 1 + 5 · 1.
Induction step: Fix an integer n > 8. Assume that the proposition is already

proved for all the integers 8, 9, . . . , n − 1. We must prove that it also holds for n.
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In other words, we must prove that we can pay n cents with 3-cent and 5-cent
coins.

We are in one of the following three cases (since n > 8):
Case 1: We have n = 9.
Case 2: We have n = 10.
Case 3: We have n ≥ 11.
In Case 1, we are done, since n = 9 = 3 · 3 + 0 · 5 (that is, n can be paid with

three 3-cent coins).
In Case 2, we are done, since n = 10 = 0 · 3 + 2 · 5 (that is, n can be paid with

two 5-cent coins).
Now, consider Case 3. In this case, we have n ≥ 11. Hence, n − 3 ≥ 8. This

shows that n − 3 is one of the numbers 8, 9, . . . , n − 1.
Thus, we can apply the induction hypothesis to n − 3. We conclude that

n − 3 cents can be paid with 3-cent and 5-cent coins, i.e., we can write n − 3 as
n − 3 = 3c + 5d with c, d ∈ N. Using these c, d ∈ N, we therefore have

n = 3 + 3c + 5d (since n − 3 = 3c + 5d)
= 3 (c + 1) + 5d,

which shows that n cents can also be paid with 3-cent and 5-cent coins. This
shows that the proposition is true for n, and thus the induction step is complete.

The proposition is thus proved.

Note that the above proof had one “de-jure base case” (the case n = 8) and
two “de-facto base cases” (the cases n = 9 and n = 10, which were formally
part of the induction step but had to be treated separately because n − 3 would
be smaller than 8 in these cases). We could have just as well used the baseless
form of strong induction, in which case we would have to treat all three of these
cases as “de-facto base cases”. This would be a bit more uniform, although this
is entirely a matter of taste.

2. Sums and products

2.1. Finite sums

Previously, we have encountered sums such as

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1

(in Lecture 3). Such sums can be tricky to decipher: You need to guess the
pattern of the addends to understand what the “· · · ” means. There is a notation
that makes such sums both shorter and easier to understand. This is the finite
sum notation (also known as the sigma notation). In its simplest form, it is
defined as follows:



Lecture 5, version January 26, 2023 page 4

Definition 2.1.1. Let u and v be two integers. Let au, au+1, . . . , av be some
numbers. Then,

v

∑
k=u

ak

is defined to be the sum

au + au+1 + · · ·+ av.

It is called the sum of the numbers ak where k ranges from u to v. When
v < u, this sum is called empty and defined to be 0.

For example:

10

∑
k=5

k = 5 + 6 + 7 + 8 + 9 + 10 = 45;

10

∑
k=5

1
k
=

1
5
+

1
6
+

1
7
+

1
8
+

1
9
+

1
10

=
2131
2520

;

10

∑
k=5

kk = 55 + 66 + 77 + 88 + 99 + 1010;

5

∑
k=5

k = 5;

4

∑
k=5

k = 0 (an empty sum) ;

3

∑
k=5

k = 0 (an empty sum) ;

8

∑
k=5

3 = 3 + 3 + 3 + 3 = 12 (a sum of four equal terms) ;

n−1

∑
k=0

qk = q0 + q1 + · · ·+ qn−1 for any n ∈ N and any number q;

n−1

∑
k=0

xkyn−1−k = yn−1 + xyn−2 + x2yn−3 + · · ·+ xn−3y2 + xn−2y + xn−1

= xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1

for any n ∈ N and any numbers x and y.

Thus, Theorem 1.6.2 from Lecture 3 is saying that

(x − y)

(
n−1

∑
k=0

xkyn−1−k

)
= xn − yn
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for any numbers x and y and any n ∈ N.
The variable k is not set in stone; you can replace it by any other variable

(unless this other variable already stands for something else). For example,
v

∑
k=u

ak =
v

∑
i=u

ai =
v

∑
Ⓢ=u

aⓈ =
v

∑
♠=u

a♠.

Just don’t make it
v
∑

u=u
au.

Here are a couple more examples: For any n ∈ N, we have
n

∑
k=1

k = 1 + 2 + · · ·+ n =
n (n + 1)

2
(by Theorem 1.3.1 in Lecture 2) ;

n

∑
k=1

k2 = 12 + 22 + · · ·+ n2

=
n (n + 1) (2n + 1)

6
(by Theorem 1.3.2 in Lecture 2) ;

n

∑
k=1

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n · 1 = n;

n

∑
k=1

(2k − 1) = 1 + 3 + 5 + · · ·+ (2n − 1)

= (the sum of the first n odd positive integers) .

