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Greatest common divisors: an introduction

0.1. Division with remainder (recall)

If a and b are two integers with b > 0, then there is a unique pair (q, r) with

q ∈ Z and r ∈ {0, 1, . . . , b − 1} and a = qb + r.

This pair (q, r) is called the quo-rem pair of a and b. Specifically, q is called the
quotient and r the remainder of the division of a by b. We use the notations

a//b := q and a%b := r.

For example,

7//3 = 2 and 7%3 = 1;
6//3 = 2 and 6%3 = 0;

(−1) //3 = −1 and (−1)%3 = 2.

0.2. Greatest common divisors

0.2.1. Definition

Definition 0.2.1. Let a and b be two integers.
(a) The common divisors of a and b are the integers that divide both a and

b simultaneously.
(b) The greatest common divisor of a and b is the largest of all common

divisors of a and b, provided that a and b are not both 0. If a and b are both
0, it is defined to be 0 instead.

We denote the greatest common divisor of a and b by gcd (a, b), and we
refer to it as the gcd of a and b.

Some examples:

• What is gcd (4, 6) ?

The divisors of 4 are −4,−2,−1, 1, 2, 4.

The divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6.

Thus, the common divisors of 4 and 6 are −2,−1, 1, 2.

So the greatest common divisor of 4 and 6 is 2. That is, gcd (4, 6) = 2.

• What is gcd (0, 5) ?

The divisors of 0 are all integers (since 0 = x · 0 for each integer x).

The divisors of 5 are −5,−1, 1, 5.

So the common divisors of 0 and 5 are −5,−1, 1, 5.

Thus, gcd (0, 5) = 5.
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• By definition, gcd (0, 0) = 0. It is not literally the largest of all common
divisors of 0 and 0, because there is no largest integer. (This is why we
had to make an exception for the case “a and b are both 0” when defining
the gcd!)

Let us check that gcd (a, b) is well-defined – i.e., that if a and b are two
integers that are not both 0, then there is a largest among all common divisors
of a and b. In fact:

• The number 1 is always a common divisor of a and b, so there is at least
one common divisor of a and b.

• At least one of the numbers a and b is nonzero and thus has only finitely
many divisors, so there are only finitely many common divisors of a and
b.

Hence, the set of all common divisors of a and b is nonempty and finite, and
thus has a largest element. This shows that gcd (a, b) is well-defined.

The above definition gives a stupid but functional algorithm to compute
gcd (a, b): Just run over all divisors of a and check which of them divide b
(at least if a ̸= 0). This is slow when a is a large number.

However, is there a better way?

0.2.2. Basic properties

There is one, and in order to find it, we shall first show a sequence of basic
properties of gcds. First, some very simple results:

Proposition 0.2.2. Let a, b ∈ Z. Then, gcd (a, b) is a nonnegative integer.

Proof. If a and b are both 0, this gcd is 0. Else, it is ≥ 1 (since 1 is a common
divisor).

Proposition 0.2.3. We have gcd (a, b) = gcd (b, a) for all a, b ∈ Z.

Proof. Obvious (a and b play equal roles in the definition).

Proposition 0.2.4. We have gcd (a, b) | a and gcd (a, b) | b.

Proof. Obvious for a = b = 0. Also obvious otherwise.

Proposition 0.2.5. Let a, b ∈ Z. Then, gcd (−a, b) = gcd (a, b) and
gcd (a,−b) = gcd (a, b).

Proof. For any integer c, the number −c has the same divisors as c. Thus, the
common divisors of −a and b are exactly those of a and b. Hence, in particular,
gcd (−a, b) = gcd (a, b). Similarly, we can show gcd (a,−b) = gcd (a, b).
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Proposition 0.2.6. Let a ∈ Z. Then, gcd (a, 0) = gcd (0, a) = |a|.

Proof. Every integer divides 0. Thus, the common divisors of a and 0 are pre-
cisely the divisors of a. If a is nonzero, then the greatest among those is |a|, so
that Proposition 0.2.6 holds. If a = 0, then gcd (0, 0) = 0 gets us to the same
conclusion.

0.2.3. The Euclidean recursion

Next we shall show something subtler:

Proposition 0.2.7. Let a, b, u ∈ Z. Then,

gcd (a, ua + b) = gcd (a, b) .

In other words, the gcd of two integers does not change if you add a multiple
of one to the other.

Proof. This is trivial if a = 0 (because ua + b = b in this case), so let us assume
that a ̸= 0. Thus, both gcds are taken in the literal sense (i.e., they are literally
greatest among the common divisors of the respective numbers).

