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Math 221 Winter 2023, Lecture 3: Induction

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

1. Induction and recursion (cont’d)

1.6. Some more examples of induction

Let us see some more examples of proofs by induction.

Theorem 1.6.1. For any integer n ≥ 0, we have

20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1.

Proof. We induct on n.
Base case: For n = 0, the equality 20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1 is true,

because the LHS1 is an empty sum and thus equals 0, whereas the RHS is
20 − 1 = 1 − 1 = 0.

Induction step: Let n be an integer ≥ 0. Assume that Theorem 1.6.1 holds for
n, i.e., that we have

20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1.

We must prove that Theorem 1.6.1 holds for n + 1 as well, i.e., that we have

20 + 21 + 22 + · · ·+ 2(n+1)−1 = 2n+1 − 1.

However,

20 + 21 + 22 + · · ·+ 2(n+1)−1

= 20 + 21 + 22 + · · ·+ 2n

=
(

20 + 21 + 22 + · · ·+ 2n−1
)

︸ ︷︷ ︸
=2n−1

(by the induction hypothesis)

+2n

= 2n − 1 + 2n = 2 · 2n︸ ︷︷ ︸
=2n+1

−1 = 2n+1 − 1,

which is precisely what we want: This shows that Theorem 1.6.1 holds for n+ 1.
Thus, our induction step is complete, and Theorem 1.6.1 is proved.

Theorem 1.6.1 can be generalized:

1“LHS” means “left-hand side”. Likewise, “RHS” means “right-hand side”.

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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Theorem 1.6.2. Let x and y be any two numbers. Then, for any integer n ≥ 0,
we have

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn.

Here, the big sum in the parentheses is the sum of all products xiyj where i
and j are nonnegative integers with i + j = n − 1.

Before we prove this, let us give some examples for what this theorem actu-
ally says:

• For n = 2, Theorem 1.6.2 says that

(x − y) (x + y) = x2 − y2.

• For n = 3, Theorem 1.6.2 says that

(x − y)
(

x2 + xy + y2
)
= x3 − y3.

• For n = 4, Theorem 1.6.2 says that

(x − y)
(

x3 + x2y + xy2 + y3
)
= x4 − y4.

• For x = 2 and y = 1, Theorem 1.6.2 says that

(2 − 1)
(

2n−1 + 2n−21 + 2n−312 + · · ·+ 221n−3 + 2 · 1n−2 + 1n−1
)
= 2n − 1n.

Since any power of 1 is 1 (and since the 2 − 1 factor also equals 1), this
simplifies to

2n−1 + 2n−2 + 2n−3 + · · ·+ 22 + 2 + 1 = 2n − 1,

which is precisely Theorem 1.6.1. Thus, Theorem 1.6.2 generalizes Theo-
rem 1.6.1.

Let us now prove Theorem 1.6.2:

Proof of Theorem 1.6.2. We induct on n.
Base case: For n = 0, the claim

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn

is true, since the LHS is 0 (because the second factor is an empty sum), while
the RHS is x0 − y0 = 1 − 1 = 0 as well.
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Induction step: Let n ≥ 0 be an integer. Assume that Theorem 1.6.2 is true for
n. That is, assume that

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn.

We must prove that Theorem 1.6.2 is also true for n + 1. That is, we must prove
that

(x − y)
(

xn + xn−1y + xn−2y2 + · · ·+ x3yn−3 + x2yn−2 + xyn−1 + yn
)
= xn+1 − yn+1.

We begin by extracting the yn addend from the long sum in the second pair
of parentheses in this equation. We thus obtain

(x − y)
(

xn + xn−1y + xn−2y2 + · · ·+ x3yn−3 + x2yn−2 + xyn−1 + yn
)

= (x − y)
(

xn + xn−1y + xn−2y2 + · · ·+ x3yn−3 + x2yn−2 + xyn−1
)

︸ ︷︷ ︸
=(xn−1+xn−2y+xn−3y2+···+x2yn−3+xyn−2+yn−1)x

(here, we have factored out an x from the sum)

+ (x − y) yn

= (x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)

︸ ︷︷ ︸
=xn−yn

(by the induction hypothesis)

x + (x − y) yn

= (xn − yn) x + (x − y) yn = xn+1 − xyn + xyn − yn+1 = xn+1 − yn+1.

