Math 332 Winter 2023, Lecture 24: Monoid algebras

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

3. Monoid algebras and polynomials

Recall: For this entire chapter, we fix a **commutative** ring *R*.

3.1. Monoid algebras (cont'd)

Recall from Lecture 23: If *M* is any monoid (written multiplicatively), then R[M] denotes the **monoid algebra** of *M* over *R*. This is the *R*-algebra that consists of all formal *R*-linear combinations $\sum_{m \in M} r_m e_m$ of elements e_m with $m \in M$

M. So, as an R-module, it is just the free R-module

$$R^{(M)} = \left\{ (r_m)_{m \in M} \in R^M \mid \text{ all but finitely many } m \in M \text{ satisfy } r_m = 0 \right\}$$
,

and the elements e_m are just the vectors that the standard basis of this free *R*-module $R^{(M)}$ comprises¹. Its multiplication is the unique *R*-bilinear map from $R^{(M)} \times R^{(M)}$ to $R^{(M)}$ that satisfies

$$e_m e_n = e_{mn}$$
 for all $m, n \in M$.

Its unity is e_1 , where 1 is the neutral element of *M*.

3.1.2. Examples (cont'd)

Last time, we began to analyze the monoid algebra (aka group algebra) $\mathbb{Q}[C_2]$, where C_2 is the cyclic group of order 2 (given as $C_2 = \{1, u\}$ where $u^2 = 1$).

The elements of this Q-algebra Q [C_2] have the form $ae_1 + be_u$ where $a, b \in \mathbb{Q}$. They are multiplied according to the rule

$$(ae_1 + be_u) (ce_1 + de_u) = (ac + bd) e_1 + (ad + bc) e_u$$

(for $a, b, c, d \in \mathbb{Q}$). This makes it clear that the ring $\mathbb{Q}[C_2]$ is commutative. I explained that $\mathbb{Q}[C_2]$ is not a field, and instead has zero-divisors:

$$(e_1 + e_u)(e_1 - e_u) = \underbrace{e_1^2}_{=e_1e_1} - \underbrace{e_u^2}_{=e_ue_u} = e_1 - e_1 = 0.$$

¹Specifically, for each $m \in M$, the vector e_m is the *m*-th standard basis vector, i.e., the family $(\delta_{m,n})_{n\in M}$ that has a 1 in its *m*-th position and 0s in all other positions. It is the natural generalization of the standard basis vectors (0, 0, ..., 0, 1, 0, 0, ..., 0) of an *R*-module R^n (but is more abstract due to the fact that the elements of an arbitrary monoid *M* do not come with a given order, and *M* can be infinite).

Note that e_1 is the unity of the algebra $\mathbb{Q}[C_2]$, so we can write 1 for it. Thus, $ae_1 + be_u$ becomes $a + be_u$.

I teased you with the claim that

$$\mathbb{Q}[C_2] \cong \mathbb{Q} \times \mathbb{Q}$$
 as \mathbb{Q} -algebras.

Let me quickly explain why this is true:

Recall that any central idempotent element of a ring *R* breaks this ring *R* into a direct product (Exercise 1 (d) on homework set #4). Thus, we want to find a central idempotent element of $\mathbb{Q}[C_2]$.

Here is one: Set $z := \frac{1}{2} + \frac{1}{2}e_u \in \mathbb{Q}[C_2]$. Then,

$$z^{2} = \left(\frac{1}{2} + \frac{1}{2}e_{u}\right)^{2} = \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{2}e_{u} + \frac{1}{2}e_{u} \cdot \frac{1}{2} + \frac{1}{4}\underbrace{e_{u}^{2}}_{=1}$$
$$= \frac{1}{4} + \frac{1}{4}e_{u} + \frac{1}{4}e_{u} + \frac{1}{4} = \frac{1}{2} + \frac{1}{2}e_{u} = z.$$

Thus, *z* is idempotent. Since $\mathbb{Q}[C_2]$ is commutative, this *z* is furthermore central. Hence, by the above-mentioned exercise, we obtain

$$\mathbb{Q}\left[C_{2}\right] \cong z\mathbb{Q}\left[C_{2}\right] \times (1-z)\mathbb{Q}\left[C_{2}\right]$$

