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Math 332 Winter 2023, Lecture 23: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

2. Modules

2.10. Defining algebras: the case of H

An R-algebra carries more information than a ring: namely, it has the extra
structure of an action. Thus, in order to define an R-algebra, it is natural to
start by defining a ring and then putting the action on it (and showing that it
satisfies the R-module axioms and scale-invariance).

Often, however, it is easier to proceed differently: First, define an R-module,
and then define the multiplication and the unity to turn it into an R-algebra. If
you do things in this order, you can use the R-module structure as scaffolding
for defining the multiplication.

Here is an example of how this can work:
Recall the ring H of Hamilton quaternions, which were “defined” (in §1.1.2

in Lecture 2) to be “numbers” of the form a + bi + cj + dk with a, b, c, d ∈ R and
equipped with the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is clear how to calculate in H using these rules. But why does this ring H

exist in the first place?
This is not a vacuous question. For instance, if we replace the rule k2 = −1

by k2 = 1 in the above definition (but still require i2 and j2 to be −1), then we
get

j2 k2︸︷︷︸
=1

= j2 = −1

and thus

−1 = j2k2 = j jk︸︷︷︸
=i

k = j ik︸︷︷︸
=−j

= j (−j) = − j2︸︷︷︸
=−1

= − (−1) = 1.

Adding 1 to this equality, we obtain 0 = 2. Upon multiplication by 1/2, this
becomes 0 = 1, so that our new ring is actually trivial. Instead of expanding
our number system with new numbers, we have inadvertently collapsed it to a
trivial ring!

Thus, if we wantonly define rings by inventing new “numbers” and declaring
new rules, then we cannot expect our new rings to contain our initial rings
(such as R in the above example) as subrings; instead, they may end up trivial
or otherwise smaller than expected. This makes them rather useless.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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This is similar to why you cannot divide by 0: If you introduce a new “num-

ber” ∞ =
1
0

, then 0 · ∞ equals both 0 and 1, so you get 0 = 1 and thus your
ring is trivial.

Of course, this cautionary tale does not always have to become reality. What
it shows is just that we need to be cautious: When creating new “numbers”, we
must make sure we don’t accidentally collapse the old ones.

But how can we make this sure? For instance, how do we know that the ring
H we defined by the above rules actually contains R as a subring (as opposed,
e.g., to being trivial)?

One safe way of defining H is as follows: We define a quaternion to be a
4-tuple (a, b, c, d) of real numbers (this 4-tuple is supposed to stand for a + bi +
cj + dk), and we define addition, multiplication and scaling of these 4-tuples
explicitly by the formulas

(a, b, c, d) +
(
a′, b′, c′, d′

)
=

(
a + a′, b + b′, c + c′, d + d′

)
and

(a, b, c, d)
(
a′, b′, c′, d′

)
= ( aa′ − bb′ − cc′ − dd′,

ab′ + ba′ + cd′ − dc′,
ac′ − bd′ + ca′ + db′,
ad′ + bc′ − cb′ + da′ )

and
r (a, b, c, d) = (ra, rb, rc, rd) for r ∈ R.

This is a valid definition, but you have to check that all the ring axioms (and
module axioms, and scale-invariance) hold. Associativity of multiplication,
in particular, is a lot of work. (The quaternions (a, b, c, d) thus defined can
be rewritten as a + bi + cj + dk once we observe that the unity of the ring
is (1, 0, 0, 0) and we furthermore set i := (0, 1, 0, 0) and j := (0, 0, 1, 0) and
k := (0, 0, 0, 1). Pedants will note that the ring of quaternions thus defined
does not literally contain R as a subring, but merely contains a subring isomor-
phic to R: namely, the subring {(a, 0, 0, 0) | a ∈ R}. But this is not a serious
problem, and the same situation occurs when defining the complex numbers.)

This definition of H does its job well, but as we just said, it is laborious to
justify and somewhat inflexible if one is looking to generalize the construction.

A simpler and slicker way to define H proceeds as follows: First define H

as an R-module (which is easy: it will just be the free R-module R4), and then
build the multiplication on top of it, using the notion of bilinearity. As we saw
in §2.9.1 (Lecture 22), the multiplication of an R-algebra is always R-bilinear,
and as we saw in §2.7, if we want to define an R-bilinear map M × N →
P where M and N are two free R-modules, then we can do this simply by
specifying its values on all pairs of basis elements (Theorem 2.7.2 in Lecture
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22). Thus, instead of defining the product of any two quaternions, we will only
need to define the product of two quaternions from a given basis (which we
will take to be (1, i, j, k)).

