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Math 332 Winter 2023, Lecture 29: Polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

5. Polynomials II

In this last lecture, we will catch a very brief glimpse of the study of multivariate
polynomials. The material that I will show (without proofs) is at the spring of
several renowned fields of mathematics (algebraic geometry, Gröbner bases,
combinatorial commutative algebra) and deserves a whole course of its own.
Alas, now that the quarter is almost over, all I can give are a few basic results
and pose a few questions. More can be found in Chapter 6 of the text, in de
Graaf’s notes [deGraa20], or in the book [CoLiOs15] (listed here roughly in
the order of increasing comprehensiveness, although I am not saying that each
source is fully contained in the next).

Convention 5.0.1. Again, for this entire chapter, we fix a commutative ring
R.

As we saw last time (§3.5 in Lecture 28), univariate polynomials are very
well-behaved as long as their leading coefficients are invertible. If b ∈ R [x] is a
degree-m polynomial with this property, then R [x] /b is a free R-module with
basis

(
x0, x1, . . . , xm−1

)
. Furthermore, in this case, each polynomial in R [x]

can be divided with remainder by b, and thus divisibility by b can be easily
checked. Also, if F is a field, then the polynomial ring F [x] is a Euclidean
domain (by Theorem 3.3.16 in Lecture 26), thus a PID, so that all its ideals are
principal, and therefore the quotient rings of F [x] always have the form F [x] /b
for some single polynomial b.

Everything becomes more complicated once we pass to multivariate polyno-
mials. I will just outline some of the main questions and a few of the simplest
results. Generally, the study of ideals and quotient rings of multivariate poly-
nomial rings is one of the main topics in algebraic geometry.

5.1. Non-principal ideals

If R is a field, then the ring R [x] is a PID, but the ring R [x, y] is not. Here is
the simplest example of a non-principal ideal: Let P = R [x, y]. Then, the ideal
xP + yP of P can be rewritten as follows:

xP + yP = {all multiples of x}+ {all multiples of y}
= {all polynomials whose constant term is 0} (why?)
= { f ∈ P | f [0, 0] = 0} (since f [0, 0] is the constant term of f ) .

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
https://en.wikipedia.org/wiki/Algebraic_geometry
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If R is nontrivial, then this ideal xP + yP of P is not principal (i.e., not of the
form uP for some u ∈ P).

The quotient ring P/ (xP + yP) is quite simple: It is isomorphic to R (as an
R-algebra). Specifically, the map

P/ (xP + yP) → R,

f 7→ f [0, 0]

is an R-algebra isomorphism. (This is not hard to check.)
For comparison,

P/ (xP) = P/x ∼= R [y] ,

via the R-algebra isomorphism

P/x → R [y] ,

f 7→ f [0, y] .

This should be quite intuitive: If we quotient out x from the polynomial ring
P = R [x, y], we should be left with the other indeterminate y.

Here is a slightly trickier version of this isomorphism: We have

P/ (x + y) ∼= R [x] ,

via the R-algebra isomorphism

P/ (x + y) → R [x] ,

f 7→ f [x,−x] .

Intuitively, this is because quotienting out x + y from the polynomial ring P =
R [x, y] means that we are “setting y := −x”, so that we are left with only one
free variable x.

Note, in particular, that P/ (x + y) is not the same as P/ (xP + yP), since the
principal ideal (x + y) P is not the same as xP + yP. (For instance, 2x + 3y /∈
(x + y) P.)

5.2. More interesting example: R [x, y] /
(

x2 + y2 − 1
)

How does the quotient ring R [x, y] /
(
x2 + y2 − 1

)
look like? For R = R in

particular, it is known as the ring of trigonometric polynomials, since there is
an R-algebra morphism

R [x, y] /
(

x2 + y2 − 1
)
→ RR︸︷︷︸

ring of functions R→R
(with pointwise addition
and multiplication and

scaling)

,

f 7→ f [sin t, cos t] .
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It can be shown that this map is injective (not obvious!), so that R [x, y] /
(
x2 + y2 − 1

)
is isomorphic to a subring of RR. It can also be shown that R [x, y] /

(
x2 + y2 − 1

)
is an integral domain. But, for instance, (Z/2) [x, y] /

(
x2 + y2 − 1

)
is not an in-

tegral domain, because over Z/2, we have

x2 + y2 − 1 = (x + y − 1)2 (check this!) ,

so that the nonzero residue class x + y − 1 is nilpotent in (Z/2) [x, y] /
(
x2 + y2 − 1

)
.