(as rings, but by the same logic as Q-algebras as well²). Now, I claim that both Q-algebras $zQ[C_2]$ and $(1-z)Q[C_2]$ are isomorphic to Q. Indeed, for $zQ[C_2]$, this follows easily from the fact that

$$z \cdot (a + be_u) = \left(\frac{1}{2} + \frac{1}{2}e_u\right) \cdot (a + be_u)$$
$$= \left(\frac{1}{2}a + \frac{1}{2}b\right) + \left(\frac{1}{2}b + \frac{1}{2}a\right)e_u$$
$$= \frac{a+b}{2} + \frac{a+b}{2}e_u = (a+b)z \qquad \text{for all } a, b \in \mathbb{Q}.$$

For $(1-z) \mathbb{Q}[C_2]$, this is similar (notice that $1-z = \frac{1}{2} - \frac{1}{2}e_u$). With a bit of work, this leads to the Q-algebra isomorphism

$$g: \mathbb{Q} [C_2] \to \mathbb{Q}^2,$$

$$a + be_u \mapsto (a + b, a - b) \qquad (\text{for all } a, b \in \mathbb{Q})$$

(where \mathbb{Q}^2 means the direct product $\mathbb{Q}\times\mathbb{Q}$ of Q-algebras).

A few more remarks:

²To be more precise: If we fix a commutative ring *S* and replace the word "ring" by "*S*-algebra" throughout Exercise 1 on homework set #4, then the exercise remains true, and the solution does not get much harder (there are some more straightforward axioms to be verified).

- There is an obvious reason why Q [C₂] ≅ Q² as Q-modules: Indeed, Q [C₂] has a basis (e₁, e_u) that consists of two vectors, so we can obtain a Q-module isomorphism f : Q [C₂] → Q² by mapping e₁ → (1,0) and e_u → (0,1). Explicitly, this isomorphism f sends each a + be_u to (a, b). But this is **not** a Q-algebra isomorphism (e.g., because e₁e_u is nonzero but (1,0) (0,1) is zero). Our above Q-algebra isomorphism g : Q [C₂] → Q² is more sophisticated.
- We can easily repeat the above explorations of Q [C₂] using ℝ or ℂ instead of ℚ.

However, things change if we try to repeat them using \mathbb{Z} . Indeed, the idempotent element $z = \frac{1}{2} + \frac{1}{2}e_u$ does not exist over \mathbb{Z} because $\frac{1}{2} \notin \mathbb{Z}$. Thus, the group algebra $\mathbb{Z}[C_2]$ has no reason to be isomorphic to \mathbb{Z}^2 . And indeed, it is not. (For a proof, see Example 4.1.5 (b) in the text.)

Here is another example of a monoid ring:

Example 3.1.1. Consider the cyclic group $C_3 = \{1, u, v\}$ of order 3 with $u^3 = 1$ and $u^2 = v$. Its group algebra $\mathbb{Q}[C_3]$ has a central idempotent

$$z:=\frac{1+e_u+e_v}{3}.$$

More generally, for any finite group *G*, the group algebra $\mathbb{Q}[G]$ has a central idempotent

$$z:=\frac{\sum\limits_{g\in G}e_g}{|G|}.$$

(Exercise: Prove this!) The principal ideal $z\mathbb{Q}[G]$ is always $\cong \mathbb{Q}$ as a \mathbb{Q} -algebra. Thus, using Exercise 1 (d) on homework set #4 (extended from rings to algebras), we obtain

$$\mathbb{Q}[G] \cong \mathbb{Q} \times S$$
 (as \mathbb{Q} -algebras),

where $S = (1 - z) \mathbb{Q}[G]$. In the case $G = C_2$, we found $S \cong \mathbb{Q}$, but in the general case *S* can be more complicated.

3.1.3. General properties of monoid algebras

Let us now discuss some general properties of and conventions on monoid algebras.

Proposition 3.1.2. Let *M* be an **abelian** monoid. Then, the monoid ring R[M] is commutative.

Proof. See the text (Proposition 4.1.9). This is again a proof "by linearity". \Box

Proposition 3.1.3. Let *M* be a monoid with neutral element 1. Then, the map

$$R \to R[M],$$
$$r \mapsto r \cdot e_1$$

is an injective *R*-algebra morphism.