Let us do this. We define H to be the R-module R4, which is a free R-
module of rank 4. Thus, a quaternion is defined to be a 4-tuple (a, b, c, d) of
real numbers. The addition and the scaling of quaternions are thus entrywise
(since this is how R4 is defined).

We denote the standard basis (e1, e2, e3, e4) of H by (e, i, j, k). The four basis
vectors e, i, j, k here will eventually be revealed (or renamed) as 1, i, j, k, but for
now I will use boldface letters to avoid suggesting too much.

Now, we define the multiplication of H to be the R-bilinear map µ : H ×
H → H that satisfies

µ (e, e) = e, µ (e, i) = i, µ (e, j) = j, µ (e, k) = k,
µ (i, e) = i, µ (i, i) = −e, µ (i, j) = k, µ (i, k) = −j,
µ (j, e) = j, µ (j, i) = −k, µ (j, j) = −e, µ (j, k) = i,

µ (k, e) = k, µ (k, i) = j, µ (k, j) = −i, µ (k, k) = −e.

By the universal property of free modules wrt bilinear maps (Theorem 2.7.2 in
Lecture 22), there really is a unique such R-bilinear map µ : H×H → H; thus,
we have defined our µ.

We claim that the R-module H becomes an R-algebra (and thus a ring) if
we endow it with the multiplication µ and the unity e. To prove this, we need
to show a few axioms. Some of them (scale-invariance, distributivity and the
0a = a0 = 0 axiom) follow from the R-bilinearity of µ; others follow from the
fact that H is an R-module. It remains to prove two axioms:

1. The map µ is associative (i.e., we have µ (µ (a, b) , c) = µ (a, µ (b, c)) for all
a, b, c ∈ H).

2. The element e is a neutral element for µ (i.e., we have µ (a, e) = µ (e, a) =
a for all a ∈ H).

Let us prove the first axiom. Here, again, the bilinearity of µ will make our
life easier. Indeed, we have the following more general fact:

Lemma 2.10.1. Let R be a commutative ring. Let M be an R-module. Let
(mi)i∈I be a family of vectors in M that spans M. Let f : M × M → M be an
R-bilinear map. Assume that

f
(

f
(
mi, mj

)
, mk

)
= f

(
mi, f

(
mj, mk

))
for all i, j, k ∈ I.

Then,
f ( f (a, b) , c) = f (a, f (b, c)) for all a, b, c ∈ M.
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In other words, this lemma says that in order to prove that an R-bilinear map
f : M × M → M is associative, it suffices to prove that it is associative on a
given family that spans M (i.e., that it holds whenever the three inputs a, b, c
are entries of this family).

Proof of Lemma 2.10.1. See Lemma 3.12.1 in the text. In a nutshell: Expand a, b, c
as R-linear combinations

a = ∑
i∈I

aimi, b = ∑
j∈I

bjmj, c = ∑
k∈I

ckmk,

and plug this into f ( f (a, b) , c) and f (a, f (b, c)). Using the bilinearity of f , you
find

f ( f (a, b) , c) = ∑
i∈I

∑
j∈I

∑
k∈I

aibjck f
(

f
(
mi, mj

)
, mk

)
and

f (a, f (b, c)) = ∑
i∈I

∑
j∈I

∑
k∈I

aibjck f
(
mi, f

(
mj, mk

))
.

The right hand sides of these equalities are equal (by assumption); thus, so are
the left hand sides.

This proof can be summarized in two words: “by linearity”.

Having proved Lemma 2.10.1, we can now prove the associativity law µ (µ (a, b) , c) =
µ (a, µ (b, c)) for µ on H: Indeed, by Lemma 2.10.1, it suffices to prove this
law in the case when a, b, c ∈ {e, i, j, k}. These are 64 equalities to prove in
total (since there are 64 triples (a, b, c) ∈ {e, i, j, k}3). This can be reduced
down to 27 equalities (by realizing that if any of a, b, c is e, then µ (µ (a, b) , c) =
µ (a, µ (b, c)) holds for easy reasons), and further down to 9 equalities (using the
cyclic symmetry in i, j, k in the definition of µ). One of them is µ (µ (i, k) , k) =
µ (i, µ (k, k)). By checking this and the 8 other equalities, you can convince
yourself that µ is associative, i.e., that associativity holds for H.

