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Math 332 Winter 2023, Lecture 28: Polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

3. Monoid algebras and polynomials

Recall: For this entire chapter, we fix a commutative ring R.

3.5. Adjoining roots

3.5.5. The general construction

Last time, we introduced a way to “adjoin” a root of a polynomial b ∈ R [x] to
a given commutative ring R: We took the quotient ring R [x] /b (where S/b is
shorthand for S/bS).

In particular,

R [x] /
(

x2 + 1
)
∼= C;

Z [x] /
(

x2 + 1
)
∼= Z [i] ;

Q [x] /
(

x2 + 1
)
∼= Q [i] ;

Q [x] /
(

x2 − 1
)
∼= Q [C2] ∼= Q × Q ∼=

{(
a b
b a

)
| a, b ∈ Q

}
;

Z [x] /m ∼= (Z/m) [x] for m integer;
Z [x] / (mx − 1) ∼= Rm for m nonzero integer;

R [x] /1 ∼= (zero ring) .

Some of these rings behave nicer than others. Sometimes the quotient ring
R [x] /b contains a copy of the original ring R; sometimes it doesn’t. Can we
give general criteria for what will happen in what case?

We start with a general fact:

Proposition 3.5.1. Let b ∈ R [x] be a polynomial.
(a) The projection map

R [x] → R [x] /b,
p 7→ p

is an R [x]-algebra morphism, and thus an R-algebra morphism.
(b) The map1

R → R [x] /b,
r 7→ r

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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is an R-algebra morphism.
(c) For any p ∈ R [x], we have p [x] = p in R [x] /b.
(d) The element x ∈ R [x] /b is a root of b.

Proof. Fairly straightforward; see Proposition 4.5.7 in the text.

So x is the root of b that we are pulling out of our hat through this R [x] /b
construction. Now, we come to the promised criterion for R [x] /b to contain a
copy of R:

Theorem 3.5.2. Let m ∈ N. Let b ∈ R [x] be a polynomial of degree m such
that its leading coefficient [xm] b is a unit of R. Then:

(a) Each element of R [x] /b can be uniquely written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 for a0, a1, . . . , am−1 ∈ R.

(b) The m vectors x0, x1, . . . , xm−1 form a basis of the R-module R [x] /b. In
particular, this R-module is free of rank m.

(c) Assume that m > 0. Then, the R-algebra morphism

R → R [x] /b,
r 7→ r

is injective. Therefore, R can be viewed as an R-subalgebra of R [x] /b (by
identifying each r ∈ R with its image r ∈ R [x] /b).

(d) Thus, under the assumption that m > 0, there exists a commutative
ring that contains R as a subring and that contains a root of b.

Proof. Again, I refer to the text (Theorem 4.5.9). Part (a) is the “hard” part, but
really a fairly simple consequence of division-with-remainder for polynomials.
Part (b) is just a restatement of part (a). Part (c) follows from part (b) (since
r = 0 would mean r · x0 + 0 · x1 + 0 · x2 + · · · + 0 · xm−1 = 0, but this would
violate linear independence of the basis). Part (d) follows from part (c).

Let us summarize: Generalizing Cardano’s construction of C, we have found
a way to “adjoin” a (new) root of a given polynomial b ∈ R [x] to a given
commutative ring R. The resulting commutative ring R [x] /b is always a com-
mutative R-algebra and always contains a root of b. When b is non-constant
(i.e., has positive degree) and has an invertible leading coefficient, this ring
R [x] /b furthermore contains a copy of R as a subring. This conclusion some-
times remains true even if the leading coefficient of b is not invertible (e.g., in

1Note the difference between the maps in part (a) and in part (b): The map in part (a) takes
as input a polynomial p ∈ R [x], whereas the map in part (b) takes as input a scalar r ∈ R
(and treats it as a constant polynomial, i.e., as rx0 ∈ R [x]). If you regard R as a subring of
R [x], you can thus view the map in part (b) as a restriction of the map in part (a).
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our Z [x] / (mx − 1) ∼= Rm example for m ̸= 0), but such claims always require
separate proofs.

