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Math 332 Winter 2023, Lecture 24: Monoid
algebras

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

3. Monoid algebras and polynomials

Recall: For this entire chapter, we fix a commutative ring R.

3.1. Monoid algebras (cont’d)

Recall from Lecture 23: If M is any monoid (written multiplicatively), then
R [M] denotes the monoid algebra of M over R. This is the R-algebra that
consists of all formal R-linear combinations ∑

m∈M
rmem of elements em with m ∈

M. So, as an R-module, it is just the free R-module

R(M) =
{
(rm)m∈M ∈ RM | all but finitely many m ∈ M satisfy rm = 0

}
,

and the elements em are just the vectors that the standard basis of this free R-
module R(M) comprises1. Its multiplication is the unique R-bilinear map from
R(M) × R(M) to R(M) that satisfies

emen = emn for all m, n ∈ M.

Its unity is e1, where 1 is the neutral element of M.

3.1.2. Examples (cont’d)

Last time, we began to analyze the monoid algebra (aka group algebra) Q [C2],
where C2 is the cyclic group of order 2 (given as C2 = {1, u} where u2 = 1).

The elements of this Q-algebra Q [C2] have the form ae1 + beu where a, b ∈ Q.
They are multiplied according to the rule

(ae1 + beu) (ce1 + deu) = (ac + bd) e1 + (ad + bc) eu

(for a, b, c, d ∈ Q). This makes it clear that the ring Q [C2] is commutative.
I explained that Q [C2] is not a field, and instead has zero-divisors:

(e1 + eu) (e1 − eu) = e2
1︸︷︷︸

=e1e1
=e1·1=e1

− e2
u︸︷︷︸

=eueu
=euu=e1

= e1 − e1 = 0.

1Specifically, for each m ∈ M, the vector em is the m-th standard basis vector, i.e., the family
(δm,n)n∈M that has a 1 in its m-th position and 0s in all other positions. It is the natural
generalization of the standard basis vectors (0, 0, . . . , 0, 1, 0, 0, . . . , 0) of an R-module Rn (but
is more abstract due to the fact that the elements of an arbitrary monoid M do not come
with a given order, and M can be infinite).

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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Note that e1 is the unity of the algebra Q [C2], so we can write 1 for it. Thus,
ae1 + beu becomes a + beu.

I teased you with the claim that

Q [C2] ∼= Q × Q as Q-algebras.

Let me quickly explain why this is true:
Recall that any central idempotent element of a ring R breaks this ring R into

a direct product (Exercise 1 (d) on homework set #4). Thus, we want to find a
central idempotent element of Q [C2].

Here is one: Set z :=
1
2
+

1
2

eu ∈ Q [C2]. Then,

z2 =

(
1
2
+

1
2

eu

)2

=
1
4
+

1
2
· 1

2
eu +

1
2

eu ·
1
2
+

1
4

e2
u︸︷︷︸

=1

=
1
4
+

1
4

eu +
1
4

eu +
1
4
=

1
2
+

1
2

eu = z.

Thus, z is idempotent. Since Q [C2] is commutative, this z is furthermore cen-
tral. Hence, by the above-mentioned exercise, we obtain

Q [C2] ∼= zQ [C2]× (1 − z)Q [C2]

(as rings, but by the same logic as Q-algebras as well2). Now, I claim that both
Q-algebras zQ [C2] and (1 − z)Q [C2] are isomorphic to Q. Indeed, for zQ [C2],
this follows easily from the fact that

z · (a + beu) =

(
1
2
+

1
2

eu

)
· (a + beu)

=

(
1
2

a +
1
2

b
)
+

(
1
2

b +
1
2

a
)

eu

=
a + b

2
+

a + b
2

eu = (a + b) z for all a, b ∈ Q.

For (1 − z)Q [C2], this is similar (notice that 1 − z =
1
2
− 1

2
eu). With a bit of

work, this leads to the Q-algebra isomorphism

g : Q [C2] → Q2,
a + beu 7→ (a + b, a − b) (for all a, b ∈ Q)

(where Q2 means the direct product Q × Q of Q-algebras).
A few more remarks:

2To be more precise: If we fix a commutative ring S and replace the word “ring” by “S-
algebra” throughout Exercise 1 on homework set #4, then the exercise remains true, and
the solution does not get much harder (there are some more straightforward axioms to be
verified).
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• There is an obvious reason why Q [C2] ∼= Q2 as Q-modules: Indeed, Q [C2]
has a basis (e1, eu) that consists of two vectors, so we can obtain a Q-
module isomorphism f : Q [C2] → Q2 by mapping e1 7→ (1, 0) and eu 7→
(0, 1). Explicitly, this isomorphism f sends each a + beu to (a, b). But
this is not a Q-algebra isomorphism (e.g., because e1eu is nonzero but
(1, 0) (0, 1) is zero). Our above Q-algebra isomorphism g : Q [C2] → Q2 is
more sophisticated.