Another question: As an R-module, is R [x, y] /
(
x2 + y2 − 1

)
free? Equiva-

lently, is there a unique division-with-remainder procedure in the ring R [x, y]
by the polynomial x2 + y2 − 1 ?

There are two answers to this question, one more specific to this polynomial,
and one more general.

For the more specific answer, we note the following:

Proposition 5.2.1. We have

R [x, y] ∼= (R [x]) [y] as R-algebras.

More concretely, the map

R [x, y] → (R [x]) [y] ,

∑
i,j∈N

ai,jxiyj 7→ ∑
j∈N

(
∑

i∈N

ai,jxi

)
yj

is an R-algebra isomorphism.

This isomorphism sends x2 + y2 − 1 ∈ R [x, y] to x2 + y2 − 1 = y2 +
(
x2 − 1

)
∈

(R [x]) [y], which is a monic polynomial in y of degree 2 over the ring R [x].
Hence, by what we know about monic polynomials (specifically, Theorem 3.5.2
in Lecture 28), we can divide with remainder by y2 +

(
x2 − 1

)
, and the quotient

ring (R [x]) [y] /
(
y2 +

(
x2 − 1

))
is a free R [x]-module with basis

(
y0, y1

)
=(

1, y
)
. Now, unapplying the isomorphism from Proposition 5.2.1, we conclude

that the quotient ring R [x, y] /
(
x2 + y2 − 1

)
is a free R [x]-module with basis(

1, y
)
, therefore a free R-module with basis(

x0, x1, x2, . . . , x0y, x1y, x2y, . . .
)

.

Note that Proposition 5.2.1 can be generalized to many variables:

Proposition 5.2.2. For any n > 0, we have

R [x1, x2, . . . , xn] ∼= (R [x1, x2, . . . , xn−1]) [xn] as R [x1, x2, . . . , xn−1] -algebras.
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By applying this proposition iteratively, we obtain

R [x1, x2, . . . , xn] ∼= (((R [x1]) [x2]) [x3]) · · · [xn] as R-algebras.

In other words, a multivariate polynomial ring can be constructed by introduc-
ing the variables “one at a time”.

The variables in a multivariate polynomial ring can also be reordered arbi-
trarily: e.g., we have R [x, y, z, w] ∼= R [y, z, x, w]. Thus, while Proposition 5.2.1
gives an isomorphism R [x, y] ∼= (R [x]) [y], we can just as easily obtain an iso-
morphism R [x, y] ∼= (R [y]) [x]. As a consequence, a polynomial in x and y can
be regarded as a univariate polynomial in two ways: either as a univariate poly-
nomial in y over R [x] (using the isomorphism R [x, y] ∼= (R [x]) [y]), or as a uni-
variate polynomial in x over R [y] (using the isomorphism R [x, y] ∼= (R [y]) [x]).
By viewing our polynomial x2 + y2 − 1 in the former way, we obtained the basis(

x0, x1, x2, . . . , x0y, x1y, x2y, . . .
)

of R [x, y] /
(
x2 + y2 − 1

)
. Likewise, viewing it in the latter way, we can obtain

the basis (
y0, y1, y2, . . . , xy0, xy1, xy2, . . .

)
of R [x, y] /

(
x2 + y2 − 1

)
. There are, of course, many other bases.

5.3. Trickier examples

Now we understand the R-modules R [x, y] /y and R [x, y] /
(
x2 + y2 − 1

)
well

enough. What about R [x, y] / (xy) ?
Our above method does not help us here, since the polynomial xy neither

has an invertible leading coefficient when considered as a polynomial in x (over
R [y]) nor when considered as a polynomial in y (over R [x]). We need a new
idea.

However, xy is just a monomial, so that it is pretty clear what happens when
we quotient it out: All monomials xiyj with i > 0 and j > 0 are equated to
0 (since they are multiples of xy), whereas all the other monomials (i.e., the
monomials 1, x, x2, x3, . . . , y, y2, y3, . . .) remain R-linearly independent
(since no R-linear combination of them is a multiple of xy, except for the trivial
combination 0). Thus, the R-module R [x, y] / (xy) is free with basis(

1, x, x2, x3, . . . , y, y2, y3, . . .
)

.

As an R-algebra, it is not an integral domain, since x · y = xy = 0.
So we were lucky again. But what about R [x, y] / (xy (x − y)) ? None of our

above tricks can help us now.
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5.4. Degrees and the deg-lex order

It is time for a general method, or at least as general as we can hope for. In the
univariate case, we were able to answer many questions about R [x] /b using
division with remainder. So let us try to extend division with remainder to the
multivariate case. The first question is: What is a leading coefficient?

