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Math 332 Winter 2023, Lecture 27: Polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

3. Monoid algebras and polynomials

Recall: For this entire chapter, we fix a commutative ring R.

3.4. Intermezzo: Quotients of R-algebras

A ring can be quotiented modulo an ideal.1

An R-module can be quotiented modulo a submodule.2

Thus, you would expect that an R-algebra (which, by its very definition, is
always a ring and an R-module at the same) can be quotiented modulo an ap-
propriate “ideal-submodule” (i.e., an ideal that happens to be an R-submodule
as well).

This is indeed the case, and it’s even simpler than that, because we don’t
even need to define these “ideal-submodules”; instead, any ideal will do, since
any ideal of an R-algebra is automatically an R-submodule. Let us state this all
as a theorem:

Theorem 3.4.1. Let A be an R-algebra. Let I be an ideal of A. Then:
(a) The ideal I is also an R-submodule of A.
(b) The quotient ring A/I and the quotient R-module A/I fit together to

form an R-algebra.
(c) The canonical projection π : A → A/I (which sends each a ∈ A to

its residue class a = a + I) is an R-algebra morphism (from the original R-
algebra A to the R-algebra A/I that we just constructed in part (b)).

Proof. (a) We need to prove that I is closed under scaling. But this follows from
the fact that

r i︸︷︷︸
=1A·i

= r (1A · i) = (r · 1A) i for all r ∈ R and i ∈ I

(and from the fact that I is an ideal of A, so that (r · 1A) i ∈ I).
(b), (c) follow using standard techniques.

Quotient R-algebras also have a universal property:

1That is: If S is a ring and I is an ideal of S, then there is a quotient ring S/I.
2That is: If M is an R-module and I is an R-submodule of M, then there is a quotient R-module

M/I.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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Theorem 3.4.2 (Universal property of quotient algebras, elementwise form).
Let A be an R-algebra. Let I be an ideal of A.

Let B be an R-algebra. Let f : A → B be an R-algebra morphism. Assume
that f (I) = 0 (by this we mean that f (i) = 0 for all i ∈ I). Then, the map

f ′ : A/I → B,
a 7→ f (a) (for all a ∈ A)

is well-defined (i.e., the value f (a) depends only on the residue class a, not
on a itself) and is an R-algebra morphism.

Proof. This is analogous to our proof of the universal property of quotient rings
(Theorem 1.9.6 in Lecture 10). This time, we just need to discuss the scaling
along with the addition and the multiplication (but it is just as easy to handle).

3.5. Adjoining roots

3.5.1. A notation for quotients by principal ideals

We introduce a convenient shorthand notation for quotient rings modulo prin-
cipal ideals:

Convention 3.5.1. Let S be any commutative ring, and let a ∈ S. Then, S/a
shall mean the quotient ring S/aS.

This generalizes our shorthand notation Z/n for the quotient ring Z/nZ

(when n is an integer). This shorthand becomes particularly useful when S
is not Z but something more complicated like a polynomial ring, so that you
really don’t want to write S twice.

We recall briefly the intuition behind quotient rings: If I is an ideal of a ring
R, then R/I is “what becomes of R if we equate all elements of I to zero”.
Thus, in particular, the ring S/a in Convention 3.5.1 is “what becomes of S if
we equate all multiples of a to zero”, or, even more simply, “what becomes
of S if we equate a to zero” (since equating a to zero automatically forces all
multiples of a to become 0 as well). For example, Z/7 is what becomes of Z if
we equate 7 to zero.

3.5.2. Why adjoin roots

We now come to one of the most important applications of polynomials to
algebra itself: a way to “adjoin” roots of a polynomial to a given commutative
ring (i.e., to “create” roots out of thin air).

The classical example for this is the invention of the complex numbers. This
idea is somewhat obscured by the fact that nowadays, complex numbers are
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usually defined in a down-to-earth, explicit way (viz., as pairs of real num-
bers3) that eschews any use of polynomials4. However, this was not always the
case. Gerolamo Cardano, back in the 16th century, introduced complex num-
bers as a tool for solving cubic equations. Specifically, he had a formula (due
to Scipione del Ferro) for solving a cubic equation (ax3 + bx2 + cx + d = 0)
that involved square roots. Algebraically, the formula worked well, but quite
forbiddingly, a negative number would often appear under these square roots,
even though the original cubic equation had three real solutions! It was this
vexing situation (and not some abstract curiosity along the lines of “what kind
of other numbers could we cook up?”) that prompted Cardano to ponder the
possibility of imaginary (and thus complex) numbers.

