
Lecture 26, version March 12, 2025 page 1

Math 332 Winter 2023, Lecture 26: Polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

3. Monoid algebras and polynomials

Recall: For this entire chapter, we fix a commutative ring R.

3.3. Univariate polynomials (cont’d)

3.3.3. Roots

We shall now discuss roots of polynomials. Our definition of roots is rather
liberal:

Definition 3.3.10. Let A be an R-algebra. Let f ∈ R [x] be a polynomial. An
element a ∈ A is called a root of f if f (a) = 0 (that is, f [a] = 0).

This allows, e.g., a matrix or an element of a quotient ring to be a root of a

polynomial. For example, the matrix
(

0 1
1 0

)
∈ Q2×2 is a root of the polyno-

mial x2 − 1 ∈ Q [x], since(
x2 − 1

) [(
0 1
1 0

)]
=

(
0 1
1 0

)2

−
(

1 0
0 1

)
︸ ︷︷ ︸

this is the unity
of the ring Q2×2

=

(
0 0
0 0

)
= 0Q2×2 .

For another example, the polynomial x2 + 1 ∈ Z [x] has infinitely many roots in
the ring H of quaternions. (Indeed, it is not hard to check that (ai + bj + ck)2 =
−

(
a2 + b2 + c2) in H for any a, b, c ∈ R. But there are infinitely many triples

(a, b, c) ∈ R3 satisfying a2 + b2 + c2 = 1.)
Let us first say a few things about roots in R:

Proposition 3.3.11. Let f be a polynomial in R [x]. Let a ∈ R. Then, a is a
root of f if and only if x − a | f in R [x].

Proof. See §4.3.3 in the text.

The following theorem is often known as the easy half of the FTA (Funda-
mental Theorem of Algebra):

Theorem 3.3.12 (easy half of the FTA). Let R be an integral domain. Let
n ∈ N. Then, any nonzero polynomial f ∈ R [x] of degree ≤ n has at most n
roots in R. (We are not counting the roots with multiplicity here.)

https://www.cip.ifi.lmu.de/~grinberg/t/23wa

Lecture 26, version March 12, 2025 page 2

Proof. See §4.3.3 in the text.

Theorem 3.3.12 can fail if R is not an integral domain. For example, the
polynomial x2 − 1 has 4 roots in Z/8. (Find them!)

Remark 3.3.13. The famous fundamental theorem of algebra (short: FTA)
says that any polynomial of degree n in C [x] has exactly n roots in C, if
we count the roots with multiplicity. Despite its name, this theorem is not
actually a theorem of algebra, as it relies on the analytic structure of the
complex numbers (and the underlying real numbers), and does not hold
(e.g.) for the Gaussian rationals Q [i]. Accordingly, each proof of the FTA
requires at least a little bit of real analysis (and sometimes a not-so-little
bit). Various proofs can be found in [LaNaSc16, Chapter 3], [Aluffi16, The-
orem 7.1], [Knapp16, Chapter IX, §10], [Warner90, Theorem 44.8], [Steinb06,
Theorem 11.6.7] and many other places (some of which prove weaker-
sounding but equivalent versions of the result); more exotic proofs are listed
in https://mathoverflow.net/questions/10535 .

However, one “half” of the FTA – namely, the claim that a polynomial of
degree n in C [x] always has at most n roots in C – actually can be proved
algebraically, and holds not just for C but also for any integral domain R in
its stead. If we drop the notion of multiplicities, then this “half” is precisely
Theorem 3.3.12. Thus, Theorem 3.3.12 is called the “easy half of the FTA”.

As far as abstract algebra is concerned, this easy half is by far the most
useful; the next subsections will attest to some of its uses. In comparison,
the “hard half of the FTA” (the part that really requires C) is rarely used
in abstract algebra (since algebraists prefer to work in settings more general
than C), but it is important (e.g.) in complex linear algebra, where it is
responsible (e.g.) for the fact that each n × n-matrix over C has n eigenvalues
(counted with multiplicities). Thus, the name “FTA” should be regarded as
somewhat of a historical artefact.