We have not computed this last sum, so let us do this. I will use the following
“laws of summation”:

• We have
v

∑
k=u

(ak − bk) =
v

∑
k=u

ak −
v

∑
k=u

bk (1)

for any integers u, v and any numbers ak, bk. Indeed, if you rewrite this
without finite sum notation, it takes the form

(au − bu) + (au+1 − bu+1) + · · ·+ (av − bv)

= (au + au+1 + · · ·+ av)− (bu + bu+1 + · · ·+ bv) ,

which is rather clear. (A formal proof can be given by induction on v.)

• We have
v

∑
k=u

λak = λ
v

∑
k=u

ak (2)

for any integers u, v and any numbers λ, ak. Indeed, rewritten without the
use of finite sum notation, this is just saying that

λau + λau+1 + · · ·+ λav = λ (au + au+1 + · · ·+ av) ,

which is again clear (and can be proved by induction on v).
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Rules like this are dime a dozen, and you should be able to come up with
them on the spot when you need them. (See [Grinbe15, §1.4.2] for these and
several others.)

Let us now compute our sum:

n

∑
k=1

(2k − 1) =
n

∑
k=1

2k −
n

∑
k=1

1 (by (1))

= 2
n

∑
k=1

k︸︷︷︸
=

n (n + 1)
2

−
n

∑
k=1

1︸︷︷︸
=n

(by (2))

= 2 · n (n + 1)
2

− n = n (n + 1)− n = n2.

As another illustration of our method, we can rewrite Gauss’s proof of the
equality

n

∑
k=1

k = 1 + 2 + · · ·+ n =
n (n + 1)

2
(3)

(Theorem 1.3.2 in Lecture 2) using finite sum notation. We will need two new
rules this time:

• We have
v

∑
k=u

ak +
v

∑
k=u

bk =
v

∑
k=u

(ak + bk) (4)

for any integers u, v and any numbers ak, bk. Indeed, if you rewrite this
without finite sum notation, it takes the form

(au + au+1 + · · ·+ av) + (bu + bu+1 + · · ·+ bv)

= (au + bu) + (au+1 + bu+1) + · · ·+ (av + bv) .

• We have
v

∑
k=u

ak =
v

∑
k=u

au+v−k (5)

for any integers u, v and any numbers ak. This is called “substituting
u + v − k for k in the sum” or just “turning the sum upside-down”, as
it amounts to reversing the order of the addends; restated without finite
sum notation, this is just saying that

au + au+1 + · · ·+ av = av + av−1 + · · ·+ au,

which is saying that a sum of a bunch of numbers does not change if we
add its addends together in reverse order.
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• For any integers u ≤ v and any number λ, we have

v

∑
k=u

λ = (v − u + 1) λ. (6)

(This is just saying that a sum of v − u + 1 many equal addends λ is
(v − u + 1) λ. Note that the sum on the left hand side has v − u + 1 ad-
dends, because there are v − u + 1 numbers in the set {u, u + 1, . . . , v}.)

Now, Gauss’s proof of (3) takes the following shape:

2
n

∑
k=1

k =
n

∑
k=1

k +
n

∑
k=1

k

=
n

∑
k=1

k +
n

∑
k=1

(n + 1 − k)(
here, we substituted n + 1 − k for k in the second

sum (i.e., rewrote it using (5))

)
=

n

∑
k=1

(k + (n + 1 − k))︸ ︷︷ ︸
=n+1

(by (4))

=
n

∑
k=1

(n + 1) = n · (n + 1) (by (6)) .

Dividing both sides by 2, we recover (3) again.

We have found closed-form expressions (i.e., expressions without ∑ signs or
“· · · ”s) for several sums. Not every sum has a closed-form expression. For
instance, there is no closed form for

n

∑
k=1

1
k

or for
n

∑
k=1

kk.

Some more terminology:

The notation
v
∑

k=u
ak is called sigma notation or finite sum notation. The

symbol ∑ itself is called the summation sign. The numbers u and v are called
the lower limit and the upper limit of the summation1. The variable k is called
the summation index or the running index, and is said to range (or run) from
u to v. The numbers ak are called the addends of the finite sum.

1This use of the word “limit” is totally unrelated to the way this word is used in analy-
sis/calculus.
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There are many similarities between finite sums
v
∑

k=u
ak and integrals

∫ v
u f (x) dx,

but the analogy should not be taken too far (e.g., an integral
∫ u

u f (x) dx whose
upper and lower limit are equal will always be 0, but an “analogous” finite sum

u
∑

k=u
ak will be au).