For example, in the polynomial

(x + y + 1)2 = x2 + 2xy + y2 + 2x + 2y + 1,

the terms x2, 2xy and y2 have the largest degrees. It makes sense for one of
them to count as the leading term. But which one? We clearly need a systematic
method to break ties.

First, we get some basic terminology in place:

Convention 5.4.1. As we said, R is a fixed commutative ring.
Now we also fix n ∈ N. We let P be the polynomial ring R [x1, x2, . . . , xn].

As we recall, a monomial is an element of the free abelian monoid C(n) with n
generators x1, x2, . . . , xn, and has the form xa1

1 xa2
2 · · · xan

n for some a1, a2, . . . , an ∈
N.

We have already used the notion of a degree of such a monomial, but let us
define it formally:

Definition 5.4.2. The degree of a monomial m = xa1
1 xa2

2 · · · xan
n is defined to

be a1 + a2 + · · ·+ an ∈ N. It is called degm.

Definition 5.4.3. A monomial m is said to appear in a polynomial f ∈ P if
[m] f ̸= 0. (Recall that [m] f denotes the coefficient of m in f .)

Definition 5.4.4. The degree of a nonzero polynomial f ∈ P is the largest
degree of a monomial that appears in f .

For example, the polynomial (x + y + 1)3 − (x + y)3 ∈ Q [x, y] has degree 2,
since it equals 3x2 + 3y2 + 6xy+ 3x + 3y+ 1. But the polynomial

(
x + y + 1

)3 −
(x + y)3 ∈ (Z/3) [x, y] has degree 0, since it equals 1.

The following proposition is the multivariate analogue to parts (a) and (c) of
Proposition 3.3.5 in Lecture 25:

Proposition 5.4.5 (degree-of-a-product formula). Let p, q ∈ P be nonzero.
Then:

(a) We have deg (pq) ≤ deg p + deg q.
(b) We have deg (pq) = deg p + deg q if R is an integral domain.
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Part (a) of this proposition is easy (since deg (mn) = degm+ deg n for any
monomials m and n). But why should part (b) be true? It is no longer clear
what a “leading term” should be, so what guarantees us that there is not some
“magic” cancellation in the highest degree when we multiply p with q?

There are, in fact, many different ways to define leading terms. Here is the
simplest:

Definition 5.4.6. Let m = xa1
1 xa2

2 · · · xan
n and n = xb1

1 xb2
2 · · · xbn

n be two mono-
mials. We write m ≺ n (and say that m is smaller than n in deg-lex order) if
and only if

• either degm < deg n

• or degm = deg n and the smallest i ∈ {1, 2, . . . , n} that satisfies ai ̸= bi
satisfies ai < bi.

Thus, the deg-lex order is a way to compare two monomials m and n, and
it compares them as follows: If their degrees are different, then the monomial
with smaller degree is automatically declared to be smaller. If their degrees are
equal, then the exponents on each variable are compared, starting with x1 and
moving up the list of variables. The first time the exponents differ on some
variable, the monomial having the smaller exponent is declared to be smaller.

For example, writing x1, x2, x3 as x, y, z, we have x3y2z1 ≺ z8 (since deg
(
x3y2z1) <

deg
(
z8)) and x3y1z2 ≺ x3y2z1 (since deg

(
x3y1z2) = deg

(
x3y2z1) and 3 = 3

and 1 < 2) and

x2 ≺ y2z ≺ xyz ≺ x2z ≺ y4 ≺ x2y2 ≺ x3y ≺ · · · .

This deg-lex order (“deg-lex” is short for “degree-lexicographic”) has some
nice properties, including (most importantly) the fact that if two monomials m
and n satisfy m ≺ n, then mp ≺ np for any further monomial p. (See §6.2.2 in
the text for more details.)

Now, we can define use the deg-lex order to define leading coefficients for
multivariate polynomials:

Definition 5.4.7. Let p ∈ P be a nonzero polynomial. Then:
(a) The leading monomial of p is defined to be the largest monomial m

(largest with respect to deg-lex order) that appears in p. We denote this
leading monomial by LM p.

(b) The leading coefficient of p is defined to be the coefficient [LM p] p of
p. It is denoted by LC p.

(c) The leading term of p is defined to be LC p · LM p.

For example, the leading monomial of (x + y + 3)2 ∈ Q [x, y] is x2, and
the leading coefficient is 1. For another example, the leading monomial of
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(2x + 3y)2 ∈ Q [x, y] is x2, the leading coefficient is 4, and the leading term is
4x2.