3.6. Field extensions from adjoining roots

So far so good. But when is R [x] /b a field?
First, we restrict ourselves to the case when R is a field (otherwise, it happens

very rarely). Accordingly, we will call it F instead of R.
We begin with two simple facts about polynomials over a field:

Proposition 3.6.1. Let F be a field. Then, the units of the polynomial ring
F [x] are the nonzero constant polynomials.

Proof. Easy! (See Proposition 4.6.1 in the text.)

Proposition 3.6.2. Let F be a field. Let b ∈ F [x] be a polynomial. Then, b is
irreducible (in the sense of Definition 1.14.13 (a) in Lecture 16) if and only if
b is an irreducible polynomial in the classical sense (i.e., if b is non-constant
and cannot be written as a product of two non-constant polynomials).

Proof. Easy! (See Proposition 4.6.2 in the text.)

There is an easy criterion for polynomials of degree ≤ 3 to be irreducible:

Proposition 3.6.3. Let F be a field. Let b ∈ F [x] be a polynomial such that
2 ≤ deg b ≤ 3. Then, b is irreducible if and only if b has no root in F.

Proof. =⇒: Assume that b is irreducible. If b has a root r in F, then x − r | b
in F [x] (by Proposition 3.3.11 in Lecture 26), which entails that b = (x − r) · q
for some q ∈ F [x], and thus b is not irreducible (because degree considerations
show that deg q = deg b︸ ︷︷ ︸

≥2

− 1 ≥ 2 − 1 = 1, so that q is not a unit, and of course

x − r is not a unit either). But we assumed that b is irreducible. Thus, b cannot
have a root in F. The “=⇒” direction of Proposition 3.6.3 is thus proved.
⇐=: Assume that b has no root in F. We must show that b is irreducible.

In other words, we must prove that b cannot be written as a product of two
non-constant polynomials (since deg b ≥ 2 shows that b is not constant).

Assume the contrary. Thus, b = uv for two non-constant polynomials u, v ∈
F [x]. Consider these polynomials u and v. They satisfy deg u ≥ 1 and deg v ≥
1 (since they are non-constant). However, from b = uv, we obtain deg b =
deg (uv) = deg u + deg v (by Proposition 3.3.5 (c) in Lecture 15, since F is a
field and thus an integral domain). If both deg u and deg v were ≥ 2, then
this would entail deg b = deg u︸ ︷︷ ︸

≥2

+deg v︸ ︷︷ ︸
≥2

≥ 2 + 2 = 4, which would contradict

deg b ≤ 3 < 4. Thus, deg u and deg v cannot both be ≥ 2. Hence, at least one
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of deg u and deg v is at most 1. We WLOG assume that deg u ≤ 1 (otherwise,
swap u with v). Then, deg u = 1 (since deg u ≤ 1 and deg u ≥ 1). In other
words, u = αx + β for some α, β ∈ F with α ̸= 0. Consider these α, β. Since F

is a field, α ∈ F is a unit (since α ̸= 0), so that −β

α
is a well-defined element of

F. From u = αx + β, we obtain u
[
−β

α

]
= α

(
−β

α

)
+ β = 0. Now, substituting

−β

α
for x into b = uv, we obtain

b
[
−β

α

]
= u

[
−β

α

]
︸ ︷︷ ︸

=0

· v
[
−β

α

]
= 0.

This shows that −β

α
is a root of b. Hence, b has a root in F, contradicting

our assumption that b has no root in F. This contradiction shows that our
last assumption was false. This completes the proof of the “⇐=” direction of
Proposition 3.6.3.

Note that Proposition 3.6.3 would fail if deg b was allowed to be 4. For in-
stance, the degree-4 polynomial x4 + 4 ∈ Q [x] has no roots in Q (or in R, for
that matter), but it is not irreducible2.

Now we come to the actually crucial result of this section:

Theorem 3.6.4. Let F be a field. Let b ∈ F [x] be a nonzero polynomial. Then,
the ring F [x] /b is a field if and only if b is irreducible.

