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Math 221 Winter 2023, Lecture 1: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wd

0.1. What is this about?

My name is Darij Grinberg.
This is a course on discrete mathematics. To us, discrete mathematics means

the mathematics of finite, discrete objects: integers, finite sets, occasionally
some more complex creatures such as graphs and polynomials. Integer se-
quences, while theoretically infinite, are also included since one usually makes
statements about finite pieces of the sequence. Much of linear algebra logically
belongs to discrete mathematics, but there are separate courses entirely devoted
to it, so we won’t touch on it here.

Discrete mathematics is in contrast to continuous mathematics, which stud-
ies real numbers, continuous functions and infinite sets. This mostly begins
with analysis (or calculus, which is its less rigorous variant).

So this course will introduce you to the major topics of discrete mathematics:

• mathematical induction and recursion;

• elementary number theory (the properties of divisibility, prime numbers,
coprimality, possibly applications like the RSA cryptosystem);

• basic enumerative combinatorics (counting and binomial coefficients);

• basic graph theory.

We will neither go very deep nor be fully rigorous about everything. There
are deeper, more specific classes on most of these subjects:

• Math 220 is a deeper introduction to mathematical proof.

• Math 222 is a quarter-length introduction to enumerative combinatorics.
(I have notes for this on my website.)

• Math 530 is an introduction to graph theory. (I have notes for this on my
website.)

• CS 303 is a course on cryptography.

• I plan to teach elementary number theory as a class next Fall (Math T480).

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/
https://www.cip.ifi.lmu.de/~grinberg/t/22s/
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1. Induction and recursion

1.1. The Tower of Hanoi

Let me start with a puzzle called the Tower of Hanoi.
You have 3 pegs (or rods). The first peg has n disks stacked on it. The n

disks have n different sizes, and they are stacked in the order of their size, with
the smallest one on top. Here is how this looks like for n = 8 (with the 3 pegs
numbered 1, 2, 3 from left to right):

(image by User:Evanherk on Wikipedia, licensed under the CC Attribution-
Share Alike 3.0 Unported License).

You can make a certain kind of moves (“Hanoi moves”): You can take the
topmost disk from one peg and move it on top of another peg. However, you
are only allowed to do this if this disk is smaller than the other disks currently
on the latter peg; in other words, you must never stack a larger disk atop a
smaller disk.

Your goal is to move all n disks onto the third peg.

This game can actually be played online, e.g., at https://codepen.io/eliortabeka/
pen/yOrrxG. (Be warned that this site has n = 7 hardcoded into it. But you can
easily fix this by modifying “disksNum = 3” and changing “minMoves = 127”
to “minMoves = 0”. Also note that the game allows you to win by moving all
disks to peg 2 as well, but this is clearly not a significant difference.)

Let us analyze the case n = 3. In this case, one strategy to win the game (i.e.,
achieve the goal) is as follows:

1. Move the smallest disk from peg 1 to peg 3.

2. Move the middle disk from peg 1 to peg 2.

3. Move the smallest disk from peg 3 to peg 2.

4. Move the largest disk from peg 1 to peg 3.

5. Move the smallest disk from peg 2 to peg 1.

6. Move the middle disk from peg 2 to peg 3.

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/User:Evanherk
https://en.wikipedia.org/wiki/File:Tower_of_Hanoi.jpeg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://codepen.io/eliortabeka/pen/yOrrxG
https://codepen.io/eliortabeka/pen/yOrrxG
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7. Move the smallest disk from peg 1 to peg 3.

So we can win in 7 moves for n = 3.

What about other values of n ? The questions we can ask are the following:

Question 1.1.1. 1. Can we always win the game?
2. If so, then what is the smallest # of moves1 we need to make?

Let us record the answers for small values of n:

• For n = 0, we win in 0 moves (since all disks – of which there are none
– are on peg 3 already). This sounds very pedantic and pointless, but it’s
not a bad start.

• For n = 1, we win in 1 move (just move the single disk directly).

• For n = 2, we win in 3 moves. Fewer moves are not enough, for fairly
simple logical reasons: We need 1 move to free the largest disk, then 1
move to move it to peg 3, then 1 more move to get the other disk on top
of it.

• For n = 3, we win in 7 moves. But do we need 7 moves, or can we do
with less?

• For n = 4, what happens?

Solving the problem by brute force gets harder and harder as n grows. But
we can try to analyze our strategy for n = 3 and see if there is a pattern behind
it.