Thanks to the above mp ≺ np property of deg-lex order, leading monomials
behave well: In particular, when we multiply two nonzero polynomials p, q ∈ P,
their leading terms get multiplied, unless the coefficients multiply to 0. This
yields Proposition 5.4.5 (b). As a consequence, we conclude:

Corollary 5.4.8. If R is an integral domain, then the multivariate polynomial
ring P = R [x1, x2, . . . , xn] is an integral domain as well.

(Alternatively, this can also be proved using Proposition 5.2.2, since we know
how to prove the univariate case already.)

5.5. Division with remainder

So the deg-lex order is a nice and consistent way to break ties when deciding
what monomial of a polynomial is leading. It is not the only such way, and
in fact, the existence of many possible “monomial orders” that each fit the bill
is more of a blessing than a curse, since it allows you to pick and choose in
specific problems. There is no single best order, although the deg-lex order is
perhaps the simplest to work with. See §6.3.3 in the text for another impor-
tant monomial order (the lex order, which does not take degrees into account
before comparing exponents), and see [CoLiOs15, §2.2] for a general theory of
monomial orders.

Having a monomial order in place, we can try to imitate the standard “long
division” (i.e., division-with-remainder) algorithm for univariate polynomials
with multivariate polynomials. We obtain the following generalization of the
univariate division-with-remainder theorem (Theorem 3.3.8 in Lecture 25):

Theorem 5.5.1 (Division-with-remainder theorem for multivariate polynomi-
als). Let b ∈ P be a nonzero polynomial whose leading coefficient is a unit
of R. Let a ∈ P be any polynomial.

Then, there is a unique pair (q, r) of polynomials in P such that

a = qb + r

and such that no multiples of the leading monomial of b appear as monomi-
als in r.

Proof. Much like the univariate case. Note that the “no multiples of the leading
monomial of b appear as monomials in r” condition is a multivariate analogue
of the “deg r < deg b” condition from the univariate case. See Theorem 6.3.1 in
the text for some examples.

(But note that the uniqueness is only relative to the choice of monomial order.
A different monomial order can lead to a different pair (q, r).)
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Corollary 5.5.2. Let b ∈ P be a nonzero polynomial whose leading coefficient
is a unit of R. Then, the R-module P/b is free with basis

(m)m is a monomial that is not a multiple of the leading monomial of b .

This answers (at least under the “leading coefficient is a unit” condition) the
question of how a quotient ring of P by a single polynomial looks like.

5.6. What about non-principal ideals?

But recall that P has non-principal ideals, too (if n > 1). What happens if we
quotient P by a non-principal ideal? In other words, what if we want to equate
several polynomials with 0 at the same time?

Here, the theory becomes really interesting. You can try dividing with re-
mainder by several polynomials, but the remainder will often be non-unique.
There is a way to make remainders unique by bringing the list of polynomials
to a special form, called a Gröbner basis. A taste of Gröbner bases can be found
in §6.3 of the text, and a systematic introduction is given in [CoLiOs15] and in
[deGraa20]. Let me mention that, at least when R is a field, the whole the-
ory is algorithmic, and the algorithms are available in most computer algebra
packages. For example:

Example 5.6.1. Let R = Q and n = 3, and write x, y, z for x1, x2, x3. Let
I = b1P + b2P + b3P, where

b1 = x2 + xy,

b2 = y2 + yz,

b3 = z2 + zx.

Does z4 belong to I ? Direct division with remainder does not help, at least
not if you are using the deg-lex order, since none of the leading monomials of
b1, b2, b3 or any of their multiples appear in z4 (keep in mind that the leading
monomial of b3 is zx, not z2). However, if you first compute the Gröbner
basis of I, and then divide z4 with remainder by that Gröbner basis, then you
obtain the remainder 0, which shows that z4 does belong to I.

For example, the SageMath computer algebra system computes the Gröb-
ner basis to be (

x2 + xy, y2 + yz, xz + z2, yz2 − z3, z4
)

,

which makes it particularly clear that z4 ∈ I.

https://sagecell.sagemath.org/?z=eJwL0LOp0FGo1FGoslOwVQjIz6nMy8_NTMwJysxL1wgM1OTyBAnrZaakJuZoVMQZKWgrVGgBlVeCmZVaVUCdYGaVVgVQsV56UX5qUl5qUXxSYnFmsYYmAFkYHJ0=&lang=sage&interacts=eJyLjgUAARUAuQ==
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