3.3.4. Application to Z/p: Wilson revisited

The easy half of the FTA has a surprising number of applications, some fairly
unexpected. We begin with one of the simplest.

Let p be a prime number. Consider the polynomial

xp − x ∈ (Z/p) [x] .

This polynomial has degree p, and has p roots in Z/p: Indeed, any element
a ∈ Z/p satisfies ap = a (by Fermat’s Little Theorem1) and thus is a root of
the polynomial xp − x. No surprises here; just one example of Theorem 3.3.12
being right.

1Proposition 2.6.4 in the text

https://mathoverflow.net/questions/10535

Lecture 26, version March 12, 2025 page 3

However, we can do something more interesting. Namely, consider the more
sophisticated polynomial

f := (xp − x)− ∏
u∈Z/p

(x − u)︸ ︷︷ ︸
=(x−0)(x−1)···(x−p−1)

= (xp − x)−
(
x − 0

) (
x − 1

)
· · ·

(
x − p − 1

)
∈ (Z/p) [x] .

This polynomial f again has p roots in Z/p (since every a ∈ Z/p satisfies2

f [a] = (ap − a)︸ ︷︷ ︸
=0

(by Fermat’s Little
Theorem)

−
(
a − 0

) (
a − 1

)
· · ·

(
a − p − 1

)︸ ︷︷ ︸
=0

(since a−a is a factor of this product)

= 0 − 0 = 0,

thus is a root of f), but its degree is ≤ p − 1 (since the polynomials xp − x and
∏

u∈Z/p
(x − u) both have leading term xp, and thus their leading terms cancel

out when you take the difference). This contradicts the easy half of the FTA,
unless f is zero. So f must be 0. In other words,

xp − x = ∏
u∈Z/p

(x − u) .

So we have proved the following:

Proposition 3.3.14. Let p be a prime number. Then,

xp − x = ∏
u∈Z/p

(x − u) in the polynomial ring (Z/p) [x] .

We can derive more concrete conclusions from this equality by comparing
coefficients. For example, comparing the coefficients of xp−1 on both sides, we
obtain (for p > 2) that

0 = −
(
0 + 1 + · · ·+ p − 1

)
(since the coefficient of xp−1 in xp − x is 0 when p > 2, whereas the coefficient
of xp−1 in ∏

u∈Z/p
(x − u) is −

(
0 + 1 + · · ·+ p − 1

)
because of the way how xp−1

terms are generated when the product ∏
u∈Z/p

(x − u) is expanded). This can be

rewritten as
0 + 1 + · · ·+ p − 1 = 0,

2We are tacitly using Theorem 3.2.7 from Lecture 25 here. Indeed, thanks to this theorem,
we know that substituting a for x in the product

(
x − 0

) (
x − 1

)
· · ·

(
x − p − 1

)
yields the

product
(
a − 0

) (
a − 1

)
· · ·

(
a − p − 1

)
.

Lecture 26, version March 12, 2025 page 4

i.e., as
0 + 1 + · · ·+ (p − 1) ≡ 0 mod p.

This is a nice congruence, although it can be easily proved directly as well

(since 0 + 1 + · · · + (p − 1) =
(p − 1) p

2
=

p − 1
2︸ ︷︷ ︸
∈Z

when p>2

· p ≡ 0 mod p for p > 2).

But comparing other coefficients results in less obvious consequences. If two
polynomials f and g are equal, then each monomial has equal coefficients in
them (i.e., each n ∈ N satisfies [xn] f = [xn] g), and thus a single equality be-
tween two polynomials gives rise to an infinite sequence of equalities between
coefficients (although only finitely many of them are nontrivial).