• We can easily repeat the above explorations of Q [C2] using R or C instead
of Q.

However, things change if we try to repeat them using Z. Indeed, the

idempotent element z =
1
2
+

1
2

eu does not exist over Z because
1
2

/∈ Z.

Thus, the group algebra Z [C2] has no reason to be isomorphic to Z2. And
indeed, it is not. (For a proof, see Example 4.1.5 (b) in the text.)

Here is another example of a monoid ring:

Example 3.1.1. Consider the cyclic group C3 = {1, u, v} of order 3 with u3 =
1 and u2 = v. Its group algebra Q [C3] has a central idempotent

z :=
1 + eu + ev

3
.

More generally, for any finite group G, the group algebra Q [G] has a central
idempotent

z :=
∑

g∈G
eg

|G| .

(Exercise: Prove this!) The principal ideal zQ [G] is always ∼= Q as a Q-
algebra. Thus, using Exercise 1 (d) on homework set #4 (extended from rings
to algebras), we obtain

Q [G] ∼= Q × S (as Q-algebras) ,

where S = (1 − z)Q [G]. In the case G = C2, we found S ∼= Q, but in the
general case S can be more complicated.

3.1.3. General properties of monoid algebras

Let us now discuss some general properties of and conventions on monoid
algebras.

Proposition 3.1.2. Let M be an abelian monoid. Then, the monoid ring R [M]
is commutative.
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Proof. See the text (Proposition 4.1.9). This is again a proof “by linearity”.

Proposition 3.1.3. Let M be a monoid with neutral element 1. Then, the map

R → R [M] ,
r 7→ r · e1

is an injective R-algebra morphism.

Proof. See the text (Proposition 4.1.10). Injectivity is clear; morphicity relies on
e1e1 = e1.

Convention 3.1.4. If M is a monoid, then we shall identify each r ∈ R with
r · e1 ∈ R [M]. This identification is harmless (i.e., does not lead to false
conclusions)3, and turns R into an R-subalgebra of R [M].

An element of R [M] will be called constant if it lies in this subalgebra (i.e.,
if it is r · e1 for some r ∈ R).

Warning: We previously explained that Q [C2] ∼= Q × Q as Q-algebras. Now
we have identified Q with a subalgebra of Q [C2]. But this subalgebra is not one
of the two Q factors in Q [C2] ∼= Q × Q; in fact, none of those two Q factors is
a Q-subalgebra. Our Q-algebra isomorphism from Q [C2] to Q × Q sends the
unity of Q [C2] to (1, 1) ∈ Q × Q, which does not lie completely in either factor.

Proposition 3.1.5. Let M be a monoid. Then, the map

M → R [M] ,
m 7→ em

is a monoid morphism from M to (R [M] , ·, 1).

Proof. This is just saying that emn = emen and e1 = 1R[M]. Both hold by definition
of R [M].

Our last two propositions tell us that the monoid algebra R [M] “includes”
both R and M in an appropriate way (at least when R is nontrivial). Thus, we
can view it as what comes out if we “throw” the elements of M into R.

This suggests another convention:

Convention 3.1.6. Let M be a monoid. Then, the elements em of the standard
basis (em)m∈M of R [M] will just be written as m if there is no confusion to
worry about.

For example, if M is the cyclic group C3 as above, then the element ae1 +
beu + cev will just be written as a1 + bu + cv = a + bu + cv.

3This follows from Proposition 3.1.3.



Lecture 24, version March 5, 2025 page 5

For another example, if M is the cyclic group C2 as above, then our multi-
plication rule

(ae1 + beu) (ce1 + deu) = (ac + bd) e1 + (ad + bc) eu

(for a, b, c, d ∈ R) rewrites as

(a + bu) (c + du) = (ac + bd) + (ad + bc) u.

3.2. Polynomial rings

3.2.1. Univariate polynomials

We can now effortlessly define univariate polynomials: They are just elements
of certain monoid algebras. Which ones?

Recall that R denotes a commutative ring. Recall also that N = {0, 1, 2, . . .}.

Definition 3.2.1. Let C be the free monoid with a single generator x. This is
the monoid whose elements are countably many distinct symbols called

x0, x1, x2, x3, . . . ,

and whose operation is defined by

xi · xj = xi+j for all i, j ∈ N.