Specifically, Cardano imagined an “imaginary unit” i that satisfies i2 = −1.
This new “number” would then entail further “numbers” (by forming sums
and products of this “number” with existing real numbers). Since i2 = −1, all
these new “numbers” can actually be simplified to the form a+ bi with a, b ∈ R,
so it is like an extra degree of freedom is getting added to the real numbers.

Such flights of fancy are often dangerous; after all, one could equally well
imagine an “infinite number” ∞ satisfying 0 · ∞ = 1, but this new “number”
would cause the number system to collapse (i.e., all numbers to become equal),
since it would entail 1+ 1 = 0 ·∞+ 0 ·∞ = (0 + 0)︸ ︷︷ ︸

=0

·∞ = 0 ·∞ = 1 and therefore

1 = 0 and so on. There is a good reason why the modern definition of complex
numbers (as pairs of real numbers) is preferrable.

3.5.3. How to adjoin roots

Yet, the ability to invent new numbers satisfying desired equalities is a good
power to have, and it would be great if we could tell when such an invention is
harmless (as opposed to collapsing some of the existing numbers). So let us try
to put it on a rigorous footing. What does it mean to introduce a new number?

The simplest case is when we want to introduce a new number x that satisfies
no relations (other than the ring axioms). That just means we work in the
polynomial ring R [x]. So our “new number” is just the indeterminate of a
polynomial ring.

However, in more interesting cases (such as Cardano’s), we also want our
new number to satisfy some equalities, such as i2 = −1 (in the case of the
imaginary unit). The indeterminate x in the ring R [x] does not satisfy any
such equalities (beyond the ones that follow from the ring axioms). But we can
use quotient rings to make it satisfy whatever we want! Recall that a quotient
ring S/a (where S is a commutative ring and a ∈ S is an element) is essentially
“what becomes of S if we equate a to 0”. Thus, if we want our indeterminate x

3with addition being entrywise, multiplication being defined by the rule (a, b) (c, d) =
(ac − bd, ad + bc), and so on

4I think this modern definition is due to Hamilton in the 19th century.
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to satisfy x2 = −1, then we just have to take the quotient ring R [x] /
(
x2 + 1

)
of our polynomial ring R [x] (thus equating x2 + 1 with 0). The residue class x
of x in this quotient ring R [x] /

(
x2 + 1

)
will then satisfy x2 + 1 = x2 + 1 = 0,

so that x2 = −1, which means that it is an “imaginary unit”. So the quo-
tient ring R [x] /

(
x2 + 1

)
is a rigorous interpretation of Cardano’s suggestion

to introduce a new “number” i satisfying i2 = −1.
This method generalizes to an arbitrary commutative ring R instead of R,

and to an arbitrary polynomial b ∈ R [x]. In general, if we start with any com-
mutative ring R and any polynomial b ∈ R [x], then the quotient ring R [x] /b
has an element x (the residue class of the polynomial x) that is a root of b
(we will give the easy proof of this soon). This quotient ring R [x] /b is not
just a ring, but actually a commutative R-algebra (by Theorem 3.4.1 (b)); each
element r ∈ R gives rise to an element r ∈ R [x] /b (the residue class of the
constant polynomial r ∈ R ⊆ R [x]). As we said, it may happen that some of
the existing elements of R “collapse” in this quotient ring R [x] /b (that is, we
might have r = s in R [x] /b for two distinct elements r and s of R), but such
“collapses” are natural and cannot be prevented. In the next lecture, we will
see a sufficient criterion for when such collapses don’t happen.

3.5.4. Some examples

Let us first see some examples of this construction.
As we just said, Cardano’s complex numbers are the elements of the quotient

ring R [x] /
(
x2 + 1

)
, whereas the modern complex numbers are the elements

of the ring C (defined as pairs of real numbers). Let us now show that these
two rings are isomorphic (better yet, that these two C-algebras are isomorphic):

Proposition 3.5.2. We have

R [x] /
(

x2 + 1
)
∼= C as R-algebras.