What about the axiom saying that e is a neutral element for µ ? Again,
by linearity, it suffices to prove µ (e, a) = µ (a, e) = a only for a ∈ {e, i, j, k}
(why?). But this is obvious from a look at the definition of µ.

Thus, we have proved that H is indeed a ring and even an R-algebra. To
connect this definition with the informal one we gave in §1.1.2 (Lecture 2), we
just have to set

i = i, j = j, k = k

(and observe that the unity of H is e, so that 1 = e), and therefore every
quaternion (a, b, c, d) ∈ H can be rewritten as

(a, b, c, d) = a e︸︷︷︸
=1

+ b i︸︷︷︸
=i

+ c j︸︷︷︸
=j

+ d k︸︷︷︸
=k

= a + bi + cj + dk.
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3. Monoid algebras and polynomials

Convention 3.0.1. For this entire chapter, we fix a commutative ring R.

In the previous section, we have learned how to define an R-algebra the “quick”
way: Define an R-module first, and then define its multiplication as a certain
R-bilinear map µ (which you can specify on the basis elements, if the R-module
has a basis). Then, associativity and neutrality of the unity can be proved just
by verifying them for basis elements.

Let me now apply this strategy to the construction of an important class of
algebras: the monoid algebras, and in particular the polynomial rings.

3.1. Monoid algebras

3.1.1. Definition

Recall the notion of a monoid: Roughly speaking, it is a “group without in-
verses”. That is, a monoid is a triple (M, ·, 1), where M is a set, · is an asso-
ciative binary operation on M, and 1 is an element of M that is neutral for ·.
We will write mn for m · n when m, n ∈ M, and we will call mn the product of
m and n. The monoid M is said to be abelian if mn = nm for all m, n ∈ M.
Given a monoid (M, ·, 1), the binary operation · is called the operation of M,
and the element 1 is called the neutral element of M. We say that the monoid
M is written multiplicatively (or, for short, multiplicative) when its operation
is denoted by ·, and we say that it is written additively (or, for short, additive)
when its operation is denoted by +. Usually, the neutral element of a multi-
plicative monoid is denoted by 1, whereas the neutral element of an additive
monoid is denoted by 0.

If M is a monoid written multiplicatively, then we can define the monoid
algebra R [M]. Informally, this is the R-algebra obtained by “throwing” the
elements of M “into” the ring R. Its elements are “formal R-linear combinations
of elements of M”, i.e., expressions of the form

r1m1 + r2m2 + · · ·+ rkmk

with k ∈ N and m1, m2, . . . , mk ∈ M and r1, r2, . . . , rk ∈ R. These expressions
are multiplied by distributivity and using the multiplications of R and M: that
is,

(r1m1 + r2m2 + · · ·+ rkmk) (s1n1 + s2n2 + · · ·+ sℓnℓ) =
k

∑
i=1

ℓ

∑
j=1

risj︸︷︷︸
product

in R

minj︸︷︷︸
product

in M

.

In order to make this rigorous, let us recall a few concepts:



Lecture 23, version March 12, 2025 page 6

If M is any set, then RM is the R-module{
(rm)m∈M | rm ∈ R for each m ∈ M

}
(consisting of all families (rm)m∈M of elements of R), whereas R(M) is the R-
submodule{

(rm)m∈M ∈ RM | all but finitely many m ∈ M satisfy rm = 0
}

of RM. If the set M is finite, then R(M) = RM.
The R-module R(M) is free, and the standard basis (em)m∈M of R(M) is de-

fined as follows: For each m ∈ M, the vector em ∈ R(M) is the family whose
m-th entry is 1 and whose all other entries are 0. (If M = {1, 2, . . . , n} for some
n ∈ N, then this recovers the classical linear-algebraic standard basis: e.g., if
M = {1, 2, 3}, then e1 = (1, 0, 0) and e2 = (0, 1, 0) and e3 = (0, 0, 1).)

The standard basis (em)m∈M of R(M) is, of course, a basis of R(M).
We can now give a rigorous definition of the monoid algebra R [M]:

Definition 3.1.1. Let M be a monoid, written multiplicatively (so that · de-
notes its operation, and 1 denotes its neutral element).

The monoid algebra of M over R (also known as the monoid ring of M
over R) is the R-algebra R [M] defined as follows:

As an R-module, it is the free R-module

R(M) =
{
(rm)m∈M ∈ RM | all but finitely many m ∈ M satisfy rm = 0

}
.