There is also another way to obtain consequences from Proposition 3.3.14:
Namely, we can rewrite the claim of Proposition 3.3.14 as follows:

xp − x = ∏
u∈Z/p

(x − u) =
(
x − 0

)︸ ︷︷ ︸
=x

(
x − 1

)
· · ·

(
x − p − 1

)
= x

(
x − 1

) (
x − 2

)
· · ·

(
x − p − 1

)
.

Dividing both sides of this equality by x (with remainder if you will, but the
remainder will be 0), we obtain

xp−1 − 1 =
(
x − 1

) (
x − 2

)
· · ·

(
x − p − 1

)
.

Now, substituting 0 for x in this equality, we obtain

0p−1 − 1 =
(
0 − 1

) (
0 − 2

)
· · ·

(
0 − p − 1

)
=

(
−1

) (
−2

)
· · ·

(
−p − 1

)
= (−1)p−1 1 · 2 · · · · · (p − 1) = (−1)p−1 (p − 1)!.

Thus,
(−1)p−1 (p − 1)! = 0p−1︸︷︷︸

=0
(since p>1)

− 1 = −1.

Therefore,
(p − 1)! = (−1)p−1 · −1 = (−1)p in Z/p.

Back in Z, this means that

(p − 1)! ≡ (−1)p mod p.

Since it is easy to see that (−1)p ≡ −1 mod p (by Fermat’s Little Theorem, or
by separating the cases of p even and p odd), we can simplify this to

(p − 1)! ≡ −1 mod p.

This is exactly Wilson’s theorem that we proved a while ago (Theorem 1.15.2 in
Lecture 17). Thus, we have found a new proof of Wilson’s theorem.

Here is yet another unexpected application of the easy half of the FTA:

Lecture 26, version March 12, 2025 page 5

Proposition 3.3.15. Let p be a prime. Let k ∈ {0, 1, . . . , p − 2}. Then, the sum

0k + 1k + · · ·+ (p − 1)k =
p−1

∑
j=0

jk

is divisible by p.

Proof. There is a beautiful proof of this, but the lecture is too short. See Propo-
sition 4.3.20 in §4.3.5 in the text.

3.3.5. F [x] is a Euclidean domain

The division-with-remainder theorem for polynomials (Theorem 3.3.8 (a) in
Lecture 25, to be specific) looks suspiciously like the definition of a Euclidean
norm in the definition of a Euclidean ring (Definition 1.13.2 (b) in Lecture 15).
Unfortunately, the condition “the leading coefficient of b is a unit” in the former
theorem prevents it from literally fitting the bill. However, when the ring R is
a field, every leading coefficient is a unit, and so this condition is no longer
standing in our way. Thus, we obtain the following:

Theorem 3.3.16. Let F be a field. Then, the polynomial ring F [x] is a Eu-
clidean domain. The map

N : F [x] → N,

p 7→ max {deg p, 0} =

{
deg p, if p ̸= 0;
0, if p = 0

is a Euclidean norm on F [x].

Proof. Follows from the division-with-remainder theorem for polynomials, as
we just explained.

Theorem 3.3.16 allows us to apply the whole machinery of Euclidean do-
mains to F [x]. In particular, it yields that polynomials in F [x] (where F is a
field) have gcds and lcms, and the Euclidean algorithm can be used to compute
them, and Bezout’s theorem allows a gcd of two polynomials a and b to be
written as ua + vb where u, v ∈ F [x]. Also, it entails that F [x] is a PID (since
any Euclidean domain is a PID). See §4.3.6 in the text for details.

3.3.6. Lagrange interpolation

The easy half of the FTA has yet another consequence:

Lecture 26, version March 12, 2025 page 6

Corollary 3.3.17 (uniqueness of the interpolating polynomial). Let R be an
integral domain. Let a0, a1, . . . , an be n + 1 distinct elements of R. Let f , g ∈
R [x] be two polynomials of degree ≤ n. Assume that

f [ai] = g [ai] for all i ∈ {0, 1, . . . , n} .

Then, f = g.