Concretely: There is an R-algebra isomorphism

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .

Proof sketch. Here is a six-step procedure to prove this claim (and, more gener-
ally, to prove any claim like this):

1. Give a putative definition of the alleged isomorphism.

2. Prove that this definition actually defines a map (or, to put it colloquially,
that “the map is well-defined”).
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3. Prove that this map is an R-algebra morphism.

4. Prove that this map is injective.

5. Prove that this map is surjective.

6. Conclude that this map is an R-algebra isomorphism (since every invert-
ible R-algebra morphism is an R-algebra isomorphism).

Let us just say a few words about these six steps.
Step 1 has already been done in the statement of Proposition 3.5.2: Our map

is defined to be the map

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .

For Step 2, we need to prove that if two polynomials p, q ∈ R [x] satisfy
p = q, then p [i] = q [i]. Let us do this. Let p, q ∈ R [x] be two polynomials that
satisfy p = q. Then, p − q ∈

(
x2 + 1

)
R [x], so that p − q =

(
x2 + 1

)
r for some

r ∈ R [x]. Consider this r. Substituting i for x in the equality p − q =
(
x2 + 1

)
r,

we obtain
p [i]− q [i] =

(
i2 + 1

)
︸ ︷︷ ︸

=0
(since i2=−1)

r [i] = 0,

so that p [i] = q [i]. Thus, Step 2 has been completed.
Step 3 is straightforward (since addition, multiplication and scaling on R [x] /

(
x2 + 1

)
are defined by a + b = a + b and a · b = ab and ra = ra).

Alternatively, Steps 2 and 3 can be handled in one swoop using the universal
property of quotient R-algebras (Theorem 3.4.2). This is how I do it in the text
(proof of Proposition 4.5.2).

Now we come to Step 4 (injectivity): We need to prove that the map

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i]

is injective. In other words, we need to prove that its kernel is {0} (since it is
an R-linear map, and we know5 that a linear map is injective if its kernel is
{0}). In other words, we need to prove that if a polynomial p ∈ R [x] satisfies
p [i] = 0, then p = 0 (that is, p is a multiple of x2 + 1).

So let p ∈ R [x] be a polynomial that satisfies p [i] = 0. Let us apply the
division-with-remainder theorem for polynomials (Theorem 3.3.8 (a) in Lecture
25) to R = R and b = x2 + 1 and a = p (we can do this, since the leading

5from Lemma 2.4.9 in Lecture 20
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coefficient of x2 + 1 is a unit). We conclude that there is a unique pair (q, r) of
polynomials in R [x] such that

p = q ·
(

x2 + 1
)
+ r and deg r < deg

(
x2 + 1

)
.

Consider this pair (q, r). From p = q ·
(
x2 + 1

)
+ r, we obtain p − r = q ·(

x2 + 1
)
∈

(
x2 + 1

)
· R [x], so that p = r in R [x] /

(
x2 + 1

)
. Hence, p [i] = r [i]

(by the same argument that we used in Step 2 above, but now with r instead of
q). Hence, r [i] = p [i] = 0.

From deg r < deg
(
x2 + 1

)
= 2, we see that deg r ≤ 1, so that r is a polyno-

mial of degree ≤ 1. In other words, r = a + bx for some a, b ∈ R. Consider
these a, b. Now, our map (whose injectivity we are currently proving) sends r
to r︸︷︷︸

=a+bx

[i] = (a + bx) [i] = a + bi. Thus, we find a + bi = r [i] = 0. Therefore,

a = b = 0 (since a, b ∈ R). Thus, r = 0 (since r = a + bx). Hence, p = r = 0 = 0,
as we desired to prove. Thus, we are done with Step 4.

Step 5 is again almost trivial: Every complex number (a, b) ∈ C can be written
as

(a, b) = a + bi = (a + bx) [i] ,

which is the image of the residue class a + bx under our map. Thus, our map
is surjective.

Finally, Step 6 is automatic: Since our map is injective and surjective, it is
bijective, i.e., invertible. But an invertible R-algebra morphism is automatically
an R-algebra isomorphism (by a result from §2.9.6 in Lecture 22).

Thus, all six steps have been made, so that Proposition 3.5.2 is proved.