We observe that the largest disk moves only once, and its move is right in the
middle of the strategy. So our strategy for n = 3 can be summarized as follows:

1.–3. Move the two smaller disks from peg 1 onto peg 2.

4. Move the largest disk from peg 1 onto peg 3.

5.–7. Move the two smaller disks from peg 2 onto peg 3.

Moreover, the moves 1–3 in this strategy are essentially a Tower of Hanoi
game played only with the two smaller disks, except that the goal is not to
move them to peg 3 but to move them to peg 2 (but this doesn’t matter, because
the two games are clearly “isomorphic” – i.e., the roles of pegs 2 and 3 are
swapped but otherwise everything is the same). The largest disk stays at the
bottom of peg 1 all the time and thus does not prevent any of the moves (since
all the other disks are smaller than it and thus can fit on top of it).

1The symbol “#” means “number”.
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Move 4 moves the newly liberated largest disk from peg 1 onto peg 3.
Moves 5–7 are again a little Tower of Hanoi game for the two smaller disks,

except that now they have to be moved from peg 2 to peg 3. Again, the largest
disk (which is now on the bottom of peg 3) does not interfere with any of the
moves.

Now the logic behind the above strategy has become clear (and also easier to
memorize).

Does this help us solve the n = 4 case?
Yes! We can win in 15 moves by a strategy that has the same structure:

1.–7. Move the three smaller disks from peg 1 onto peg 2. (This is a little Tower
of Hanoi game for these three smaller disks. The largest disk rests at the
bottom of peg 1 and does not interfere.)

8. Move the largest disk from peg 1 onto peg 3.

9.–15. Move the three smaller disks from peg 2 onto peg 3. (This is again a little
Tower of Hanoi game for these three smaller disks. The largest disk rests
at the bottom of peg 3 and does not interfere.)

Thus, we don’t just have a strategy for n = 3 and one for n = 4, but actually
a “meta-strategy” that lets us win the game for n disks if we know how to win
it for n − 1 disks. We will still call this “meta-strategy” a strategy.

Let us summarize what we gain from this strategy.

Definition 1.1.2. For any integer n ≥ 0, we let mn denote the # of moves
needed to win the Tower of Hanoi game with n disks. If the game cannot be
won with n disks, then we set mn = ∞ (where ∞ is not a number but just a
symbol).

Thus, both of our Questions 1 and 2 boil down to computing mn.
Here is a table of small values of mn obtained using our strategy:

n 0 1 2 3 4 5 6 7 8

mn 0 1 3 7 15 31 63 127 255

Note that these values are easily computed using our strategy, because in order
to win the game for a given n, we have to win it for n − 1, then make one extra
move, then win it for n− 1 again. So we get mn = mn−1 + 1+mn−1 = 2mn−1 + 1
(for n ≥ 1).

Right?

Not so fast! We have proved that, e.g., the game can be won in 127 moves
for n = 7. We have not proved that it cannot be won in fewer moves. So the
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formula mn = 2mn−1 + 1 has been proved not for the # of moves needed to win,
but rather for the # of moves needed to win using our strategy. Maybe there is
a better strategy that wins for n = 7 in (say) 109 moves?

So what we really have proved is the following:

Proposition 1.1.3. Let n be a positive integer. If mn−1 is an integer (i.e., if
mn−1 ̸= ∞), then mn ≤ 2mn−1 + 1.

To gain some writing experience, let us write out the proof in detail:

Proof. Assume that mn−1 is an integer. Thus, we can win the game for n − 1
disks in mn−1 moves. Let S be the strategy (i.e., the sequence of moves) needed
to do this. So the strategy S moves n − 1 disks from peg 1 onto peg 3 in mn−1
moves.

Let S23 be the same strategy as S, but with the roles of pegs 2 and 3 swapped.
Thus, S23 moves n − 1 disks from peg 1 onto peg 2 in mn−1 moves.

Let S12 be the same strategy as S, but with the roles of pegs 1 and 2 swapped.
Thus, S12 moves n − 1 disks from peg 2 onto peg 3 in mn−1 moves.

Now, we proceed as follows to win the game with n disks:

A. We use strategy S23 to move the n − 1 smaller disks from peg 1 onto peg
2. (This is allowed because the largest disk rests at the bottom of peg 1
and does not interfere with the movement of smaller disks.)

B. We move the largest disk from peg 1 onto peg 3. (This is allowed because
this disk is free (i.e., there are no disks on top of it) and because peg 3 is
empty, since all the other disks are on peg 2.)

C. We use strategy S12 to move the n − 1 smaller disks from peg 2 onto peg
3. (Again, this is allowed since the largest disk rests at the bottom of peg
3 and does not interfere.)