This means precisely that Theorem 1.6.2 is also true for n + 1. Thus, the induc-
tion step is complete, and the theorem is proved.

Another useful particular case of Theorem 1.6.2 is the following equality:2

Corollary 1.6.3. Let q be a number distinct from 1. Let n ≥ 0 be an integer.
Then,

q0 + q1 + q2 + · · ·+ qn−1 =
qn − 1
q − 1

.

Proof. Apply Theorem 1.6.2 to x = q and y = 1. We obtain

(q − 1)
(

qn−1 + qn−21 + qn−312 + · · ·+ q21n−3 + q · 1n−2 + 1n−1
)
= qn − 1n.

Simplifying this, we obtain

(q − 1)
(

qn−1 + qn−2 + qn−3 + · · ·+ q2 + q + 1
)
= qn − 1.

Thus,

qn−1 + qn−2 + qn−3 + · · ·+ q2 + q + 1 =
qn − 1
q − 1

.

2A “corollary” means a theorem that follows easily from another theorem.
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In other words,

q0 + q1 + q2 + · · ·+ qn−1 =
qn − 1
q − 1

(since the sum on the left hand side can be rearranged in any order). This
proves Corollary 1.6.3.

1.7. How not to use induction

Induction proofs can be slippery:

Theorem 1.7.1 (Fake theorem). In any set of n ≥ 1 horses, all the horses are
the same color.

Proof. We induct on n.
Base case: This is clearly true for n = 1, since a single horse always has the

same color as itself.
Induction step: Let n ≥ 1 be an integer. We assume that the theorem holds for

n, i.e., that any n horses are the same color.
We must prove that it also holds for n + 1, i.e., that any n + 1 horses are the

same color.
So let H1, H2, . . . , Hn+1 be n + 1 horses.
By our induction hypothesis, the first n horses H1, H2, . . . , Hn are the same

color.
Again by our induction hypothesis, the last n horses H2, H3, . . . , Hn+1 are the

same color.
Now, consider the first horse H1 and the last horse Hn+1. They both have the

same color as the “middle horses” H2, H3, . . . , Hn (according to the preceding
two paragraphs). Thus, all the n + 1 horses have the same color, right?

When a claim is as obviously wrong as this one, there is an easy way to find
the mistake in the proof: You just look at some example in which the claim is
wrong, and you trace the proof on this example. The first time you see a wrong
conclusion, that’s where the error probably is.

Theorem 1.7.1 is wrong for n = 2 already, i.e., for two horses. So let us see
where the induction step goes wrong when n = 1 (that is, going from 1 horse
to 2 horses). In this induction step, we claim that H1 and Hn+1 = H2 both have
the same color as the “middle horses” H2, H3, . . . , H1. But there are no “middle
horses”, so it makes no sense to have the same color as these “middle horses”.
So the argument doesn’t work.

Thus, our mistake was to implicitly treat the “middle horses” as if they ex-
isted. They do exist for any n > 1, but not for n = 1, and thus our induction
step breaks down for n = 1.

Note how one little mistake has brought down the entire proof! For an in-
duction proof to work, the induction step needs to work for all n; that is, we
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need the implication P (n) =⇒ P (n + 1) to hold for every n. If even one of
these implications breaks down, the whole chain is disconnected, and all the
statements P (n) “to the right of” this breaking point are no longer guaranteed
to hold. For example, if we have a statement P (n) for each n ≥ 0, and we have
proved the base case P (0) and the implication P (n) =⇒ P (n + 1) for all n ̸= 4,
then we can conclude that P (0) , P (1) , P (2) , P (3) and P (4) hold, but we
cannot guarantee that any of P (5) , P (6) , P (7) , . . . hold. As so often, a chain
is only as strong as its weakest link.

1.8. More on the Fibonacci numbers

Recall the Fibonacci sequence, which we defined in Lecture 2:

Definition 1.8.1. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of
nonnegative integers defined recursively by setting

f0 = 0, f1 = 1, and
fn = fn−1 + fn−2 for each n ≥ 2.

The entries of the Fibonacci sequence are called the Fibonacci numbers. Here
are the first few:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.

Back in Lecture 2, we proved:

Theorem 1.8.2. For any integer n ≥ 0, we have

f1 + f2 + · · ·+ fn = fn+2 − 1.