We note two more rules for finite sums:

• The “splitting-off rule”: For any integers u ≤ v and any numbers au, au+1, . . . , av,
we have

v

∑
k=u

ak =
v−1

∑
k=u

ak + av = au +
v

∑
k=u+1

ak.

This is just saying that

au + au+1 + · · ·+ av = (au + au+1 + · · ·+ av−1)+ av = au +(au+1 + au+2 + · · ·+ av) .

This rule allows us to split the first or the last addend out of a finite sum.
This is important for proofs by induction.

• More generally, any finite sum
v
∑

k=u
ak can be split at any point: We have

v

∑
k=u

ak =
w

∑
k=u

ak +
v

∑
k=w+1

ak

for any integers u ≤ w ≤ v and any numbers ak. This is just saying that

au + au+1 + · · ·+ av = (au + au+1 + · · ·+ aw) + (aw+1 + aw+2 + · · ·+ av) .

(Strictly speaking, this is true not just for u ≤ w ≤ v but more generally
for u − 1 ≤ w ≤ v.)

Finite sum notation, in the form defined above, is helpful when the summa-
tion index is running over an integer interval (i.e., a set of consecutive integers).
For more general situations, there is a more general version of finite sum nota-
tion, e.g.:

∑
k∈{1,2,...,n} is even

k = 2 + 4 + 6 + · · ·+ m,

where m is the largest even element of {1, 2, . . . , n}. We won’t use it much, but
it is fairly self-explanatory; essentially, the writing under the summation sign
explains what k’s the sum is ranging over. See [Grinbe15, §1.4.1] for a more
precise explanation.
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2.2. Finite products

Finite products are analogous to finite sums, just using multiplication instead
of addition:

Definition 2.2.1. Let u and v be two integers. Let au, au+1, . . . , av be some
numbers. Then,

v

∏
k=u

ak

is defined to be the product

auau+1 · · · av.

It is called the product of the numbers ak where k ranges from u to v. When
v < u, this product is called empty and defined to be 1.

For example:

10

∏
k=5

k = 5 · 6 · 7 · 8 · 9 · 10 = 151 200;

5

∏
k=1

1
k
=

1
1
· 1

2
· 1

3
· 1

4
· 1

5
=

1
120

;

n

∏
k=1

a = aa · · · a︸ ︷︷ ︸
n times

= an for any fixed number a;

n

∏
k=1

ak = a1a2 · · · an

= a1+2+···+n

(
by one of the laws of exponents:

namely, the law ai1 ai2 · · · ain = ai1+i2+···+in

)
= an(n+1)/2 for any fixed number a and any n ∈ N.

In a finite product
v

∏
k=u

ak, the k is called the product index or the running

index, and the symbol ∏ is called the product sign. The numbers ak are called
the factors of the product. Other terminology is analogous to the case of a
finite sum (e.g., lower limit, upper limit). Almost all rules for finite sums have
analogues for finite products. Let me only state the analogue of the “splitting-
off rule”:

• The “splitting-off rule” for products: For any integers u ≤ v and any
numbers au, au+1, . . . , av, we have

v

∏
k=u

ak =

(
v−1

∏
k=u

ak

)
av = au

v

∏
k=u+1

ak.
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This is just saying that

auau+1 · · · av = (auau+1 · · · av−1) av = au (au+1au+2 · · · av) .

This rule allows us to split the first or the last factor out of a finite product.
This is important for proofs by induction.

2.3. Factorials

Now, we define a sequence of integers that appears all over mathematics. Recall
that N = {0, 1, 2, . . .}.

Definition 2.3.1. For any n ∈ N, we define the positive integer n! (called the
factorial of n, and often pronounced “n factorial”) by

n! =
n

∏
k=1

k = 1 · 2 · · · · · n.

For example,

0! = (empty product) = 1;
1! = 1 = 1;
2! = 1 · 2 = 2;
3! = 1 · 2 · 3 = 6;
4! = 1 · 2 · 3 · 4 = 24;
5! = 1 · 2 · 3 · 4 · 5 = 120;
6! = 1 · 2 · 3 · 4 · 5 · 6 = 720;
7! = 5 040;
8! = 40 320;
9! = 362 880;

10! = 3 628 800.

Note the following:

Proposition 2.3.2 (recursion of the factorials). For any positive integer n, we
have

n! = (n − 1)! · n.