This strategy wins the game (for n disks) in mn−1 + 1 + mn−1 = 2mn−1 + 1
many moves. So the game for n disks can be won in 2mn−1 + 1 many moves.
In other words, mn ≤ 2mn−1 + 1. This proves Proposition 1.1.3.

Now, let us see if the inequality mn ≤ 2mn−1 + 1 that we have proved is an
equality or just an inequality – i.e., whether the above strategy is optimal or
there is a faster one. I claim it is the former:

Proposition 1.1.4. Let n be a positive integer. If mn−1 is an integer (i.e., if
mn−1 ̸= ∞), then mn = 2mn−1 + 1.
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Proof. Again, assume that mn−1 is an integer.
We need to show that mn = 2mn−1 + 1. It suffices to show that mn ≥ 2mn−1 +

1 (since Proposition 1.1.3 yields mn ≤ 2mn−1 + 1, and we can combine these two
inequalities to get mn = 2mn−1 + 1). In other words, it suffices to show that any
winning strategy for n disks has at least 2mn−1 + 1 many moves.

So let us consider a winning strategy T for n disks. Somewhere during the
strategy T, the largest disk has to move (since it starts out on peg 1 but has to
end up on peg 3). Let us refer to these moves (the ones that move the largest
disk) as the special moves. There may be several special moves or just one, but
as we just said, there has to be at least one.

Before the first special move can happen, the smallest n − 1 disks have to
be moved away from peg 1 (since they would otherwise block the largest disk
from moving). Moreover, these smallest n − 1 disks must all be moved onto
the same peg (since otherwise, both pegs 2 and 3 would be occupied, and then
the largest disk would have nowhere to move). Thus, before the first special
move can happen, we must have won the Tower of Hanoi game for n − 1 disks.
Hence, before the first special move can happen, we already need to have made
mn−1 moves (since mn−1 is the smallest # of moves that can win the game for
n − 1 disks).

Now, consider what happens after the last special move. This last special
move necessarily moves the largest disk to peg 3 (since that’s where this disk
has to come to rest). After that, we still need to move all the other disks onto
peg 3. At the time we are making the last special moves, these other disks must
all be on the same peg (since they can be neither on the peg from which the
largest disk is moving, nor on the peg to which it is moving2). Therefore, after
the last special move, we still need to move all the remaining n − 1 disks from
one peg to another. And this is again tantamount to winning the game for n− 1
disks. So this again needs at least mn−1 moves.

So in total, we know that our strategy T needs to have

1. at least mn−1 moves before the first special move,

2. at least one special move, and

3. at least mn−1 moves after the last special move.

Thus, it needs to have at least mn−1 + 1 + mn−1 = 2mn−1 + 1 many moves in
total. This proves mn ≥ 2mn−1 + 1.

Proposition 1.1.4 confirms the table we have carelessly made before:

n 0 1 2 3 4 5 6 7 8

mn 0 1 3 7 15 31 63 127 255

2because in either case, they would block the move of the largest disk
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Obviously, you can keep using Proposition 1.1.4 to compute m9, m10, m11, . . ..
Indeed, the equation

mn = 2mn−1 + 1 (1)

is what is called a recursive formula for the numbers mn. This means a formula
that allows you to compute mn using the previous values m0, m1, . . . , mn−1. In
our case, we only need the direct predecessor mn−1, so this is a particularly
convenient recursive formula.

Still, can we perhaps do better? Can we find an explicit formula – i.e., one
that gives us mn directly?

Some of you have already guessed such a formula:

mn = 2n − 1.

Is there a way to see this without guessing? Let’s try applying the recursive
formula (1) again and again, simplifying each time:

mn = 2mn−1 + 1 (by (1))
= 2 (2mn−2 + 1) + 1 (by (1), applied to n − 1)
= 4mn−2 + 2 + 1
= 4 (2mn−3 + 1) + 2 + 1 (by (1), applied to n − 2)
= 8mn−3 + 4 + 2 + 1
= 8 (2mn−4 + 1) + 4 + 2 + 1 (by (1), applied to n − 3)
= 16mn−4 + 8 + 4 + 2 + 1
= · · · (keep going until you reach m0)

= 2n m0︸︷︷︸
=0

+2n−1 + 2n−2 + · · ·+ 20

= 2n−1 + 2n−2 + · · ·+ 20

= 20 + 21 + 22 + · · ·+ 2n−1.

I claim that the right hand side is 2n − 1. Next time, we will see why.
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