Let us now prove two deeper properties of the Fibonacci sequence.

Theorem 1.8.3 (addition theorem for Fibonacci numbers). We have

fn+m+1 = fn fm + fn+1 fm+1 for all integers n, m ≥ 0.

Proof. Can you induct on two variables at the same time? Not directly (although
you can induct on n and then induct on m in the induction step, so that you
have one induction proof inside another). Fortunately, we don’t need to do this
here. It suffices to induct on one of the variables.
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To be specific, let us induct on n. To that purpose, for every integer n ≥ 0,
we define the statement P (n) to say

“for all integers m ≥ 0, we have fn+m+1 = fn fm + fn+1 fm+1”.

(Don’t forget the “for all integers m ≥ 0” part! The statement P (n) is not
just a single equality fn+m+1 = fn fm + fn+1 fm+1 for some specific value of
m, but rather combines infinitely many such equalities, one for each integer
m ≥ 0. If we fixed a value of m and defined P (n) to be just the single equality
fn+m+1 = fn fm + fn+1 fm+1, then the induction proof below would not work,
because we are going to apply the induction hypothesis to a different m than
we start with.)

We shall now prove this statement P (n) for all n ≥ 0 by induction on n.
Base case: We must prove P (0). In other words, we must prove that

“for all integers m ≥ 0, we have f0+m+1 = f0 fm + f0+1 fm+1”.

This is easy to show: For all integers m ≥ 0, we have f0+m+1 = fm+1 and
f0︸︷︷︸
=0

fm + f0+1︸︷︷︸
= f1=1

fm+1 = 0 fm + 1 fm+1 = fm+1, so the two sides are equal.

Induction step: Let n ≥ 0 be an integer. We assume that P (n) holds. We must
show that P (n + 1) holds.

Our induction hypothesis says that P (n) holds, i.e., that

“for all integers m ≥ 0, we have fn+m+1 = fn fm + fn+1 fm+1” holds.

We must prove that P (n + 1) holds, i.e., that

“for all integers m ≥ 0, we have fn+1+m+1 = fn+1 fm + fn+1+1 fm+1” holds.

To prove this, we let m ≥ 0 be an integer. Then,

fn+1 fm + fn+1+1︸ ︷︷ ︸
= fn+2

= fn+1+ fn
(by the recursive
definition of the

Fibonacci numbers)

fm+1

= fn+1 fm + ( fn+1 + fn) fm+1

= fn+1 fm + fn+1 fm+1 + fn fm+1

= fn+1 ( fm + fm+1)︸ ︷︷ ︸
= fm+1+ fm
= fm+2

(by the recursive
definition of the

Fibonacci numbers)

+ fn fm+1

= fn+1 fm+2 + fn fm+1 = fn fm+1 + fn+1 fm+2. (1)
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Now, recall that the induction hypothesis says that P (n) holds, i.e., that

“for all integers m ≥ 0, we have fn+m+1 = fn fm + fn+1 fm+1” holds.

Note that the m in this statement is a bound variable, i.e., it has nothing to do
with the m that we have fixed; it just happens to have the same name. Thus,
we are free to apply our induction hypothesis P (n) not to the current m, but to
any other m as well. In particular, we can apply it to m + 1 instead of m. Thus,
we obtain

fn+m+1+1 = fn fm+1 + fn+1 fm+1+1.
3 This can be trivially simplified to

fn+m+2 = fn fm+1 + fn+1 fm+2.

This equality has the same right hand side as (1). Thus, the left hand sides of
the two equalities must be equal as well. In other words, we must have

fn+m+2 = fn+1 fm + fn+1+1 fm+1.

Since n + m + 2 = n + 1 + m + 1, we can rewrite this as

fn+1+m+1 = fn+1 fm + fn+1+1 fm+1.

Thus, we have proved that for all integers m ≥ 0, we have fn+1+m+1 =
fn+1 fm + fn+1+1 fm+1. In other words, we have proved that P (n + 1) holds.

So the induction step is complete, and Theorem 1.8.3 is proved.

