Please solve only 4 of the 6 exercises.

Recall that $\mathbb{N} = \{0, 1, 2, ...\}.$

Exercise 1. Let $a, b \in \mathbb{Z}$. Prove the following:

(a) If $a \mid b$, then $a^k \mid b^k$ for each $k \in \mathbb{N}$.

(b) Let $n \in \mathbb{Z}$. If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$ for each $k \in \mathbb{N}$.

Exercise 2. Let $n, d, a, b \in \mathbb{Z}$, and assume that $d \neq 0$ and $da \equiv db \mod dn$.

(a) Prove that $a \equiv b \mod n$.

(b) Show by an example that $a \equiv b \mod dn$ is not necessarily true (i.e., we cannot simply cancel the *d* from *da* and *db* while leaving the *dn* unchanged).

Exercise 3. Let *n* be any integer. Prove the following:

(a) If *n* is odd, then $8 | n^2 - 1$.

(b) If $3 \nmid n$, then $3 \mid n^2 - 1$.

[**Hint:** In part (a), write *n* as 2k + 1. In part (b), write *n* as $q \cdot 3 + r$ and consider the possible values for *r*.]

Exercise 4. Let *p* be a positive integer.

Assume that you are given *p*-cent coins and (p + 1)-cent coins (each in infinite supply).

Prove that you can pay *n* cents using these coins for every integer $n \ge p^2 - p$. In other words, prove that each integer $n \ge p^2 - p$ can be written as a(p+1) + bp with $a, b \in \mathbb{N}$.

Now for two more properties of binomial coefficients:

Exercise 5. (a) Prove that $k \binom{n}{k} = n \binom{n-1}{k-1}$ for any two numbers *n* and *k*.

(b) Prove that $\sum_{k=0}^{n} k \binom{n}{k} x^{k} = nx (x+1)^{n-1}$ for any positive integer *n* and any number *x*.

[**Hint:** Don't forget about cases like k = 0 and $k \notin \mathbb{N}$.]

Exercise 6. Let $(f_0, f_1, f_2, ...)$ be the Fibonacci sequence. Let $n \in \mathbb{N}$. Prove that

$$2^{n-1} \cdot f_n = \sum_{k=0}^n \binom{n}{2k+1} \cdot 5^k.$$

[**Hint:** The 5 on the right hand side looks suspiciously like the 5 in $\frac{1+\sqrt{5}}{2}$, whereas the binomial coefficients look like the binomial formula...]