Proof. See the text (Proposition 4.1.10). Injectivity is clear; morphicity relies on $e_1e_1 = e_1$.

Convention 3.1.4. If *M* is a monoid, then we shall identify each $r \in R$ with $r \cdot e_1 \in R[M]$. This identification is harmless (i.e., does not lead to false conclusions)³, and turns *R* into an *R*-subalgebra of R[M].

An element of R[M] will be called **constant** if it lies in this subalgebra (i.e., if it is $r \cdot e_1$ for some $r \in R$).

Warning: We previously explained that $\mathbb{Q}[C_2] \cong \mathbb{Q} \times \mathbb{Q}$ as Q-algebras. Now we have identified Q with a subalgebra of $\mathbb{Q}[C_2]$. But this subalgebra is not one of the two Q factors in $\mathbb{Q}[C_2] \cong \mathbb{Q} \times \mathbb{Q}$; in fact, none of those two Q factors is a Q-subalgebra. Our Q-algebra isomorphism from $\mathbb{Q}[C_2]$ to $\mathbb{Q} \times \mathbb{Q}$ sends the unity of $\mathbb{Q}[C_2]$ to $(1,1) \in \mathbb{Q} \times \mathbb{Q}$, which does not lie completely in either factor.

Proposition 3.1.5. Let *M* be a monoid. Then, the map

$$M o R[M]$$
,
 $m \mapsto e_m$

is a monoid morphism from *M* to $(R[M], \cdot, 1)$.

Proof. This is just saying that $e_{mn} = e_m e_n$ and $e_1 = 1_{R[M]}$. Both hold by definition of R[M].

Our last two propositions tell us that the monoid algebra R[M] "includes" both R and M in an appropriate way (at least when R is nontrivial). Thus, we can view it as what comes out if we "throw" the elements of M into R.

This suggests another convention:

Convention 3.1.6. Let *M* be a monoid. Then, the elements e_m of the standard basis $(e_m)_{m \in M}$ of R[M] will just be written as *m* if there is no confusion to worry about.

For example, if *M* is the cyclic group C_3 as above, then the element $ae_1 + be_u + ce_v$ will just be written as a1 + bu + cv = a + bu + cv.

³This follows from Proposition 3.1.3.

For another example, if M is the cyclic group C_2 as above, then our multiplication rule

$$(ae_1 + be_u)(ce_1 + de_u) = (ac + bd)e_1 + (ad + bc)e_u$$

(for $a, b, c, d \in R$) rewrites as

$$(a+bu) (c+du) = (ac+bd) + (ad+bc) u.$$

3.2. Polynomial rings

3.2.1. Univariate polynomials

We can now effortlessly define univariate polynomials: They are just elements of certain monoid algebras. Which ones?

Recall that *R* denotes a commutative ring. Recall also that $\mathbb{N} = \{0, 1, 2, ...\}$.

Definition 3.2.1. Let *C* be the free monoid with a single generator *x*. This is the monoid whose elements are countably many distinct symbols called

$$x^0, x^1, x^2, x^3, \ldots,$$

and whose operation is defined by

$$x^i \cdot x^j = x^{i+j}$$
 for all $i, j \in \mathbb{N}$.

Of course, this monoid is just the well-known additive monoid $(\mathbb{N}, +, 0)$ in a multiplicative disguise (with each nonnegative integer *i* renamed as x^i in order to avoid overloading the notation $i \cdot j$).

The neutral element of this monoid *C* is x^0 . We set $x := x^1$.

The elements of *C* are called **monomials** in the variable *x*. The specific element *x* is called the **indeterminate**.

Now, the **univariate polynomial ring** R[x] over R is defined to be the monoid algebra R[C]. Following Convention 3.1.6, we simply write m for the standard basis vector e_m when $m \in C$. That is, we write x^i for the basis vector e_{x^i} . Thus, R[x] is a free R-module with basis

$$(x^0, x^1, x^2, x^3, \ldots) = (1, x, x^2, x^3, \ldots).$$

Hence, any $p \in R[x]$ can be written as a finite *R*-linear combination of powers of *x*. That is, *p* can be written as

$$p = a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

for some $n \in \mathbb{N}$ and some $a_0, a_1, \ldots, a_n \in R$. This representation is unique up to trailing zeroes (i.e., up to adding extra terms of the form $0x^{n+1}$ and $0x^{n+2}$ and so on).

