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Math 332 Winter 2023, Lecture 22: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

2. Modules

2.7. Bilinear maps

Let R be a commutative ring.
The addition map

add : R × R → R,
(a, b) 7→ a + b

is R-linear (where the domain is the direct product of two copies of R), as you
can easily check1. However, the multiplication map

mul : R × R → R,
(a, b) 7→ ab

is not. But there is “some linearity” in mul: Namely, if we fix one argument,
then mul is linear in the other. That is:

• For any a ∈ R, the map

R → R,
b 7→ ab

is R-linear.

1Indeed:

• This map add respects addition, since any two elements (a, b) and (c, d) of R × R
satisfy

add ((a, b) + (c, d)) = add (a + c, b + d) = (a + c) + (b + d)
= a + b︸ ︷︷ ︸

=add(a,b)

+ c + d︸ ︷︷ ︸
=add(c,d)

= add (a, b) + add (c, d) .

• This map add respects scaling, since any r ∈ R and (a, b) ∈ R × R satisfy

add (r (a, b)) = add (ra, rb) = ra + rb = r

 a + b︸ ︷︷ ︸
=add(a,b)

 = r add (a, b) .

• This map add respects zero, since add (0, 0) = 0 + 0 = 0.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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• For any b ∈ R, the map

R → R,
a 7→ ab

is R-linear.

Maps with these properties are called bilinear:

Definition 2.7.1. Let R be a commutative ring. Let M, N and P be three
R-modules. A map f : M × N → P is said to be R-bilinear (or just bilinear)
if it satisfies the following two conditions:

1. For any n ∈ N, the map

M → P,
m 7→ f (m, n)

is R-linear. Explicitly, this is saying that for any n ∈ N, we have

f (m1 + m2, n) = f (m1, n) + f (m2, n) for all m1, m2 ∈ M;
f (rm, n) = r f (m, n) for all r ∈ R and m ∈ M;

f (0, n) = 0.

This is called “ f is linear in its first argument”.

2. For any m ∈ M, the map

N → P,
n 7→ f (m, n)

is R-linear. Explicitly, this is saying that for any m ∈ M, we have

f (m, n1 + n2) = f (m, n1) + f (m, n2) for all n1, n2 ∈ N;
f (m, rn) = r f (m, n) for all r ∈ R and n ∈ N;
f (m, 0) = 0.

This is called “ f is linear in its second argument”.

Here are some examples of bilinear maps (where R denotes a commutative
ring throughout):

• As we just teased, the multiplication map mul : R × R → R is bilinear.



Lecture 22, version March 3, 2025 page 3

• For any n ∈ N, the map

Rn × Rn → R,
((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

is R-bilinear. This map is called the dot product or the standard scalar
product. At least in the case R = R, it should be familiar from basic linear
algebra.

• Consider the field C of complex numbers. For any n ∈ N, the standard
inner product

Cn × Cn → C,

((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

(where z denotes the complex conjugate of a complex number z) is R-
bilinear but not C-bilinear (since it is antilinear rather than linear in the
second argument). However, it becomes C-bilinear if you view it as a
map Cn × C

n → C (with C being the “twisted” C-module C constructed
in §2.4.3 in Lecture 19).

• The determinant map

det : R2 × R2 → R,
((a, b) , (c, d)) 7→ ad − bc

is R-bilinear. (I call it the determinant map because it sends ((a, b) , (c, d))

to det
(

a b
c d

)
.)

• Matrix multiplication is R-bilinear. That is: For any m, n, p ∈ N, the map

Rm×n × Rn×p → Rm×p,
(A, B) 7→ AB

is R-bilinear. (Indeed, this boils down to standard properties of matrix
multiplication, such as (A1 + A2) B = A1B + A2B and A (λB) = λAB for
any matrices A1, A2, A, B and any scalar λ ∈ R.)

• The cross product map

R3 × R3 → R3,(
(a, b, c) ,

(
a′, b′, c′

))
7→

(
bc′ − cb′, ca′ − ac′, ab′ − ba′

)
is R-bilinear.
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• For any R-module M, the action

R × M → M,
(r, m) 7→ rm

is a R-bilinear map. It is a nice exercise to see what the conditions in
the definition of “bilinear” translate to for this action (you can find the
answer in §3.9 of the text). Note that we really need R to be commutative
here.

For free modules, we have proved a universal property (Theorem 2.6.2 in Lec-
ture 21) that lets us define a linear map out of a free module just by specifying
its values on a given basis. The same can be done for bilinear maps:

Theorem 2.7.2 (Universal property of free modules wrt bilinear maps). Let
R be a commutative ring. Let M be a free R-module with basis (mi)i∈I . Let
N be a free R-module with basis

(
nj
)

j∈J . Let P be a further R-module (free
or not). Let pi,j be a vector in P for each pair (i, j) ∈ I × J. Then, there exists
a unique R-bilinear map f : M × N → P such that

each (i, j) ∈ I × J satisfies f
(
mi, nj

)
= pi,j.