Our next theorem involves divisibility of integers. We will study this in more
detail in future lectures (it is the fundamental concept of number theory), but
for now let me give its definition:

3Let me explain this again in a slightly clearer (if longer) way.
Our induction hypothesis tells us that

“for all integers m ≥ 0, we have fn+m+1 = fn fm + fn+1 fm+1” holds.

We can rename the variable m as p in this statement (since it is just a bound variable). Thus,
we obtain that

“for all integers p ≥ 0, we have fn+p+1 = fn fp + fn+1 fp+1” holds.

Now, applying this latter statement to p = m+ 1 (where m is the m that we fixed), we obtain

fn+m+1+1 = fn fm+1 + fn+1 fm+1+1.
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Definition 1.8.4. Let a and b be two integers. We say that a divides b (and
we write a | b) if there exists an integer c such that b = ac. Equivalently, we
say that b is divisible by a in this case.

For example, we have 2 | 4 and 3 | 12 and 10 | 30 and 0 | 0 and 5 | 0. But
we don’t have 2 | 3 or 0 | 1. The integer 0 is divisible by every integer, but only
divides itself.

Now we can state a divisibility property of Fibonacci numbers:

Theorem 1.8.5. If a, b ≥ 0 are two integers that satisfy a | b, then fa | fb.

In other words, in our above table of Fibonacci numbers, if some entry of the
first row divides some other entry of the first row, then the same holds for the
corresponding entries of the second row. For example, 6 | 12 implies f6 | f12
(which is saying that 8 | 144).

Proof of Theorem 1.8.5. It is reasonable to try induction. However, inducting on
a does not lead anywhere: The base case is easy, but in the induction step it
is completely unclear how to reach the goal, since the condition a | b in the
induction hypothesis usually has nothing to do with the condition a + 1 | b in
the induction goal.

Similar problems appear if you try to induct on b. So neither of the two
variables in the theorem is suitable for being inducted on.

What can we do? Give up on induction?
Not so fast. One thing we haven’t tried is to introduce a new variable and

then induct on that new variable.
To do so, we observe that two integers a, b ≥ 0 satisfy a | b if and only if there

exists an integer c such that b = ac (by the definition of “divides”). Moreover,
if this integer c exists, then it can be chosen to be ≥ 0 (this is automatic when

b ̸= 0, because c =
b
a
> 0 in this case; but otherwise we can achieve this by

simply choosing c = 0). Thus, two integers a, b ≥ 0 satisfy a | b if and only if
there exists an integer c ≥ 0 such that b = ac.

Hence, a pair of integers a, b ≥ 0 satisfying a | b is nothing but a pair of the
form a, ac where a, c ≥ 0 are integers. This allows us to restate Theorem 1.8.5
as follows:

Restated theorem: “For any integers a, c ≥ 0, we have fa | fac.”

Now, we shall prove this restated theorem by induction on c. In other words,
for each c ≥ 0, we shall prove the statement

P (c) := (“for any integer a ≥ 0, we have fa | fac”) .

Base case: We must prove P (0). In other words, we must prove that

“for any integer a ≥ 0, we have fa | fa·0”.
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But this is easy, because for any integer a ≥ 0, we have fa·0 = f0 = 0, which is
divisible by any integer (thus in particular by fa).

Induction step: Let c ≥ 0 be an integer. We assume that P (c) holds, i.e., that

“for any integer a ≥ 0, we have fa | fac” holds.

We must prove that P (c + 1) holds, i.e., that

“for any integer a ≥ 0, we have fa | fa(c+1)” holds.

Let a ≥ 0 be any integer. Then, the induction hypothesis (i.e., our assumption
that P (c) holds) yields that fa | fac. In other words, fac = fa p for some integer
p. Now,

fa(c+1) = fac+a = fac+(a−1)+1

= fac︸︷︷︸
= fa p

fa−1 + fac+1 fa

(
by Theorem 1.8.3,

applied to n = ac and m = a − 1

)
= fa p fa−1 + fac+1 fa = fa · (p fa−1 + fac+1)︸ ︷︷ ︸

an integer

.

This immediately yields that fa | fa(c+1). Thus, we have shown that for any
integer a ≥ 0, we have fa | fa(c+1). In other words, we have proved that P (c + 1)
holds. This completes the induction step, and thus the restated theorem is
proved. Therefore, the original Theorem 1.8.5 is also proved.

