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Math 332 Winter 2023, Lecture 25: Polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

3. Monoid algebras and polynomials

Recall: For this entire chapter, we fix a commutative ring R.

3.2. Polynomial rings (cont’d)

3.2.3. Evaluation of univariate polynomials

Polynomials can not only be added, scaled and multiplied, but also evaluated
(i.e., we can substitute elements of an R-algebra for the indeterminates). This is
what makes polynomial rings special (as compared to arbitrary monoid alge-
bras).

Let us first define evaluation for univariate polynomials.

Definition 3.2.4. Let p ∈ R [x] be a univariate polynomial. Let A be any
R-algebra. Let a ∈ A.

We define the element p (a) ∈ A as follows: Write p as

p = ∑
i∈N

pixi (where pi ∈ R, and all but finitely many i satisfy pi = 0) ,

and set
p (a) := ∑

i∈N

piai.

This element p (a) is called the evaluation of p at a; we also say that it is
obtained by substituting a for x in p.

Instead of p (a), we also write p [a]. (See the warning below for the reason
why.)

Here, A can be any R-algebra (not necessarily commutative): for example, it
can be R itself, or a matrix ring Rn×n, or a polynomial ring like R [x]. Thus,
polynomials are “like functions but better” (since a function can only be eval-
uated at the elements of its domain, whereas a polynomial can be evaluated at
any element of any R-algebra).

Evaluation is also the reason why polynomials are better-behaved than for-
mal power series. For example, you cannot evaluate the formal power series
1 + x + x2 + x3 + · · · at 1 (since 1 + 1 + 12 + 13 + · · · is ill-defined).

Note that p (x) = p for any p ∈ R [x]. Indeed, p (x) is the result of substi-
tuting x for x, and clearly this substitution doesn’t actually change anything in
the polynomial.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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Warning 3.2.5. The notation p (a) can be quite ambiguous. For example, is
p (p + 1) the evaluation of p at p + 1 or rather the product of p with p + 1 ?
Thus, I recommend writing p · (p + 1) for the product and p [p + 1] for the
evaluation. Generally, I will use the p [a] notation as often as possible, but
sometimes I will use p (a) for the sake of familiarity.

Here is a slightly surprising example of evaluation:

Example 3.2.6. Let R = Z/2, and let p ∈ R [x] be the polynomial x2 + x =
x ·
(
x + 1

)
. Let us evaluate p at elements of R:

p
[
0
]
= 02

+ 0 = 0;

p
[
1
]
= 12

+ 1 = 2 = 0.

Thus, the polynomial p gives 0 whenever it is evaluated at any element of
Z/2. This does not mean that p is the zero polynomial! Evaluating p on
2 × 2-matrices reveals that p can take nonzero values as well:

p

[(
0 1
1 0

)]
=

(
0 1
1 0

)2

+

(
0 1
1 0

)
=

(
1 1
1 1

)
̸= 02×2.

(And of course, evaluating p at x itself gives p [x] = p, which is nonzero as
well.)

Given an R-algebra A and an element a ∈ A, the operation of evaluating
polynomials p ∈ R [x] at a is rather well-behaved:

Theorem 3.2.7. Let A be an R-algebra. Let a ∈ A. Then, the map

R [x] → A,
p 7→ p [a]

is an R-algebra morphism. In other words:

• This map respects multiplication and addition. In other words: For any
two polynomials p, q ∈ R [x], we have

(pq) [a] = p [a] · q [a] and
(p + q) [a] = p [a] + q [a] .

• This map respects scaling. In other words: For any λ ∈ R and p ∈ R [x],
we have

(λp) [a] = λ · p [a] .

• This map respects zero and one. In other words: We have 0 [a] = 0 and
1 [a] = 1.
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The proof of this becomes easy using the following lemma (which shows that
“respects multiplication” can be proved by checking it on monomials):

Lemma 3.2.8. Let A and B be two R-algebras. Let f : A → B be an R-linear
map. Let (mi)i∈I be a family of vectors in A that spans A. If we have

f
(
mimj

)
= f (mi) f

(
mj
)

for all i, j ∈ I,

then
f (ab) = f (a) f (b) for all a, b ∈ A.