Proof. The difference f − g is a polynomial of degree ≤ n, but has at least n + 1
roots (namely, a0, a1, . . . , an). This contradicts the easy half of the FTA unless
f − g = 0. Thus, we must have f − g = 0; but this means that f = g.

Corollary 3.3.17 says that a polynomial of degree ≤ n over an integral domain
is uniquely determined by its values at n+ 1 distinct elements a0, a1, . . . , an of R.
So, if you specify the values f [a0] , f [a1] , f [a2] , . . . , f [an] of a polynomial f
of degree ≤ n at n + 1 given distinct elements a0, a1, . . . , an of R, the polynomial
f is uniquely determined. But does such a polynomial f always exist (for any
choice of these values)?

If R is a field, the answer is “yes”:

Theorem 3.3.18 (Lagrange interpolation). Let F be a field. Let n ∈ N.
Let a0, a1, . . . , an be n + 1 distinct elements of F. Let b0, b1, . . . , bn be n + 1

elements of F. Then:
(a) There is a unique polynomial p ∈ F [x] satisfying deg p ≤ n and

p [ai] = bi for all i ∈ {0, 1, . . . , n} . (1)

(b) This polynomial p is explicitly given by

p =
n

∑
j=0

bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) . (2)

Proof. See Theorem 4.3.26 in the text for a detailed proof.
In a nutshell: If p is the polynomial defined by (2), then an easy computation

shows that p does satisfy deg p ≤ n and (1) (this is a computation worth making
at least once in your life; it greatly demystifies the right hand side of (2)).
Thus, the existence part of part (a) follows. The uniqueness follows easily from
Corollary 3.3.17, and thus part (b) follows as well.

Theorem 3.3.18 allows us to construct (or reconstruct) a polynomial of degree
≤ n over a field F from knowing n + 1 of its values (at distinct inputs). This is
called Lagrange interpolation.

This kind of interpolation is particularly useful when F is a finite field such
as Z/p for a prime p. Here are two applications:

Lecture 26, version March 12, 2025 page 7

• Shamir’s Secret Sharing Scheme: Assume that you have a secret a (a
piece of information, encoded e.g. as a bitstring3), which you want to
distribute among n people (“keepers”), by giving each keeper a “piece”
of the secret (e.g., another bitstring), in such a way that

– any k keepers (working together) can piece together the secret a from
their “pieces”,

– but any k − 1 keepers are left completely clueless about a (that is,
they cannot infer anything about a from their “pieces”).

How would you do that? Shamir’s Secret Sharing Scheme does it as
follows:

Fix a prime p such that p > n and p > 2N, where N is the size of a (in
bits).

Label the n keepers 1, 2, . . . , n.

Encode the secret a as a residue class α ∈ Z/p. (This can be done, since
p > 2N. Of course, you have to agree with the keepers on an encoding;
this encoding needs not be kept secret.)

Pick k − 1 uniformly random elements β1, β2, . . . , βk−1 of Z/p. (This re-
quires a good random number generator, but such things can be assumed
to exist.)

Let f be the polynomial

βk−1xk−1 + βk−2xk−2 + · · ·+ β1x + α ∈ (Z/p) [x]

(which has degree ≤ k − 1).

Give one value of f to each keeper. Specifically, give the value f
[
i
]
∈ Z/p

to keeper i. Then, throw the polynomial f away (and certainly do not
share it with the keepers!).

Hence, any k keepers (working together) know k different values of f , and
thus can use Lagrange interpolation (specifically, the explicit formula (2))
to piece together the polynomial f from these values. Hence, they can
compute α (as the constant term of f) and thus recover the original secret
a.