. . . . . . . . . . . . . . .
Is it? There is a subtle gap in our above argument. Can you find it?

. . . . . . . . . . . . . . .
Can you? Don’t look down just yet. The gap is somewhere above!

. . . . . . . . . . . . . . .
This time, the theorem itself is correct, so you can’t find the gap by tracing

the proof through a case where the theorem is false. Though an example might
be useful...

. . . . . . . . . . . . . . .
No, we didn’t misuse the principle of induction. The structure of the proof

is fine. (Actually, we could have made our statements a bit shorter by fixing
a ≥ 0, but this wouldn’t have made much of a difference.)

. . . . . . . . . . . . . . .
The base case was fine, too.

. . . . . . . . . . . . . . .
A computer, of course, would spot the problem.
If you tried to formalize the above proof in a computer language (e.g., Coq

or Lean), you would run into a type mismatch error. Some statement has been

https://en.wikipedia.org/wiki/Coq
https://en.wikipedia.org/wiki/Lean_(proof_assistant)


Lecture 3, version January 11, 2024 page 10

proved for variables of a certain type, but is being used for variables of a dif-
ferent type. Very slightly different.

. . . . . . . . . . . . . . .
The statement in question is Theorem 1.8.3. It is stated for one kind of vari-

ables, but we have used it for a slightly different kind.

. . . . . . . . . . . . . . .
OK, I am spelling it out: Theorem 1.8.3 (i.e., the addition formula fn+m+1 =

fn fm + fn+1 fm+1) has been stated and proved for all integers n, m ≥ 0, but we
have applied it to n = ac and m = a − 1. For this to work, we need ac ≥ 0 and
a − 1 ≥ 0. Now, ac ≥ 0 is indeed satisfied (since a ≥ 0 and c ≥ 0), but a − 1 ≥ 0
holds only if a ≥ 1, which is not guaranteed. Thus, our use of Theorem 1.8.3
was illegal when a = 0. And indeed, if we apply Theorem 1.8.3 for a = 0,
then we end up with an f−1 term, which is undefined. Even if you define f−1
appropriately (and there is a good definition; see homework set #1 Exercise 5),
we have not proved Theorem 1.8.3 for negative n, m. So there is a gap in our
proof. Can we fix it?

. . . . . . . . . . . . . . .
Fortunately, we can: Our argument breaks down only in the case when a = 0,

and we can just treat this case a = 0 manually, since it is an easy case. So we
build a case distinction into our above induction step. Thus, the induction step
takes the following form:

Induction step (corrected): Let c ≥ 0 be an integer. We assume that P (c) holds,
i.e., that

“for any integer a ≥ 0, we have fa | fac” holds.

We must prove that P (c + 1) holds, i.e., that

“for any integer a ≥ 0, we have fa | fa(c+1)” holds.

Let a ≥ 0 be any integer. We must show that fa | fa(c+1). We are in one of the
following two cases:

Case 1: We have a = 0.
Case 2: We have a ̸= 0.
In Case 1, we have a = 0, so that both fa and fa(c+1) equal f0 = 0, and thus

fa | fa(c+1) holds (since 0 | 0). Thus, the divisibility fa | fa(c+1) is proved in Case
1.

Now, consider Case 2. In this case, a ̸= 0, so that a ≥ 1 (because a is an
integer and ≥ 0). Hence, a − 1 ≥ 0. This will allow us to apply Theorem 1.8.3
to n = ac and m = a − 1 in a few moments. The induction hypothesis (i.e., our
assumption that P (c) holds) yields that fa | fac. In other words, fac = fa p for
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some integer p. Now,

fa(c+1) = fac+a = fac+(a−1)+1

= fac︸︷︷︸
= fa p

fa−1 + fac+1 fa

(
by Theorem 1.8.3,

applied to n = ac and m = a − 1

)
= fa p fa−1 + fac+1 fa = fa · (p fa−1 + fac+1)︸ ︷︷ ︸

an integer

.

This immediately yields that fa | fa(c+1).
So we have proved fa | fa(c+1) in both Cases 1 and 2. Therefore, fa | fa(c+1)

always holds.
Thus, P (c + 1) is proved. This completes the induction step, and thus the

restated theorem is proved. Therefore, Theorem 1.8.5 is proved – correctly this
time!
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