Proof of Lemma 3.2.8. By linearity. See Lemma 4.2.9 in the text for details.

Proof of Theorem 3.2.7. The first bullet point is easy using Lemma 3.2.8. The
other two bullet points are easy on their own. See Theorem 4.2.8 in the text for
details.

3.2.4. Evaluation for multivariate polynomials

So much for evaluation of univariate polynomials. An analogous concept exists
for multivariate polynomials, but it requires that the “inputs” (i.e., the values
at which we evaluate our polynomial) mutually commute. Here is the precise
definition:

Definition 3.2.9. Let n ∈ N. Let p ∈ R [x1, x2, . . . , xn] be a multivariate
polynomial. Let A be any R-algebra. Let a1, a2, . . . , an ∈ A be n elements of A
that mutually commute (i.e., that satisfy aiaj = ajai for all i, j ∈ {1, 2, . . . , n}).

We define the element p (a1, a2, . . . , an) ∈ A as follows: Write the polyno-
mial p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

(
for pi1,i2,...,in ∈ R

)
,

and set
p (a1, a2, . . . , an) := ∑

(i1,i2,...,in)∈Nn

pi1,i2,...,in ai1
1 ai2

2 · · · ain
n .

This element p (a1, a2, . . . , an) is called the evaluation of p at a1, a2, . . . , an;
we also say that it is obtained by substituting a1, a2, . . . , an for x1, x2, . . . , xn
in p. We also denote it by p [a1, a2, . . . , an].

There is an analogue of Theorem 3.2.7:

Theorem 3.2.10. Let n ∈ N. Let A be any R-algebra. Let a1, a2, . . . , an ∈ A
be n elements of A that mutually commute (i.e., that satisfy aiaj = ajai for all
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i, j ∈ {1, 2, . . . , n}). Then, the map

R [x1, x2, . . . , xn] → A,
p 7→ p (a1, a2, . . . , an)

is an R-algebra morphism.

Proof. See Theorem 4.2.11 in the text. (Here we need the aiaj = ajai condition.)

3.2.5. Constant polynomials

In Convention 3.1.4 (in Lecture 24), we defined the notion of a constant element
of a monoid ring R [M]: This is just an element of the form r · 1 = r · e1, where
r ∈ R and where 1 is the neutral element of M.

Since polynomial rings are monoid rings, we obtain in particular the notion
of a constant polynomial. This is exactly what you think: a polynomial of the
form r · x0 (or, in the multivariate case, r · x0

1x0
2 · · · x0

n) for r ∈ R. We identify
such a polynomial with the scalar r ∈ R itself.

For example, the polynomial 3x0 = 3 ∈ Z [x] is constant, but the polynomial
3x is not.

3.2.6. Coefficients

By their definition, polynomials are R-linear combinations of monomials. Let
us introduce a notation for the coefficients in these R-linear combinations:

Definition 3.2.11. Let p ∈ R [x1, x2, . . . , xn] be a polynomial. Let m =
xa1

1 xa2
2 · · · xan

n be a monomial. Then, the coefficient of m in p is the element
[m] p of R defined as follows: If we write p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

(
for pi1,i2,...,in ∈ R

)
,

then
[m] p := pa1,a2,...,an .

For example:

• For univariate polynomials, we have[
x3
] (

(1 + x)5
)
=

(
5
3

)
= 10 and

[
x6
] (

(1 + x)5
)
= 0

(since (1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5).



Lecture 25, version March 7, 2025 page 5

• For multivariate polynomials, if we set n = 2 and rename the variables
x1, x2 as x, y, then we have[

x2y3
] (

(x + y)5
)
= 10

(since (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5) and

[xy]
(
(x + y)5

)
= 0

(for the same reason).