Proof. Similar to the proof of Theorem 2.6.2 in Lecture 21. (Details can be found
in the proof of Theorem 3.9.2 in the text.)

2.8. Multilinear maps

Multilinear maps are a generalization of linear and bilinear maps. Linear maps
have one argument; bilinear maps have two. Multilinear maps are “the same
thing” but with n arguments:

Definition 2.8.1. Let R be a commutative ring. Let M1, M2, . . . , Mn be finitely
many R-modules. Let P be any R-module. A map f : M1 × M2 × · · · × Mn →
P is said to be R-multilinear (or just multilinear) if it satisfies the following
condition:

• For any i ∈ {1, 2, . . . , n} and any m1, m2, . . . , mi−1, mi+1, . . . , mn in the
respective modules (meaning that mk ∈ Mk for each k ̸= i), the map

Mi → P,
mi 7→ f (m1, m2, . . . , mn)

is R-linear. In other words, if we fix all arguments of f other than the
i-th argument, then f is R-linear as a function of this i-th argument.
This is called “ f is linear in its i-th argument”.



Lecture 22, version March 3, 2025 page 5

Thus, “bilinear” means “multilinear for n = 2”, whereas “linear” means
“multilinear for n = 1”.

The simplest example of a multilinear map is the map

prodn : Rn → R,
(a1, a2, . . . , an) 7→ a1a2 · · · an.

Another famous example of a multilinear map is

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R,

(v1, v2, . . . , vn) 7→ det (v1, v2, . . . , vn) ,

where det (v1, v2, . . . , vn) is the determinant of the matrix whose rows are v1, v2, . . . , vn.
There is a universal property of free modules wrt multilinear maps, but you

can state and prove it at home. (It involves no new ideas compared to the
bilinear one, but a lot more subscripts.)

2.9. Algebras over commutative rings

Convention 2.9.1. In this section, we fix a commutative ring R.

2.9.1. Definition

We know rings and we know R-modules. The former have addition and mul-
tiplication; the latter have addition and scaling. What happens if we combine
these features, to obtain an object that has addition, multiplication and scaling?

That kind of object turns out to be very useful. Here is its precise defini-
tion (we do impose an extra axiom to keep the multiplication and scaling in
harmony):

Definition 2.9.2. An R-algebra is a set A that is endowed with

• two binary operations (i.e., maps from A × A to A) that are called ad-
dition and multiplication and denoted by + and ·,

• a map · from R × A to A that is called action of R on A (and should
not be confused with the multiplication map, which is also denoted by
·), and

• two elements of A that are called zero and unity and are denoted by 0
and 1,

such that the following properties (the “algebra axioms”) hold:

• The addition, the multiplication, the zero and the unity satisfy all the
ring axioms (so that A becomes a ring).
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• The addition, the action and the zero satisfy all the module axioms (so
that A becomes an R-module).

• Scale-invariance of multiplication: We have

r (ab) = (ra) b = a (rb) for all r ∈ R and a, b ∈ A.

Here (and in the following), we omit the · signs.

Thus, an R-algebra is an R-module that is also a ring at the same time, with
the same addition, and satisfying the “scale-invariance” axiom so that the struc-
tures work together nicely.

The “scale-invariance” axiom can be replaced by requiring that the multipli-
cation map

A × A → A,
(a, b) 7→ ab

be R-bilinear. (This R-bilinearity also includes the distributive laws (a1 + a2) b =
a1b + a2b and a (b1 + b2) = ab1 + ab2 as well as the axioms a0 = 0 and 0b = 0,
but these are also part of the ring axioms.)

A simple-to-memorize way to restate the “scale-invariance” axiom is the fol-
lowing: “Scalars commute with vectors”. Here, “scalars” mean elements of R
(as expected, since A is an R-module), while “vectors” mean elements of A,
and the word “commute” is used in a slightly broader sense as usual (as we are
dealing with actions, not just products).

Examples of R-algebras include the following:

• The commutative ring R itself is an R-algebra. (Here, the multiplication
of R plays both the role of multiplication and the role of action.)

• The zero ring {0} is an R-algebra.

• The matrix ring Rn×n is an R-algebra for any n ∈ N (since it is both a ring
and an R-module, and “scale-invariance” is easily seen to hold). (Note
that Rn×n is usually not commutative!)

• The ring C is an R-algebra (since it is both a ring and an R-module, and
“scale-invariance” is easily seen to hold).

• The ring R is a Q-algebra (similarly).

• More generally: If a commutative ring R is a subring of a commutative
ring S, then S becomes an R-module in a natural way (by the method
we have learnt in §2.1.5 in Lecture 18: the action of R on S is just the
multiplication of S, restricted to R × S), and thus becomes an R-algebra
(because it is also a ring and satisfies the “scale-invariance” axiom).
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• Even more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then S becomes an R-module (by the method
we have learnt in §2.1.5 in Lecture 18: the action of R on S is given by

rs︸︷︷︸
action

= f (r) · s︸ ︷︷ ︸
multiplication

inside S

for all r ∈ R and s ∈ S

), and thus becomes an R-algebra (since it is also a ring and satisfies the
“scale-invariance axiom”). This R-algebra structure on S is said to be
induced by the morphism f .