There are many other results like Proposition 3.5.2, revealing some known
and unknown rings as quotients of polynomial rings. Here is a selection (see
§4.5.1 in the text for proofs):

Proposition 3.5.3. (a) Recall the ring Z [i] of Gaussian integers. Then,

Z [x] /
(

x2 + 1
)
∼= Z [i] as Z-algebras.

More concretely, the map

Z [x] /
(

x2 + 1
)
→ Z [i] ,

p 7→ p [i]

is a Z-algebra isomorphism.
(b) Recall the ring Q [i] of Gaussian rationals. Then,

Q [x] /
(

x2 + 1
)
∼= Q [i] as Q-algebras.
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More concretely, the map

Q [x] /
(

x2 + 1
)
→ Q [i] ,

p 7→ p [i]

is a Q-algebra isomorphism.
(c) Recall the ring S = Q

[√
5
]

from §1.1.2 (Lecture 2). Then, the map

Q [x] /
(

x2 − 5
)
→ S,

p 7→ p
[√

5
]

is a Q-algebra isomorphism.

Proposition 3.5.4. We have

Q [x] /
(

x2 − 1
)
∼= Q [C2] (the group algebra of the cyclic group C2)

∼=
{(

a b
b a

)
| a, b ∈ Q

} (
a subring of Q2×2

)
∼= Q × Q (a direct product of two Qs)

as Q-algebras.

In the above examples, the quotient ring has always had the form R [x] /b,
where b is a non-constant polynomial whose leading coefficient is a unit (actu-
ally 1). This has the nice consequence that the resulting ring contains a copy
of the original ring R as a subring (although we have yet to prove this in full
generality). Let us see what happens if the leading coefficient is not a unit or b
is constant:

Proposition 3.5.5. (a) For any integer m, we have Z [x] /m ∼= (Z/m) [x] as
Z-algebras.

(b) The ring Z [x] /1 is trivial.

Proposition 3.5.6. Fix a nonzero integer m. Then,

Z [x] / (mx − 1) ∼= Rm,

where Rm is the ring of m-integers as defined in Exercise 5 of homework set
#1. Specifically, there is a Z-algebra isomorphism

Z [x] / (mx − 1) → Rm,

p 7→ p
[

1
m

]
.

(This is not quite trivial.)
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Proof. See Proposition 4.5.6 in the text.

As we already announced, the common thread here is that if you have a
commutative ring R and a univariate polynomial b ∈ R [x], then the quotient
ring R [x] /b is like “R with a root of b thrown in”. In fact, the residue class
x ∈ R [x] /b will be this new root of b. This ring R [x] /b is not always as nice as
one might hope. In particular, it can happen that distinct elements of R become
equal in R [x] /b (for example, 1 ̸= 3 in Z, but 1 = 3 in Z [x] /2), but often
enough this is not the case. When this does not happen, the subset {r | r ∈ R}
of R [x] /b is a subring isomorphic to the original ring R, and thus can be viewed
as a “copy of R” inside R [x] /b; thus, in this case, we can pretend that R [x] /b
contains R as a subring (i.e., we can pretend that R [x] /b is an extension of R).

Cardano was lucky in this sense: The complex numbers he introduced as
R [x] /

(
x2 + 1

)
(even if he did not write it this way) were really an exten-

sion of the real numbers R; distinct real numbers do not become equal in
R [x] /

(
x2 + 1

)
. We are not that lucky in Proposition 3.5.5 (a) (at least not

for m ̸= 0), and certainly not in Proposition 3.5.5 (b).
Cardano was also lucky that the complex numbers form a field. We are not

that lucky in Proposition 3.5.4.
When are we lucky and when are we not? Is there a general criterion for

when a quotient ring R [x] /b contains a copy of R (as opposed to making
distinct elements of R equal) ? Is there a general criterion for when R [x] /b is a
field?6

Next time, we will see such criteria, and then we will apply them to a nat-
ural question: What finite fields are there? We know the finite fields Z/p
for all primes p. The best way to get other finite fields is to start with Z/p
and to “throw” new “numbers” into them – using the very same R [x] /b con-
struction that Cardano used to define C. The technical term for “throwing in”
is “adjoining”, and so this method is called root adjunction (since the new
“numbers” we adjoin are roots of given polynomials).

6This latter question is best asked if R itself is a field.
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