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Math 332 Winter 2023, Lecture 20: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

2. Modules

2.4. Module morphisms (cont’d)

2.4.4. General properties of linearity

Fix a ring R.
Recall that R-module morphisms (aka R-linear maps) are maps between R-

modules that respect all the relevant structure (addition, scaling and zero).
The following facts about R-module morphisms are analogues of known facts

about ring morphisms:

Proposition 2.4.2. Let M and N be two left R-modules. Let f : M → N be an
invertible left R-module morphism. Then, f is a left R-module isomorphism.

Proposition 2.4.3. A composition of two left R-module morphisms is again
a left R-module morphism.

Proposition 2.4.4. A composition of two left R-module isomorphisms is
again a left R-module isomorphism.

Proposition 2.4.5. The inverse of a left R-module isomorphism is again a left
R-module isomorphism.

Proposition 2.4.6. The relation ∼= between left R-modules is an equivalence
relation.

The proofs of all these propositions are similar to the analogous proofs for
ring morphisms.

Again, there is an isomorphism principle: Any intrinsic property of an R-
module M (that is, any property that does not depend on what the elements of
M “are”) automatically holds for any R-module isomorphic to M.

All of what we said about left R-modules holds equally well for right R-
modules (because right R-modules are equivalent to left Rop-modules; see
§3.1.4 in the text for details). In the future, this will go without saying. This
gives us a good excuse to ignore right R-modules (at least until the point where
we consider “bimodules”: hybrid modules with a ring acting on the left and
another ring acting on the right).

Let me also recall that if R is commutative, then we treat left R-modules and
right R-modules as being the same thing (up to the notational issue of whether
the scalar is written on the left or on the right of the vector), and we just call
them “R-modules”.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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2.4.5. Kernels and images

Just like ring morphisms, module morphisms have kernels and images. These
behave slightly better than those of ring morphisms.

We fix a ring R.

Definition 2.4.7. Let R be a ring. Let M and N be two left R-modules. Let
f : M → N be a left R-module morphism. Then, the kernel (aka nullspace)
of f (denoted Ker f or ker f ) is defined to be the subset

Ker f := {a ∈ M | f (a) = 0N}

of M.

Some examples:

• Let R be a commutative ring. Let b ∈ R. Then, the map

R → R,
r 7→ br

is an R-module morphism (called “multiplication by b”). Its kernel is

{r ∈ R | br = 0} .

If b is not zero and not a zero-divisor, then this kernel is {0}.

• Both Z3 and Z × (Z/2) are abelian groups, and thus are Z-modules
(since we have seen in §2.3 (in Lecture 19) that every abelian group is
a Z-module). The map

Z3 → Z × (Z/2) ,

(a, b, c) 7→
(

a − b, b − c
)

is a Z-module morphism (one among many). Its kernel is{
(a, b, c) ∈ Z3 |

(
a − b, b − c

)
= 0Z×(Z/2)

}
=

{
(a, b, c) ∈ Z3 | a − b = 0 and b − c = 0

}
=

{
(a, b, c) ∈ Z3 | a = b and b ≡ c mod 2

}
.

From linear algebra, you should be familiar with some properties of kernels
(aka nullspaces). They still hold in our more general context:
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Theorem 2.4.8. Let M and N be two left R-modules. Let f : M → N be a left
R-module morphism. Then:

(a) The kernel Ker f is an R-submodule of M.
(b) The image Im f = f (M) is a R-submodule of N.

Lemma 2.4.9. Let M and N be two left R-modules. Let f : M → N be a left
R-module morphism. Then, f is injective if and only if Ker f = {0M}.

Again, the proofs are easy (and very similar to the analogous proofs for ring
morphisms).

2.4.6. Quotient modules

Again, we fix a ring R.
Quotient modules are an analogue of quotient rings and quotient groups:1

Definition 2.4.10. Let M be a left R-module. Let I be a left R-submodule of
M. Thus, I is a subgroup of the additive group (M,+, 0), hence a normal
subgroup (since any subgroup of an abelian group is normal). Thus, the
quotient group M/I itself becomes an abelian group. Its elements are the
cosets a + I of I in M. We will denote such a coset a + I by a, and call it a
residue class.

Note that the addition of this group M/I is given by

(a + I) + (b + I) = (a + b) + I for all a, b ∈ M,

i.e., by
a + b = a + b for all a, b ∈ M.

Now, we define an action of R on M/I by setting

r (a + I) = ra + I for all r ∈ R and a ∈ M,

i.e., by setting
ra = ra for all r ∈ R and a ∈ M.