Proof. This is the polynomial analogue of the fact that Z/n is a field (for a given
positive integer n) if and only if n is prime (part of Corollary 1.6.2 in Lecture
5). Our proof of the latter fact can be adapted to Theorem 3.6.4 (with some
changes: most importantly, “the numbers 1, 2, . . . , n − 1” must be replaced by
“the nonzero polynomials of degree < deg b”, and we need Bezout’s theorem
for polynomials instead of Bezout’s theorem for integers3). Alternatively, you
can find the proof of the “⇐=” direction in the text (Theorem 4.6.4), and that is
the only direction we will need.

Here is an instructive example:

• The polynomial x2 + 1 ∈ (Z/3) [x] is irreducible. (This is easily checked
using Proposition 3.6.3.)

2In fact, x4 + 4 =
(

x2 + 2x + 2
) (

x2 − 2x + 2
)
.

3Bezout’s theorem for polynomials says that if a and b are two polynomials in F [x], then
gcd (a, b) (more precisely, any gcd of a and b) can be written in the form ua + vb for some
polynomials u, v ∈ F [x]. This follows easily from the fact that the polynomial ring F [x] is a
PID (which, in turn, follows from Theorem 3.3.16 in Lecture 26).
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Thus, Theorem 3.6.4 yields that the ring

(Z/3) [x] /
(

x2 + 1
)

is a field. Theorem 3.5.2 (b) tells us that this field is a free Z/3-module of
rank 2 (with basis

(
x0, x1

)
). In other words, it is isomorphic to (Z/3)2 as

a Z/3-module. So its size is∣∣∣(Z/3)2
∣∣∣ = 32 = 9.

Thus, we have found a field with 9 elements. (Aside: This field is also
isomorphic to the quotient ring Z [i] /3, so there is a second way to get
it. In a sense, this is not surprising: Z [i] /3 is obtained from Z by first
adjoining a square root of −1 and then quotienting out all multiples of 3,
whereas (Z/3) [x] /

(
x2 + 1

)
is obtained from Z by first quotienting out

all multiples of 3 and then adjoining a square root of −1. It stands to
reason that the results should be the same both times, although of course
this should be rigorously proved.)

4. Finite fields

So we have found a field with 9 elements (in addition to all our finite fields
Z/p with p elements for prime numbers p). What other finite fields can we
find?

A moment of thought reveals that we can find a finite field with p2 elements
for any prime p ≡ 3 mod 4 using the same construction as our 9-element field
(since p ≡ 3 mod 4 entails that −1 ∈ Z/p is not a square4, and thus the poly-
nomial x2 + 1 ∈ (Z/p) [x] is irreducible5). What else can we find?

We can be more flexible and replace our polynomial x2 + 1 by other degree-
2 polynomials. It is not hard to show that for each prime p, there exists an
irreducible degree-2 polynomial in (Z/p) [x]: Indeed, for p = 2, you can take
the polynomial x2 + x + 1. For odd p, you can find some element u of Z/p
that is not a square (exercise!), and use the polynomial x2 − u. Thus, you find
an irreducible degree-2 polynomial b ∈ (Z/p) [x], and then the quotient ring
(Z/p) [x] /b is a finite field with p2 elements. (See Proposition 5.1.1 in the text
for the details of this construction.)

Thus we found finite fields of size p2 for any prime p. What about other
sizes? What about a finite field of size 6 or 8 or 24 ?

4This is implicit in the solution to Exercise 1 (b) on midterm #2.
5again using Proposition 3.6.3
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4.1. The characteristic of a field

Let us first discuss finite fields whose size is not a prime power (but a number
such as 6 or 10). Do such fields exist?

The answer is “no”. Each finite field has its “favorite prime”, and its size is
a power of that prime. This prime is the so-called “characteristic” of the field,
and is defined as follows (not just for finite fields):

Definition 4.1.1. Let F be a field. The characteristic of F is an integer called
char F, defined as follows:

• If there exists a positive integer n such that n · 1F = 0F, then char F is
the smallest such n.