3.2.7. Symbols for indeterminates

The definition of a multivariate polynomial ring R [x1, x2, . . . , xn] that we gave
above (Definition 3.2.3 in Lecture 24) depends on a ring R and the number n.
The names of the indeterminates are “hardcoded” to be x1, x2, . . . , xn. However,
it is actually better to have a more flexible definition, which allows to arbitrarily
specify the names of the indeterminates. Thus, for example, we should be able
to define the polynomial rings R [x, y] and R [y, z], which are each isomorphic
to R [x1, x2], but should not be treated as being the same ring (since the for-
mer has indeterminates x and y whereas the latter has indeterminates y and
z). Distinguishing between these two isomorphic rings R [x, y] and R [y, z] of-
fers several advantages, in particular allowing us to identify them with two
different subrings of R [x, y, z] (in a natural way).

This necessitates some minor changes to our definition of multivariate poly-
nomial rings (Definition 3.2.3 in Lecture 24). Namely, instead of using the
monoid

C(n) =
{

xa1
1 xa2

2 · · · xan
n | (a1, a2, . . . , an) ∈ Nn}

as the set of monomials, we now need to use the monoid

C(S) =

{
∏
s∈S

sas | as ∈ N for each s ∈ S

}
,

where S is our chosen (finite) set of indeterminates (for example, S = {x, y}
or S = {y, z} or S = {α, w,♣} if we have nothing better to do). A monomial
in this monoid C(S) is a “formal” product of the form ∏

s∈S
sas (with each factor

being a formal power of one of our indeterminates), and stands for a family
(as)s∈S ∈ NS of nonnegative integers. Two such monomials are multiplied by
the rule (

∏
s∈S

sas

)
·
(

∏
s∈S

sbs

)
= ∏

s∈S
sas+bs .

The polynomial ring in the set S of indeterminates is then defined as the
monoid ring R

[
C(S)

]
of this monoid C(S). We shall refer to such a ring as

a multivariate polynomial ring with named variables, and just call it R [S].
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Thus, for a three-element set S = {x, y, z}, we have R [S] = R [x, y, z], which
is the polynomial ring over R in three variables that are named x, y, z. For
instance, x2 + 7y3z − xyz is a polynomial in this ring R [x, y, z]. As we said,
R [x, y, z] is isomorphic to R [x1, x2, x3] as an R-algebra (via the isomorphism
that sends each monomial xaybzc to xa

1xb
2xc

3); thus, named variables do not in-
troduce anything genuinely new to our theory as long as we are studying a
single polynomial ring at a time. But their flexibility is helpful when working
with several polynomial rings, e.g., by allowing us to treat R [x] and R [y] as
two different subrings of R [x, y].

We will be cavalier about all of this in the following, sometimes renaming
variables at will (we will often rename x1, x2 as x, y or rename x1, x2, x3 as x, y, z
for no other reasons than brevity).

3.3. Univariate polynomials

Let us now take a closer look at univariate polynomial rings, as they have
several special properties that multivariate polynomial rings do not share.

3.3.1. Degrees and coefficients

By its definition, the univariate polynomial ring R [x] has the basis
(
x0, x1, x2, . . .

)
(as an R-module).

Recall that if p ∈ R [x] is a polynomial, and if i ∈ N, then
[
xi] p is the

coefficient of xi in p. That is, if p is written as p = ∑
j∈N

pjxj with pj ∈ R, then[
xi] p = pi.

Definition 3.3.1. Let p ∈ R [x] be a univariate polynomial.
(a) If p ̸= 0, then the degree of p is defined to be the largest i ∈ N such

that
[
xi] p ̸= 0. The degree of the zero polynomial 0 ∈ R [x] is defined to be

−∞ (a symbol that is understood to be smaller than any integer).
The degree of p is denoted by deg p.
(b) If p ̸= 0, then the leading coefficient of p is defined to be

[
xdeg p] p ∈ R.

(c) The polynomial p is said to be monic if its leading coefficient is 1.