We shall show that the common divisors of a and ua + b are precisely the
common divisors of a and b. To prove this, we must prove the following two
claims:

Claim 1: Every common divisor of a and ua + b is a common divisor
of a and b.

Claim 2: Every common divisor of a and b is a common divisor of a
and ua + b.

Proof of Claim 2. Let d be a common divisor of a and b. We must prove that d
is a common divisor of a and ua + b. In other words, we must prove that d | a
and d | ua + b.

Of course, d | a is clear by definition of d. Moreover, from d | a | ua and
d | b, we see that the two numbers ua and b are multiples of d. Hence, their
sum ua + b is a multiple of d as well (since a sum of two multiples of d is again
a multiple of d). In other words, d | ua + b. Thus, d | a and d | ua + b are both
proved. In other words, Claim 2 is proved.

Proof of Claim 1. Let c = ua + b. Then, (−u) a + c = (−u) a + ua︸ ︷︷ ︸
=0

+b = b. How-

ever, Claim 1 (applied to −u and c instead of u and b) yields that every common
divisor of a and (−u) a + c is a common divisor of a and c. In other words, ev-
ery common divisor of a and b is a common divisor of a and ua + b (since
(−u) a + c = b and c = ua + b). This proves Claim 1.
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Having proved both claims, we conclude that the common divisors of a and
ua+ b are precisely the common divisors of a and b. Thus, the greatest common
divisor of a and ua + b is the greatest common divisor of a and b. This proves
Proposition 0.2.7.

Corollary 0.2.8 (Euclidean recursion for the gcd). Let a ∈ Z, and let b be a
positive integer. Then,

gcd (a, b) = gcd (b, a%b) .

Proof. Let q and r be the quotient and the remainder of the division of a by b.
Then, a = qb + r (by the definition of quotient and remainder) and a%b = r (by
the definition of a%b).

Now, Proposition 0.2.3 yields

gcd (a, b) = gcd (b, a) = gcd (b, qb + r) (since a = qb + r)

= gcd (b, r)
(

by Proposition 0.2.7,
applied to b, r, q instead of a, b, c

)
= gcd (b, a%b) (since r = a%b) .

This proves Corollary 0.2.8.

0.2.4. The Euclidean algorithm

Let us put this corollary to some use: We shall compute some gcds by repeat-
edly simplifying them using Corollary 0.2.8. For instance,

gcd (179, 18) = gcd (18, 179%18) (by Corollary 0.2.8)
= gcd (18, 17) (since 179%18 = 17)
= gcd (17, 18%17) (by Corollary 0.2.8)
= gcd (17, 1) (since 18%17 = 1)
= gcd (1, 17%1) (by Corollary 0.2.8)
= gcd (1, 0) (since 17%1 = 0)
= |1| (by Proposition 0.2.6)
= 1
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and

gcd (73, 333) = gcd (333, 73%333) (by Corollary 0.2.8)
= gcd (333, 73)
= gcd (73, 333%73) (by Corollary 0.2.8)
= gcd (73, 41)
= gcd (41, 73%41) (by Corollary 0.2.8)
= gcd (41, 32)
= gcd (32, 41%32) (by Corollary 0.2.8)
= gcd (32, 9)
= gcd (9, 32%9) (by Corollary 0.2.8)
= gcd (9, 5)
= gcd (5, 9%5) (by Corollary 0.2.8)
= gcd (5, 4)
= gcd (4, 5%4) (by Corollary 0.2.8)
= gcd (4, 1)
= gcd (1, 4%1) (by Corollary 0.2.8)
= gcd (1, 0) = |1| = 0.

These two computations are instances of a general algorithm for computing
gcd (a, b) for any two integers a and b, where b ≥ 0. This algorithm proceeds
as follows:

• If b = 0, then the gcd is |a|.

• If b > 0, then we replace a and b by b and a%b and recurse (i.e., we apply
the same algorithm again to b and a%b instead of a and b).

In Python, this algorithm can be implemented as follows:

def gcd(a, b): # for b nonnegative
if b == 0:

return abs(a) # this is |a|
return gcd(b, a%b)

This algorithm is called the Euclidean algorithm. It will terminate because
at each step, b (the second argument) gets smaller:

a%b < b (since a%b ∈ {0, 1, . . . , b − 1} by the definition of remainders) .

Moreover, it will terminate fairly quickly, because of the following fact:
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Proposition 0.2.9. Assume that a and b are positive integers. Then, at every
step of the Euclidean algorithm except perhaps for the first step, the product
ab drops by at least a factor of 2.