Proof. Let n be a positive integer. Then,

n! = 1 · 2 · · · · · n = (1 · 2 · · · · · (n − 1))︸ ︷︷ ︸
=(n−1)!

·n = (n − 1)! · n.
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2.4. Binomial coefficients: Definition

We shall now define one of the most important families of numbers in mathe-
matics:

Definition 2.4.1. Let n and k be any numbers. Then, we define a number(
n
k

)
as follows:

• If k ∈ N, then we set(
n
k

)
:=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

(where the numerator is the product of k consecutive integers, the

largest of which is n; you can also write it as
k−1
∏
i=0

(n − i)).

• If k /∈ N, then we set (
n
k

)
:= 0.

The number
(

n
k

)
is called “n choose k”, and is known as the binomial

coefficient of n and k. Do not mistake the notation
(

n
k

)
for a vector

(
n
k

)
.

Example 2.4.2. For any number n, we have(
n
3

)
=

n (n − 1) (n − 2)
3!

=
n (n − 1) (n − 2)

6
;(

n
2

)
=

n (n − 1)
2!

=
n (n − 1)

2
;(

n
1

)
=

n
1!

= n;(
n
0

)
=

(empty product)
0!

=
1
1
= 1;(

n
2.5

)
= 0 (since 2.5 /∈ N) ;(

n
−1

)
= 0 (since − 1 /∈ N) .
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For any k ∈ N, we have(
0
k

)
=

0 (0 − 1) (0 − 2) · · · (0 − k + 1)
k!

=

{
1, if k = 0;
0, if k ̸= 0;(

−1
k

)
=

(−1) (−2) (−3) · · · (−k)
k!

= (−1)k · 1 · 2 · · · · · k
k!︸ ︷︷ ︸
=1

= (−1)k .

Let us tabulate the values of
(

n
k

)
for nonnegative integers n and k:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 1 0 0 0 0 0 0

n = 1 1 1 0 0 0 0 0

n = 2 1 2 1 0 0 0 0

n = 3 1 3 3 1 0 0 0

n = 4 1 4 6 4 1 0 0

n = 5 1 5 10 10 5 1 0

n = 6 1 6 15 20 15 6 1

.

What patterns can we spot in this table? (We are ignoring negative and non-
integer n’s for now.)

Proposition 2.4.3. Let n ∈ N and k > n. Then,
(

n
k

)
= 0.

Proof. If k /∈ N, then this is clear by definition. Otherwise, again by definition,
we have (

n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

=
0
k!

(since the product n (n − 1) (n − 2) · · · (n − k + 1) has a factor of n − n = 0, and
thus is 0). For example, for n = 3 and k = 6, we have(

3
6

)
=

3 · 2 · 1 · 0 · (−1) · (−2)
6!

=
0
6!

= 0.
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Remark 2.4.4. Note that Proposition 2.4.3 would not hold without the n ∈ N

assumption. For example,(
1.5
3

)
=

1.5 · 0.5 · (−0.5)
3!

̸= 0 even though 3 > 1.5.

The product in the numerator is not 0, since it “misses” the 0 factor.

Proposition 2.4.3 explains why our above table of
(

n
k

)
has so many zeroes

in it. More precisely, it tells us that all entries above the main diagonal of the
table are zeroes (no matter how many more rows and columns we add). Thus,
we can redraw our table as a triangular table (and fill in a few more rows while
at that):

k=0
↙

n = 0 → 1
k=1
↙

n = 1 → 1 1
k=2
↙

n = 2 → 1 2 1
k=3
↙

n = 3 → 1 3 3 1
k=4
↙

n = 4 → 1 4 6 4 1
k=5
↙

n = 5 → 1 5 10 10 5 1
k=6
↙

n = 6 → 1 6 15 20 15 6 1
k=7
↙

n = 7 → 1 7 21 35 35 21 7 1

n = 8 → 1 8 28 56 70 56 28 8 1

This table is known as Pascal’s triangle, and has a variety of wonderful prop-
erties. Here are just a few:

Proposition 2.4.5 (Pascal’s identity, aka the recurrence of the binomial coef-
ficients). For any numbers n and k, we have(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Proposition 2.4.6 (symmetry of binomial coefficients). For any n ∈ N and

any k, we have
(

n
k

)
=

(
n

n − k

)
.
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Proposition 2.4.7. We have
(

n
n

)
= 1 for each n ∈ N.

Proposition 2.4.8 (integrality of binomial coefficients). For any n ∈ Z and

any k, we have
(

n
k

)
∈ Z.

Next time, we will prove these four propositions and more.
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