Math 332: Undergraduate Abstract Algebra II, Winter 2023: Midterm 2

Please solve at most 3 of the 6 problems! No collaboration is allowed on the midterm.

Darij Grinberg

March 10, 2023

1 EXERCISE 1

1.1 PROBLEM

(a) Prove that there are no ring morphisms from $\mathbb{Z}[i]$ to \mathbb{Z} .

Now, let p be a prime number. Prove the following:

- (b) There are no ring morphisms from $\mathbb{Z}[i]$ to \mathbb{Z}/p if $p \equiv 3 \mod 4$.
- (c) There are exactly two ring morphisms from $\mathbb{Z}[i]$ to \mathbb{Z}/p if $p \equiv 1 \mod 4$.
- (d) There is a unique ring morphism from $\mathbb{Z}[i]$ to \mathbb{Z}/p if p = 2.

More generally, prove the following:

(e) If R is any ring, then the number of ring morphisms from $\mathbb{Z}[i]$ to R is the number of all elements $r \in R$ satisfying $r^2 = -1$.

1.2 Hint

If f is a ring morphism from $\mathbb{Z}[i]$ to R, then what equation must f(i) satisfy?

1.3 Solution

•••

2 EXERCISE 2

2.1 Problem

Let ω denote the complex number $\frac{-1+\sqrt{-3}}{2} \in \mathbb{C}$.

- (a) Prove that $\omega^3 = 1$ and $\omega^2 + \omega + 1 = 0$.
- (b) Prove that $|a + b\omega| = \sqrt{a^2 ab + b^2}$ for any $a, b \in \mathbb{R}$.
- (c) Define a subset $\mathbb{Z}[\omega]$ of \mathbb{C} by

$$\mathbb{Z}\left[\omega\right] := \left\{ a + b\omega \mid a, b \in \mathbb{Z} \right\}.$$

Prove that $\mathbb{Z}[\omega]$ is a subring of \mathbb{C} . (It is called the ring of *Eisenstein integers*.)

- (d) Prove that $\mathbb{Z}\left[\sqrt{-3}\right]$ is a subring of $\mathbb{Z}\left[\omega\right]$.
- (e) Prove that the ring $\mathbb{Z}[\omega]$ is Euclidean, and that the map

$$N : \mathbb{Z}[\omega] \to \mathbb{N},$$

$$a + b\omega \mapsto a^2 - ab + b^2 \qquad (\text{for } a, b \in \mathbb{Z})$$

is a Euclidean norm for it.

[For the sake of brevity, you are allowed to reason from a picture here.]

2.2 HINT

Geometrically speaking, the three complex numbers 1, ω , ω^2 are the vertices of an equilateral triangle inscribed in the unit circle. The elements of $\mathbb{Z}[\omega]$ are the grid points of a triangular

lattice that looks as follows (imagine the picture extended to infinity all on sides):

For part (d), don't forget to show that $\mathbb{Z}\left[\sqrt{-3}\right]$ is a **subset** of $\mathbb{Z}\left[\omega\right]$ in the first place!

2.3 Solution

3 EXERCISE 3

3.1 PROBLEM

Let R be a ring. Let M be a left R-module.

For any subset K of M, let Ann K denote the subset $\{r \in R \mid rk = 0 \text{ for all } k \in K\}$ of R. (This is called the *annihilator* of K.)

- (a) Prove that $\operatorname{Ann} M$ is an ideal of R.
- (b) Let K be any subset of M. Prove that Ann K is a left ideal of R. (Recall that a *left ideal* of R means a subset L of R that is closed under addition and contains 0 and satisfies $ra \in L$ for all $r \in R$ and $a \in L$.)
- (c) Find an example showing that the $\operatorname{Ann} K$ in part (b) is not always an ideal of R.

...

3.2 Solution

4 EXERCISE 4

4.1 PROBLEM

Let R be a ring. Let M be a left R-module. Prove the following:

(a) Let I be an ideal of R. An (I, M)-product shall mean a product of the form im with $i \in I$ and $m \in M$. Then,

 $IM := \{ \text{finite sums of } (I, M) \text{-products} \}$

is an R-submodule of M.

(b) Let a be a central element of R. Prove that

$$aM := \{am \mid m \in M\}$$

is an R-submodule of M.

•••

...

5 EXERCISE 5

5.1 Problem

Let n and k be two positive integers. Let V be the subset

$$\{(a_1, a_2, \dots, a_n) \in \mathbb{Z}^n \mid a_1 \equiv a_2 \equiv \dots \equiv a_n \mod k\}$$

of the \mathbb{Z} -module \mathbb{Z}^n .

It is straightforward to see that V is a \mathbb{Z} -submodule of \mathbb{Z}^n . Show that V is free, and find a basis of V.

5.2 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

Let R be any ring. Consider the map

$$S: R^{\mathbb{N}} \to R^{\mathbb{N}},$$

(a₀, a₁, a₂,...) \mapsto (a₀, a₀ + a₁, a₀ + a₁ + a₂, a₀ + a₁ + a₂ + a₃, ...)
= (b₀, b₁, b₂, ...) where b_i = a₀ + a₁ + ... + a_i.

Consider furthermore the map

$$\begin{aligned} \Delta : R^{\mathbb{N}} \to R^{\mathbb{N}}, \\ (a_0, a_1, a_2, \ldots) \mapsto (a_0, a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots), \\ &= (c_0, c_1, c_2, \ldots) \text{ where } c_0 = a_0 \text{ and } c_i = a_i - a_{i-1} \text{ for all } i \ge 1. \end{aligned}$$

- (a) Prove that S and Δ are R-linear maps and are mutually inverse.
- (b) Recall the *R*-submodule

$$R^{(\mathbb{N})} = \left\{ (a_0, a_1, a_2, \ldots) \in R^{\mathbb{N}} \mid \text{ only finitely many } i \in \mathbb{N} \text{ satisfy } a_i \neq 0 \right\}$$

of $\mathbb{R}^{\mathbb{N}}$. Define a further \mathbb{R} -submodule $\mathbb{R}^{(\mathbb{N})+}$ of $\mathbb{R}^{\mathbb{N}}$ by

$$R^{(\mathbb{N})+} := \left\{ (a_0, a_1, a_2, \ldots) \in R^{\mathbb{N}} \mid \text{ there exists a } c \in R \text{ such that} \\ \text{only finitely many } i \in \mathbb{N} \text{ satisfy } a_i \neq c \right\}.$$

(Thus, a sequence $(a_0, a_1, a_2, \ldots) \in \mathbb{R}^{\mathbb{N}}$ belongs to $\mathbb{R}^{(\mathbb{N})+}$ if and only if starting from some point on, all its entries are equal.)

Clearly, $R^{(\mathbb{N})}$ is a proper subset of $R^{(\mathbb{N})+}$ (unless R is trivial).

Prove that $R^{(\mathbb{N})} \cong R^{(\mathbb{N})+}$ as left *R*-modules, and in fact the restriction of the map *S* to $R^{(\mathbb{N})}$ is a left *R*-module isomorphism from $R^{(\mathbb{N})}$ to $R^{(\mathbb{N})+}$.

6.2 Solution

•••