Elements of R[x] are called **polynomials** in *x* over *R*.

Thus, up to notation, the univariate polynomial ring R[x] is just the monoid ring $R[\mathbb{N}]$ of the abelian monoid $\mathbb{N} = (\mathbb{N}, +, 0)$. Hence, it is commutative (since \mathbb{N} is abelian).

Example 3.2.2. (a) The sum

 $1 + 3x^2 + 6x^3 = 1e_{x^0} + 3e_{x^2} + 6e_{x^3}$

belongs to R[x], i.e., is a polynomial in x.

(b) The infinite sum

 $1 + x + x^2 + x^3 + \cdots$

is **not** a polynomial, because it is not a **finite** *R*-linear combination of powers of *x* (unless *R* is trivial). We defined the polynomial ring *R*[*x*] to be *R*[*C*], so that it is $R^{(C)}$ as an *R*-module (not R^{C}). Infinite sums like $1 + x + x^2 + \cdots$ would make sense in R^{C} and are known as **formal power series**, but they are not polynomials; they are a subject of their own.

So we have defined **univariate** polynomial rings (i.e., polynomial rings in a single variable). Likewise, we can define **multivariate** polynomial rings (i.e., polynomial rings in several variables). For simplicity, let me restrict myself to finitely many variables.

3.2.2. Multivariate polynomials

Definition 3.2.3. Let $n \in \mathbb{N}$. Let $C^{(n)}$ be the free abelian monoid with n generators x_1, x_2, \ldots, x_n . This is the monoid whose elements are the distinct symbols

 $x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$ with $i_1, i_2, \ldots, i_n \in \mathbb{N}$,

and whose operation is given by

$$\left(x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}\right)\left(x_1^{j_1}x_2^{j_2}\cdots x_n^{j_n}\right)=x_1^{i_1+j_1}x_2^{i_2+j_2}\cdots x_n^{i_n+j_n}.$$

If we wrote this monoid additively, it would just be \mathbb{N}^n (the additive monoid of *n*-tuples of nonnegative integers, with entrywise addition), but we write it multiplicatively.

The elements of $C^{(n)}$ are called **monomials**. For each $i \in \{1, 2, ..., n\}$, the monomial

$$x_1^0 x_2^0 \cdots x_{i-1}^0 x_i^1 x_{i+1}^0 x_{i+2}^0 \cdots x_n^0$$

will be denoted by x_i . These specific monomials x_1, x_2, \ldots, x_n are called the **indeterminates**.

Now, the *R*-algebra $R[x_1, x_2, ..., x_n]$ is defined to be the monoid algebra $R[C^{(n)}]$. It is called the **polynomial ring in** *n* **variables** $x_1, x_2, ..., x_n$ **over** *R*. Any element of this *R*-algebra can be written as an *R*-linear combination

$$\sum_{(i_1,i_2,\ldots,i_n)\in\mathbb{N}^n}r_{i_1,i_2,\ldots,i_n}x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$$

with $r_{i_1,i_2,...,i_n} \in R$ (such that all but finitely many of these coefficients $r_{i_1,i_2,...,i_n}$ are 0).

Elements of $R[x_1, x_2, ..., x_n]$ are called **polynomials** in $x_1, x_2, ..., x_n$.

For example, for $R = \mathbb{Z}$, the sum

$$4x_1^2 + x_2x_3 + 7x_3^5 - 3$$

is a polynomial in x_1, x_2, \ldots, x_n whenever $n \ge 3$. For $R = \mathbb{R}$, the sums

$$3x_1 + 14x_1x_2^3$$
 and $\sqrt{2}x_1^7 - \frac{3}{2}x_1^3x_2 + \pi$

are polynomials in $x_1, x_2, ..., x_n$ whenever $n \ge 2$. You can easily construct examples like this ad infinitum.

Note that the univariate polynomial ring R[x] is just the particular case of the polynomial ring $R[x_1, x_2, ..., x_n]$ in n variables $x_1, x_2, ..., x_n$ obtained by setting n = 1 and renaming the indeterminate x_1 as x.