Its multiplication is defined to be the unique R-bilinear map µ : R(M) ×
R(M) → R(M) that satisfies

µ (em, en) = emn for all m, n ∈ M.

Here, (em)m∈M is the standard basis of R(M) (that is, em ∈ R(M) is the family
whose m-th entry is 1 and whose all other entries are 0). The unity of this
R-algebra is e1.

Theorem 3.1.2. This is indeed a well-defined R-algebra.

Proof. By linearity (and associativity of M). See Theorem 4.1.2 in the text for
details.

Recall that any group is a monoid. A group’s monoid algebra is called a
“group algebra”:
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Definition 3.1.3. If G is a group, then its monoid algebra R [G] is called a
group algebra (or group ring).

3.1.2. Examples

The above definition of a monoid algebra was rather abstract, so let us give
some examples.

Example 3.1.4. Consider the cyclic group C2 of order 2. We write it multi-
plicatively as C2 = {1, u} where u2 = 1.

(This group is better known as Z/2, but that would require writing it
additively, which we don’t want.)

How does the group algebra (= monoid algebra) Q [C2] look like?
As a Q-module, it is

Q(C2) = Q({1,u}) = Q{1,u}
(

since R(I) = RI when I is finite
)

=
{
(rm)m∈{1,u} | rm ∈ Q for all m ∈ {1, u}

}
.

A family of the form (rm)m∈{1,u} contains just two entries: r1 and ru. By
abuse of notation, we can thus identify such a family with the pair (r1, ru)
(although, formally speaking, there is merely a bijection between the former
families and the latter pairs). Thus, we can rewrite our above equality as

Q(C2) = {(r1, ru) | r1, ru ∈ Q} = Q2.

The addition and the action of the group algebra Q [C2] are entrywise. What
about its multiplication?

Its standard basis is (em)m∈{1,u} = (e1, eu), where the vector e1 has 1-th
entry 1 and u-th entry 0, and where the vector eu has 1-th entry 0 and u-th
entry 1. If we again encode each family (rm)m∈{1,u} as a pair (r1, ru), then we
can restate this as

e1 = (1, 0) and eu = (0, 1) .

The multiplication of the group algebra Q [C2] is given by

µ (em, en) = emn for all m, n ∈ C2.

In other words,
emen = emn for all m, n ∈ C2.

Thus,

e1e1 = e1·1 = e1, e1eu = e1u = eu,

eue1 = eu·1 = eu, eueu = euu = e1

(
since uu = u2 = 1

)
.
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Since (e1, eu) is a basis of Q [C2], we can write each element of Q [C2]
uniquely as ae1 + beu for two numbers a, b ∈ Q. How do we multiply two
such elements? Let’s see:

(ae1 + beu) (ce1 + deu)

= ae1 (ce1 + deu) + beu (ce1 + deu)

(
since the multiplication µ

is Q-bilinear

)

= a

c e1e1︸︷︷︸
=e1

+ d e1eu︸︷︷︸
=eu

+ b

c eue1︸︷︷︸
=eu

+ d eueu︸︷︷︸
=e1


(since the multiplication µ is Q-bilinear)

= a (ce1 + deu) + b (ceu + de1)

= (ac + bd) e1 + (ad + bc) eu. (1)

If we again use the notation encode each family (rm)m∈{1,u} as a pair
(r1, ru), then the element ae1 + beu simply becomes (a, b) (since e1 = (1, 0)
and eu = (0, 1)), and thus the multiplication rule (1) rewrites as

(a, b) (c, d) = (ac + bd, ad + bc) . (2)

This is almost the rule for multiplying complex numbers! In fact, the latter
rule is

(a, b) (c, d) = (ac − bd, ad + bc) ,

which differs from (2) only in that it has a minus instead of a plus. Thus, we
can think of Q [C2] as a “twin brother” of C, except that we are using rational
numbers rather than real numbers as our entries (but this is not a conceptual
difference; we could play the same game with R instead of C).

However, it is a much less famous twin, and for a good reason: The ring C

is a field, but the ring Q [C2] is not. In fact, (2) yields

(1, 1) (1,−1) = (1 · 1 + 1 · (−1) , 1 · (−1) + 1 · 1) = (0, 0)

in Q [C2], so that Q [C2] is not an integral domain, let alone a field.
Actually, we have

Q [C2] ∼= Q × Q as rings and even as Q-algebras.

Next time, we will see why.
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