But k − 1 keepers i1, i2, . . . , ik−1 cannot infer anything about α from their
values f

[
i1
]

, f
[
i2
]

, . . . , f
[
ik−1

]
. (This is not completely obvious. The

easiest way to see this is as follows: The element α is the constant term of
f , so that α = f

[
0
]
. For any γ ∈ Z/p, Theorem 3.3.18 (a) yields a unique

polynomial gγ of degree ≤ k − 1 that takes this value γ at 0 while taking
the values f

[
i1
]

, f
[
i2
]

, . . . , f
[
ik−1

]
at i1, i2, . . . , ik−1. From the viewpoint

3A bitstring is a tuple of bits (i.e., elements of {0, 1}). This is how information is usually
stored on digital media.

https://en.wikipedia.org/wiki/Shamir's_secret_sharing

Lecture 26, version March 12, 2025 page 8

of our k − 1 keepers i1, i2, . . . , ik−1, the polynomial f can be any of these
p polynomials g0, g1, . . . , gp−1, and none of them is more likely than any
other (if β1, β2, . . . , βk−1 were really chosen uniformly at random). Thus,
α can be any of the values 0, 1, . . . , p − 1 with equal probabilities. I.e., our
k − 1 keepers know nothing about α.)

See [Smart11, §23.5] for more about this secret-sharing scheme. Note that
we can use any finite field F instead of Z/p, but in that case we may
have to number our n keepers with some of the nonzero elements of F (as
opposed to 1, 2, . . . , n).

• Error-correcting codes: Coding theory is the study of how to encode in-
formation in such a way that minor errors (i.e., changes to just a few bits)
can be corrected or at least detected. This has myriad applications in com-
munication (e.g., sending digital data over radio or fiber) and data storage
(e.g., hard drives and RAM). Texts written about coding theory easily fill
bookshelves, and many universities have courses dedicated to it. Much
(but not all) of coding theory relies on finite fields (and occasionally more
general rings). Here is just a little taste of the subject:

Imagine that you want to send a message to a recipient via messenger
pigeons (more realistically, IP packets). Each pigeon can carry an element
of Z/p for a given prime p (more realistically, a bitstring of a given size,
but this can easily be reduced to Z/p by picking an appropriate prime p).
Your message is a tuple of n elements of Z/p, thus would fit on n of these
pigeons. However, you expect that a few pigeons will be lost on the way,
so you have to build some redundancy into your communication. (We
assume that the pigeons are numbered 1, 2, 3, . . ., so that the recipient will
know what he is missing.)

The easiest way to build redundancy into the system is to send each mes-
sage twice, thus using 2n instead of n pigeons. This can “correct 1 error”,
i.e., your message will still be received if 1 pigeon goes missing. Like-
wise, with 3n pigeons, you can afford losing 2 pigeons. But this is clearly
wasteful (and more pigeons will likely lead to more loss). Can you do
better?

A huge improvement can be obtained using “check-sums”: If your mes-
sage is the tuple (a1, a2, . . . , an), then you can send n pigeons carrying the
elements a1, a2, . . . , an, respectively, and an extra “checksum” pigeon car-
rying the element a1 + a2 + · · · + an ∈ Z/p. If at most 1 pigeon is lost,
your recipient will be able to infer the missing element from the others,
so you end up correcting 1 error at the expense of merely 1 extra pigeon.

Similarly, you can correct 2 errors by sending two “checksum” pigeons,
one carrying a1 + a2 + · · ·+ an and another carrying 1a1 + 2a2 + · · ·+ nan
for example. Things get more complicated for more errors, however.

https://en.wikipedia.org/wiki/Internet_Protocol

Lecture 26, version March 12, 2025 page 9

The situation becomes even more interesting if we allow not just for lost
pigeons, but for pigeons that corrupt (i.e., change) their messages (ar-
guably not a very likely problem with pigeons, but a pretty common
one with data over the internet or on digital storage). The single check-
sum a1 + a2 + · · · + an will discover the corruption of a single pigeon,
although it will not help correct it (as it is not clear which of the n + 1
pigeons messed up).