• Even more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then any S-algebra A becomes an R-algebra
via the “restriction of scalars” rule

r · a = f (r) · a for all r ∈ R and a ∈ A.

(Again, this is the same rule that we have seen in §2.1.5 in Lecture 18, but
we now additionally have a ring structure on A, so that A becomes not
just an R-module but also an R-algebra.)

• The quaternion ring H is an R-algebra, but not a C-algebra (despite C

being a subring of H). Why not? Because it violates the scale-invariance
axiom, which in this case says that

r (ab) = (ra) b = a (rb) for all r ∈ C and a, b ∈ H.

For example, for r = i and a = j and b = 1, we have

(ra) b = (ij) 1 = k1 = k but
a (rb) = j (i1) = ji = −k ̸= k.

In a nutshell, this axiom is failing because quaternions don’t commute
with complex numbers. As we said, the vectors in an R-algebra must
“commute” with the scalars (meaning ra = a (r1A) for all r ∈ R and
a ∈ A).

• The polynomial ring R [x] (to be defined soon) is an R-algebra.

• More examples can be found in §3.11.2 of the text.

2.9.2. Rings as Z-algebras

Proposition 2.3.1 (a) in Lecture 19 shows that every abelian group (written ad-
ditively) automatically becomes a Z-module. Likewise (and in fact extending
this construction), any ring automatically becomes a Z-algebra:
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Proposition 2.9.3. Let A be any ring. Then, A is an abelian group (with
respect to addition), and thus becomes a Z-module (by Proposition 2.3.1
(a) in Lecture 19). Combining this Z-module structure with the given ring
structure on A, we obtain a Z-algebra. Thus, A becomes a Z-algebra.

Proof. Easy.

2.9.3. The underlying structures

Every R-algebra A has an underlying ring (i.e., the ring that you are left with
if you forget the action of R on A) and an underlying R-module (i.e., the R-
module that you are left with if you forget the multiplication and the unity of
A). This ring and this R-module are inherent in A; we will refer to them simply
as “the ring A” and “the R-module A”.

Thus, when A and B are two R-algebras, a “ring morphism from A to B”
means a ring morphism from the underlying ring of A to the underlying ring
of B, whereas an “R-module morphism from A to B” means an R-module
morphism from the underlying R-module of A to the underlying R-module of
B.

Warning: The notion of an “underlying ring” has nothing to do with the notion of a
“base ring”! The base ring of an R-algebra A is defined to be R (not A).

2.9.4. Commutative R-algebras

Definition 2.9.4. An R-algebra is said to be commutative if its underlying
ring is commutative (i.e., its multiplication is commutative).

2.9.5. Subalgebras

Subalgebras are to algebras what subrings are to rings (and what submodules
are to modules):

Definition 2.9.5. Let A be an R-algebra. An R-subalgebra of A means a
subset of A that is simultaneously a subring and an R-submodule of A (that
is, that is closed under addition, multiplication and scaling and contains 0
and 1).

Every R-subalgebra of an algebra A becomes an algebra in its own right
automatically (by inheriting the operations from A).

2.9.6. R-algebra morphisms

As you could expect, R-algebras (just like rings and modules) have their own
kind of morphisms and isomorphisms:
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Definition 2.9.6. Let A and B be two R-algebras.
(a) An R-algebra morphism (or, short, algebra morphism) from A to B

means a map f : A → B that is both a ring morphism and an R-module
morphism.

(b) An R-algebra isomorphism from A to B means an invertible R-algebra
morphism f : A → B whose inverse f−1 : B → A is also an R-algebra
morphism.

(c) The R-algebras A and B are said to be isomorphic (this is written A ∼=
B) if there exists an R-algebra isomorphism from A to B.

All the fundamental properties of ring morphisms and of ring isomorphisms
(as discussed in §1.7 of Lecture 6) have analogues for algebras instead of rings.
For example:

• Any invertible R-algebra morphism is an isomorphism. (This is an ana-
logue of Proposition 1.7.6 in Lecture 6.)

• The image of an R-algebra morphism f : A → B is an R-subalgebra of B.
(This is an analogue of Proposition 1.7.5 in Lecture 6.)

The proofs of these analogues are analogous to the proofs of the original
results.

Furthermore, if A and B are two Z-algebras, then the Z-algebra morphisms
from A to B are precisely the ring morphisms from A to B. (In fact, this follows
easily from Proposition 2.4.2 in Lecture 19.)

2.9.7. Direct products

Definition 2.9.7. Direct products of R-algebras are defined just as for rings
and R-modules: Addition, multiplication and action are entrywise.

For details, see §3.11.8 in the text.
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