Proof sketch. A step replaces a pair (a, b) by (b, a%b). Note that b > a%b (since
a%b ∈ {0, 1, . . . , b − 1} by the definition of remainders), so that we always have
a > b after the first step.

Now, if a > b, then the quotient q and the remainder r = a%b of the division
of a by b satisfy a = q︸︷︷︸

≥1
(since a>b)

b + r ≥ b︸︷︷︸
>r

+r > r + r = 2r, so that r <
a
2

. In

other words, a%b <
a
2

. Thus, the step that replaces a and b by b and b%a turns

the product ab into b (a%b)︸ ︷︷ ︸
<

a
2

< b · a
2
=

ab
2

. Hence, the product drops by at least

a factor of 2 when we perform this step.

Hence, the Euclidean algorithm (when applied to two positive integers a and
b) terminates after at most 2 + log2 (ab) many steps. For instance, if a and b are
20-digit integers, then 2 + log2 (ab) < 2 + log2

(
1020 · 1020) ≈ 135, which is a

very manageable number of steps.
Thus, the Euclidean algorithm makes gcds easy to compute. (And because of

gcd (a, b) = gcd (a,−b), we can easily extend it to the case when b is negative,
so that it will work for any integers a and b.)

0.2.5. Bezout’s theorem, and the extended Euclidean algorithm

We can tweak the Euclidean algorithm to produce more than just the gcd. But
what else could we want?

Assume that your country has only two kinds of coins: 3-cent coins and 5-
cent coins. You want to pay exactly 1 cent. You can get change (but only in
3-cent and 5-cent coins). Can you do it, and how?

Yes, you can do this by paying two 5-cent coins and getting three 3-cent coins
in return. The reason why this works is that

2 · 5 + (−3) · 3 = 1.

Similarly, can you pay 1 cent with 5-cent coins and 7-cent coins (with change)?
Yes:

3 · 7 + (−4) · 5 = 1.

Can you pay 1 cent with 4-cent coins and 6-cent coins (with change)? No. In
fact, any amount you can pay has the form x · 4 + y · 6 for x, y ∈ Z, and thus is
even. But 1 is not even.
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In general, the only amounts you could possibly pay with a-cent coins and
b-cent coins are multiples of gcd (a, b). But is this the only requirement? Can
you pay exactly gcd (a, b) cents?

Bezout’s theorem says “yes” (if you can get change):

Theorem 0.2.10 (Bezout’s theorem). Let a and b be two integers. Then, there
exist two integers x and y such that

gcd (a, b) = xa + yb.

This theorem is not just amusing but actually very useful. We will sketch
a proof by strong induction. The idea of the proof is: You’re interested in
representing the gcd of two numbers a and b as a multiple of a plus a multiple
of b. Such a representation will be called a Bezout pair for (a, b). We provide
an algorithm for finding such a Bezout pair by piggybacking on the Euclidean
algorithm for computing gcd (a, b).

Let’s make this more precise:

Definition 0.2.11. Let a and b be two integers. A Bezout pair for (a, b) will
mean a pair (x, y) of integers such that

gcd (a, b) = xa + yb.

So we must prove that every pair (a, b) of integers has a Bezout pair. We
observe the following:

Lemma 0.2.12. For any integer a, there is a Bezout pair for (a, 0), namely{
(1, 0) , if a ≥ 0;
(−1, 0) , if a < 0.

Proof. Direct verification, since gcd (a, 0) = |a|.

Lemma 0.2.13. Let a and b be two integers. Let (u, v) be a Bezout pair for
(a,−b). Then, (u,−v) is a Bezout pair for (a, b).

Proof. Proposition 0.2.5 yields

gcd (a, b) = gcd (a,−b)
= ua + v (−b) (since (u, v) is a Bezout pair for (a,−b))
= ua + (−v) b.

But this shows precisely that (u,−v) is a Bezout pair for (a, b).
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Lemma 0.2.14 (Euclidean recursion for Bezout pairs). Let a and b be two
integers, where b > 0. Let (u, v) be a Bezout pair for (b, a%b). Then,
(v, u − v (a//b)) is a Bezout pair for (a, b).

Proof. Since (u, v) is a Bezout pair for (b, a%b), we have

gcd (b, a%b) = ub + v (a%b) .

Also, the definition of quotient and remainder yields a = qb + r, where q =
a//b and r = a%b. In other words,

a = (a//b) b + (a%b) .

Hence,
a%b = a − (a//b) b.