However, polynomials and Lagrange interpolation save our day. We en-
code our intended message into a polynomial

f := a1x0 + a2x1 + a3x2 + · · ·+ anxn−1 ∈ (Z/p) [x] ,

and give each pigeon a value of this polynomial (e.g., giving the i-th pi-
geon the value f

[
i
]
). Now, any n pigeons are sufficient to reconstruct the

polynomial f (and thus the original message) using Lagrange interpola-
tion. Thus, if we send n + k pigeons on their way, then k missing pigeons
will not destroy the message. Better yet, using n + 2k pigeons, the recip-
ient will be able to reconstruct the message correctly even if k (or fewer)
pigeons corrupt their data. (Theoretically, this can be done by applying
Lagrange interpolation to every possible (n + k)-element set of pigeons,
yielding a polynomial of degree ≤ n + k − 1 each time. If this polynomial
has degree ≥ n, then it cannot be f . Using Corollary 3.3.17, it is not hard
to see that only one polynomial of degree ≤ n − 1 will come out, and that
will be f , provided that no more than k pigeons have corrupted their data
or gotten lost. Finding an actually efficient algorithm is trickier.)

This is called a Reed–Solomon code (going back to Reed and Solomon
in 1960, [ReeSol60]), and (just like secret sharing) it can be used with any
finite field instead of Z/p (and some other choices are more popular for
technical reasons).

We have just touched the surface of coding theory here (and even of just
the theory of Reed–Solomon codes). See [MulMum07, Chapter 3] for an
introduction to error-correcting codes, and [Garret03] for a more thorough
textbook.

References

[Aluffi16] Paolo Aluffi, Algebra: Chapter 0, Graduate Studies in Mathematics
104, 2nd printing, AMS 2016.

[Garret03] Paul Garrett, The Mathematics of Coding Theory, Prentice Hall 2003.
https://www-users.cse.umn.edu/~garrett/coding/CodingNotes.
pdf

https://www-users.cse.umn.edu/~garrett/coding/CodingNotes.pdf
https://www-users.cse.umn.edu/~garrett/coding/CodingNotes.pdf

Lecture 26, version March 12, 2025 page 10

[Knapp16] Anthony W. Knapp, Basic Algebra, Digital 2nd edition 2016.
http://www.math.stonybrook.edu/~aknapp/download.html

[LaNaSc16] Isaiah Lankham, Bruno Nachtergaele, Anne Schilling, Linear
Algebra As an Introduction to Abstract Mathematics, 2016.
https://www.math.ucdavis.edu/~anne/linear_algebra/mat67_
course_notes.pdf

[MulMum07] Gary L. Mullen, Carl Mummert, Finite Fields and Applications, Stu-
dent Mathematical Library 41, AMS 2007.

[ReeSol60] I. S. Reed, G. Solomon, Polynomial codes over certain finite fields, J Soc.
Indust. Appl. Math. 8, No. 2, June, 1960.

[Smart11] Nigel Smart, Cryptography: An Introduction, 3rd Edition 2011.
https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf or
https://homes.esat.kuleuven.be/~nsmart/Crypto_Book/ (with
errata).

[Steinb06] Mark Steinberger, Algebra, 31 August 2006.
https://math.hawaii.edu/~tom/algebra.pdf

[Warner90] Seth Warner, Modern Algebra: two volumes bound as one, Dover 1990.

http://www.math.stonybrook.edu/~aknapp/download.html
https://www.math.ucdavis.edu/~anne/linear_algebra/mat67_course_notes.pdf
https://www.math.ucdavis.edu/~anne/linear_algebra/mat67_course_notes.pdf
https://bookstore.ams.org/view?ProductCode=STML/41
https://bookstore.ams.org/view?ProductCode=STML/41
https://faculty.math.illinois.edu/~duursma/CT/RS-1960.pdf
https://faculty.math.illinois.edu/~duursma/CT/RS-1960.pdf
https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf
https://homes.esat.kuleuven.be/~nsmart/Crypto_Book/
https://math.hawaii.edu/~tom/algebra.pdf

	Monoid algebras and polynomials
	Univariate polynomials (cont'd)
	Roots
	Application to Z/p: Wilson revisited
	F[x] is a Euclidean domain
	Lagrange interpolation