• If such an n does not exist, then char F is defined to be 0.

Roughly speaking, char F is “how often you have to add 1F to itself to circle
back to 0F” (except that you declare it to be 0 if this never happens). Examples:

• We have char (Z/p) = p for any prime p.

• Our finite field of size 9 has characteristic 3.

• We have char Q = 0.

The characteristic of a field F “knows a lot” about F. Here is some of that:

Theorem 4.1.2. Let F be a field. Let p = char F. Then:
(a) We have pa = 0 for each a ∈ F.
(b) The field F is a Z/p-algebra (with action given by n · a = na for all

n ∈ Z and a ∈ F).
(c) The number p is either prime or 0.
(d) If F is finite, then p is a prime.
(e) If F is finite, then |F| = pm for some positive integer m.
(f) If p is a prime, then F contains “a copy of Z/p” (that is, a subring

isomorphic to Z/p).
(g) If p = 0, then F contains “a copy of Q” (that is, a subring isomorphic

to Q): namely, the map

Q → F,
a
b
7→ a · 1F

b · 1F
(for a, b ∈ Z with b ̸= 0)

is an injective ring morphism.
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Proof. See Theorem 5.2.2 in the text.
(In a nutshell: Part (a) follows from the pa = p · 1F︸ ︷︷ ︸

=0F

· a = 0F · a = 0 trick. Part

(b) follows easily using part (a) – you just need to show that na depends only
on n ∈ Z/p and not on n ∈ Z. Part (c) uses the fact that F is an integral domain
to argue that char F cannot be composite (e.g., if char F was 6, then we would
have (2 · 1F) · (3 · 1F) = 6 · 1F = 0F, which would lead to 2 · 1F or 3 · 1F being
zero, but this would mean that char F is actually 2 or 3 rather than 6). Part (d)
follows from a pigeonhole argument or from Lagrange’s theorem from group
theory. Part (e) follows from parts (b) and (d), since a Z/p-algebra is always
a Z/p-module, and every Z/p-module is free (because p is prime) and thus
isomorphic to (Z/p)m for some m ∈ N. Part (f) follows easily from part (b)
and the definition of a characteristic. Part (g) is a bit trickier, but will not be
used.)

Parts (e) and (f) of Theorem 4.1.2 entail that the size of any finite field is a
power of a prime (and said prime is the characteristic of the field). Thus, a
finite field cannot have size 6 or 10 or 15 for example.

This leaves the question of prime powers. We know that finite fields of sizes
p and p2 exist for any prime p, but what about p3 or p4 or p29 ?

In general, if we have a prime p and a positive integer m, and if we know
any irreducible polynomial of degree m over Z/p, then we easily obtain a finite
field of size pm (by adjoining a root of this polynomial). But is there such an
irreducible polynomial?

Fortunately, such irreducible polynomials do always exist. Proving this is
not at all easy, but can be done. Alternatively, there is another way to construct
finite fields of any given prime-power size.

Let me just state the result:

Theorem 4.1.3. (a) For any prime p and any positive integer m, there exists
a finite field of size pm.

(b) Any two finite fields of the same size are isomorphic.

How do these finite fields look like? Theoretically, the answer is clear: Pick
an irreducible polynomial b of degree m over Z/p, and adjoin its root to Z/p
(that is, form the quotient ring (Z/p) [x] /b). No explicit formula for such
a polynomial is known (except in specific cases like m = p). Finding a nice
explicit construction of a finite field of size pm is an open problem! The brute-
force approach (try every degree-m polynomial until you find an irreducible
one) might sound stupid, but is not too far from the best known algorithm.

Proof of Theorem 4.1.3. See the text (§5.2 till §5.4 for part (a); §5.5 for part (b)).

Sadly, our treatment of finite fields has to stop at this strange and unsatis-
factory place. More can be found in Chapter 5 of the text, and much more
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in dedicated books on the subject, such as [MulMum07] (an introduction) and
[LidNie00] (a comprehensive reference).
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