Now, Corollary 0.2.8 yields

gcd (a, b) = gcd (b, a%b) = ub + v (a%b)︸ ︷︷ ︸
=a−(a//b)b

= ub + v (a − (a//b) b)
= ub + va − v (a//b) b
= (u − v (a//b)) b + va
= va + (u − v (a//b)) b.

This shows that (v, u − v (a//b)) is a Bezout pair for (a, b).

Using Lemma 0.2.12 and Lemma 0.2.14, we can give a recursive algorithm
for computing Bezout pairs (here implemented in Python):

def bezout_pair(a, b): # for b nonnegative
if b == 0: # this is the trivial case

if a >= 0:
return (1, 0)

if a < 0:
return (-1, 0)

# now to the nontrivial case (b > 0):
(u, v) = bezout_pair(b, a%b)
return (v, u - v * (a//b))

In human language, this says:

• If b = 0, then a Bezout pair for (a, b) is either (1, 0) or (−1, 0) depending
on whether a ≥ 0 or a < 0.

• Otherwise, replace a and b by b and a%b, then compute a Bezout pair
(u, v) for the new a and b, and then replace it by (v, u − v (a//b)) where
a and b are again the original a and b (not the new a and b).
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This algorithm is called the extended Euclidean algorithm. It can be easily
adapted to negative b using Lemma 0.2.13. It is comparably fast to the original
Euclidean algorithm, but not quite as fast, since it involves “back-substitution”
(the step where (u, v) is transformed into (v, u − v (a//b))).

0.2.6. The universal property of the gcd

Consider two integers a and b that are not both 0. By its definition, gcd (a, b) is
greater or equal to any common divisor of a and b. But something even better
is true: It is divisible by any common divisor of a and b. In other words:

Proposition 0.2.15. Let a and b be two integers. Then, any common divisor
of a and b is a divisor of gcd (a, b).

Proof. Let d be a common divisor of a and b. We must prove that d is a divisor
of gcd (a, b).

Bezout’s theorem yields gcd (a, b) = xa + yb for some integers x and y. Con-
sider these x and y. Both xa and yb are multiples of d (since d | a | xa and
d | b | yb). Thus, their sum xa + yb is also a multiple of d (since a sum of two
multiples of d is a multiple of d). But this sum is gcd (a, b). So we have shown
that gcd (a, b) is a multiple of d. In other words, d is a divisor of gcd (a, b). This
proves Proposition 0.2.15.

Theorem 0.2.16 (universal property of the gcd). Let a and b be two integers.
Then, the common divisors of a and b are precisely the divisors of gcd (a, b).

Proof. Proposition 0.2.15 shows that any common divisor of a and b is a divisor
of gcd (a, b). Conversely, any divisor d of gcd (a, b) is a common divisor of a
and b (since d | gcd (a, b) | a and likewise d | b). Theorem 0.2.16 follows.

0.2.7. The Frobenius coin problem

Let us return to the puzzle about a-cent coins and b-cent coins. What denomi-
nations can you pay using these coins if you do not take change?

Usually, you cannot pay gcd (a, b) cents. For example, you cannot pay 2 cents
with 4-cent and 6-cent coins. But still, you can pay 4, 6, 8, 10, 12, . . . cents.

With 3-cent coins and 5-cent coins, you can pay the denominations

3, 5, 6, 8, 9, 10, 11, 12, 13, . . .︸ ︷︷ ︸
any integer ≥8

.

How does the answer look like for arbitrary a and b ? (This is known as the
Frobenius coin problem.)

The only interesting case is when gcd (a, b) = 1, because if a and b have
common divisors larger than 1, then we can just factor these divisors out.

In the case gcd (a, b) = 1, there is a nice partial answer by Sylvester:
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Theorem 0.2.17 (Sylvester’s two-coin theorem). Let a and b be two positive
integers such that gcd (a, b) = 1. Then:

(a) Any integer n > ab − a − b can be written in the form

n = xa + yb with x, y nonnegative integers

(i.e., you can pay n cents with a-cent coins and b-cent coins, without having
to take change).

(b) The integer ab − a − b cannot be written in this form.
(c) Among the first (a − 1) (b − 1) nonnegative integers 0, 1, . . . , ab − a − b,

exactly half can be written in the form

n = xa + yb with x, y nonnegative integers,

while the other half cannot.
(d) For any integer n, exactly one of the two integers n and ab − a − b − n

can be written in this form.

Proof. See Theorem 3.8.3 in Lecture 11 of https://www.cip.ifi.lmu.de/~grinberg/
t/23wd (note: I did not actually do this in class).

https://www.cip.ifi.lmu.de/~grinberg/t/23wd
https://www.cip.ifi.lmu.de/~grinberg/t/23wd
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