For example, the polynomial

5x3 + 2x + 1 ∈ Q [x]

has degree 3 and leading coefficient 5. Hence, it is not monic (since 5 ̸= 1). The
polynomial

5x3 + 2x + 1 ∈ (Z/n) [x] (for a given integer n > 0)

has
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• degree 3 if n > 5;

• degree 1 if n = 5 (since the 5x3 term disappears when n = 5);

• degree 3 if n = 2, 3, 4;

• degree −∞ if n = 1.

Remark 3.3.2. Let n ∈ N. Then,

{ f ∈ R [x] | deg f ≤ n}

=
{

f ∈ R [x] | f = a0x0 + a1x1 + · · ·+ anxn for some ai ∈ R
}

= span
(

x0, x1, . . . , xn
)

.

In particular, this is an R-submodule of R [x].

Corollary 3.3.3. Let p, q ∈ R [x]. Then,

deg (p + q) ≤ max {deg p, deg q} and
deg (p − q) ≤ max {deg p, deg q} .

Remark 3.3.4. The polynomials of degree ≤ 0 are just the constant polyno-
mials.

So much for degrees of sums and differences. What can we say about the
degree of a product?

Proposition 3.3.5. Let p, q ∈ R [x]. Then:
(a) We have deg (pq) ≤ deg p + deg q.
(b) We have deg (pq) = deg p + deg q if p ̸= 0 and the leading coefficient

of p is a unit.
(c) We have deg (pq) = deg p + deg q if R is an integral domain.
(d) If n, m ∈ N satisfy n ≥ deg p and m ≥ deg q, then[

xn+m] (pq) = [xn] (p) · [xm] (q) .

(e) If pq = 0 and p ̸= 0 and if the leading coefficient of p is a unit, then
q = 0.

Proof. See Proposition 4.3.5 in the text for proofs.

Corollary 3.3.6. If R is an integral domain, then the polynomial ring R [x] is
also an integral domain.

Proof. Follows from Proposition 3.3.5 (c) (since deg 0 = −∞).
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Remark 3.3.7. If R is not an integral domain, then polynomials over R can
behave rather strangely. For example, if R = Z/4, then(

1 + 2x
)2

= 1 + 4x + 4x2 = 1
(
since 4 = 0

)
.

So the degree of a polynomial can decrease when it is squared!

3.3.2. Division with remainder

Just like integers, univariate polynomials can be divided with remainder, as
long as the polynomial you are dividing by has an invertible (i.e., unit) leading
coefficient:

Theorem 3.3.8 (Division-with-remainder theorem for polynomials). Let b ∈
R [x] be a nonzero polynomial whose leading coefficient is a unit. Let a ∈
R [x] be any polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

Proof. See Theorem 4.3.7 in the text.

The polynomials q and r in Theorem 3.3.8 are called the quotient and the
remainder obtained when dividing a by b. Note that if deg a < deg b, then the
quotient q is 0 whereas the remainder r is a. The quotient and the remainder
become interesting when deg a ≥ deg b.

Don’t forget the condition “the leading coefficient of b is a unit” in Theorem
3.3.8. This condition is automatically satisfied if b is monic (since 1 is a unit),
and it is also automatically satisfied if R is a field (since any nonzero element
of a field is a unit). But there are examples for R = Z where it is not satisfied.
(See Exercises 5 and 6 on homework set #6 for some examples.)

Recall from elementary number theory that a positive integer b divides an
integer a if and only if the remainder that a leaves when divided by b is 0. Here
is an analogue of this fact for univariate polynomials:

Proposition 3.3.9. Let b ∈ R [x] be a nonzero polynomial whose leading
coefficient is a unit. Let a ∈ R [x] be any polynomial. Let q and r be the
quotient and the remainder obtained when dividing a by b. Then, we have
b | a in R [x] if and only if r = 0.

Proof. See Proposition 4.3.12 in the text (or figure it out on your own – it is
easy).
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