Of course, this monoid is just the well-known additive monoid (N,+, 0) in
a multiplicative disguise (with each nonnegative integer i renamed as xi in
order to avoid overloading the notation i · j).

The neutral element of this monoid C is x0. We set x := x1.
The elements of C are called monomials in the variable x. The specific

element x is called the indeterminate.
Now, the univariate polynomial ring R [x] over R is defined to be the

monoid algebra R [C]. Following Convention 3.1.6, we simply write m for
the standard basis vector em when m ∈ C. That is, we write xi for the basis
vector exi . Thus, R [x] is a free R-module with basis(

x0, x1, x2, x3, . . .
)
=

(
1, x, x2, x3, . . .

)
.

Hence, any p ∈ R [x] can be written as a finite R-linear combination of powers
of x. That is, p can be written as

p = a0x0 + a1x1 + a2x2 + · · ·+ anxn = a0 + a1x + a2x2 + · · ·+ anxn

for some n ∈ N and some a0, a1, . . . , an ∈ R. This representation is unique up
to trailing zeroes (i.e., up to adding extra terms of the form 0xn+1 and 0xn+2

and so on).
Elements of R [x] are called polynomials in x over R.
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Thus, up to notation, the univariate polynomial ring R [x] is just the monoid
ring R [N] of the abelian monoid N = (N,+, 0). Hence, it is commutative
(since N is abelian).

Example 3.2.2. (a) The sum

1 + 3x2 + 6x3 = 1ex0 + 3ex2 + 6ex3

belongs to R [x], i.e., is a polynomial in x.
(b) The infinite sum

1 + x + x2 + x3 + · · ·
is not a polynomial, because it is not a finite R-linear combination of powers
of x (unless R is trivial). We defined the polynomial ring R [x] to be R [C], so
that it is R(C) as an R-module (not RC). Infinite sums like 1 + x + x2 + · · ·
would make sense in RC and are known as formal power series, but they
are not polynomials; they are a subject of their own.

So we have defined univariate polynomial rings (i.e., polynomial rings in a
single variable). Likewise, we can define multivariate polynomial rings (i.e.,
polynomial rings in several variables). For simplicity, let me restrict myself to
finitely many variables.

3.2.2. Multivariate polynomials

Definition 3.2.3. Let n ∈ N. Let C(n) be the free abelian monoid with n
generators x1, x2, . . . , xn. This is the monoid whose elements are the distinct
symbols

xi1
1 xi2

2 · · · xin
n with i1, i2, . . . , in ∈ N,

and whose operation is given by(
xi1

1 xi2
2 · · · xin

n

) (
xj1

1 xj2
2 · · · xjn

n

)
= xi1+j1

1 xi2+j2
2 · · · xin+jn

n .

If we wrote this monoid additively, it would just be Nn (the additive monoid
of n-tuples of nonnegative integers, with entrywise addition), but we write
it multiplicatively.

The elements of C(n) are called monomials.
For each i ∈ {1, 2, . . . , n}, the monomial

x0
1x0

2 · · · x0
i−1x1

i x0
i+1x0

i+2 · · · x0
n

will be denoted by xi. These specific monomials x1, x2, . . . , xn are called the
indeterminates.
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Now, the R-algebra R [x1, x2, . . . , xn] is defined to be the monoid algebra
R
[
C(n)

]
. It is called the polynomial ring in n variables x1, x2, . . . , xn over R.

Any element of this R-algebra can be written as an R-linear combination

∑
(i1,i2,...,in)∈Nn

ri1,i2,...,in xi1
1 xi2

2 · · · xin
n

with ri1,i2,...,in ∈ R (such that all but finitely many of these coefficients ri1,i2,...,in
are 0).

Elements of R [x1, x2, . . . , xn] are called polynomials in x1, x2, . . . , xn.

For example, for R = Z, the sum

4x2
1 + x2x3 + 7x5

3 − 3

is a polynomial in x1, x2, . . . , xn whenever n ≥ 3. For R = R, the sums

3x1 + 14x1x3
2 and

√
2x7

1 −
3
2

x3
1x2 + π

are polynomials in x1, x2, . . . , xn whenever n ≥ 2. You can easily construct
examples like this ad infinitum.

Note that the univariate polynomial ring R [x] is just the particular case of the
polynomial ring R [x1, x2, . . . , xn] in n variables x1, x2, . . . , xn obtained by setting
n = 1 and renaming the indeterminate x1 as x.
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