The set M/I, equipped with the addition and the action we just defined
and with the element 0 + I = 0 as the zero vector, is a left R-module. This
left R-module is called the quotient module of M by the submodule I (or,
for short, “M modulo I”). It is denoted by M/I.

Theorem 2.4.11. This is indeed a left R-module.

Proof. Easy.
1We are using the letter I for a submodule here because submodules are, in a sense, a gener-

alization of ideals (literally when R is commutative, roughly in the general case).
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Theorem 2.4.12. Let I be a left R-submodule of a left R-module M. Then, the
map

π : M → M/I,
a 7→ a = a + I

is a surjective R-module morphism with kernel I. This morphism π is called
the canonical projection from M to M/I.

Proof. Same as for rings, mutandis mutandis2.

Examples of quotient modules come from various places:

• Quotients of abelian groups are instances of quotient modules, since abelian
groups are Z-modules.

• Quotients of vector spaces are instances of quotient modules, since vector
spaces are modules over a field.

For instance, consider the 3-dimensional vector space (i.e., R-module) R3

over the ring R of real numbers. This vector space R3 is typically viewed
as a model for three-dimensional space. Define a vector subspace (i.e.,
R-submodule) I of R3 by

I =
{
(x, y, z) ∈ R3 | x + y + z = 0

}
.

Geometrically, this is a hyperplane through the origin of R3. Now, con-
sider the quotient R-module (i.e., quotient vector space) R3/I. Its ele-
ments are residue classes of the form (x, y, z), where two vectors (x, y, z)
and (x′, y′, z′) belong to the same residue class if and only if their en-
trywise difference (x − x′, y − y′, z − z′) belongs to I (that is, if we have
(x − x′) + (y − y′) + (z − z′) = 0). For instance, the two residue classes
(3, 0, 0) and (1, 1, 1) are identical (since (3 − 1) + (0 − 1) + (0 − 1) = 0),
but the two residue classes (1, 0, 0) and (2, 0, 0) are not. It is not hard to
see that each element of R3/I can be uniquely written in the form (r, 0, 0)
for some r ∈ R. This shows that the vector space R3/I is 1-dimensional.

• If R is any ring, and M is any left R-module, then the two obvious R-
submodules {0M} and M of M lead to uninteresting quotient modules:
The quotient module M/ {0M} is isomorphic to M, whereas the quotient
module M/M is trivial (i.e., has only one element).

2This incantation means “if you change what needs to be changed”. For instance, instead of
respecting multiplication, π now needs to respect scaling.
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• Let R be a ring. As we recall from §2.1.3 (Lecture 18), the left R-module
RN has an R-submodule R(N). How does the quotient module RN/R(N)

look like? Its elements are residue classes of the form (a0, a1, a2, . . .),
where two infinite sequences (a0, a1, a2, . . .) and (b0, b1, b2, . . .) belong to
the same residue class if and only if their entrywise difference
(a0 − b0, a1 − b1, a2 − b2, . . .) belongs to R(N) (that is, if the two sequences
(a0, a1, a2, . . .) and (b0, b1, b2, . . .) agree at all but finitely many positions).
Thus, we can view an element (a0, a1, a2, . . .) of RN/R(N) as an “infinite
sequence determined up to finite change” (where “finite change” means
changing finitely many entries). This kind of construction is frequent in
analysis: For instance, the limit lim

n→∞
an of a sequence (a0, a1, a2, . . .) of real

numbers does not depend on finite changes (i.e., it does not change if we
change finitely many entries of our sequence), and thus (if it exists) can
be viewed as a property of the residue class (a0, a1, a2, . . .) ∈ RN/R(N).

For quotient rings, we have previously proved a universal property (Theorem
1.9.6 in Lecture 10) and a first isomorphism theorem (Theorem 1.9.10 in Lecture
11). Both of these have analogues for quotient modules. Let me just state the
analogue of the universal property:

Theorem 2.4.13 (Universal property of quotient modules, elementwise form).
Let M be a left R-module. Let I be a left R-submodule of M.

Let N be a left R-module. Let f : M → N be a left R-module morphism.
Assume that f (I) = 0 (that is, f (i) = 0 for each i ∈ I). Then, the map

f ′ : M/I → N,
a 7→ f (a) (for all a ∈ M)

is well-defined and is a left R-module morphism.

Proof. Analogous to the ring case.

As in the case of rings, the map f ′ in Theorem 2.4.13 makes the following
diagram commute:

M

π
��

f

&&
M/I

f ′
// N

(where π : M → M/I is the canonical projection). The commutativity of this
diagram is saying precisely that f ′ (π (a)) = f (a) for all a ∈ M, that is, that
f ′ (a) = f (a) for all a ∈ M; it thus is just the definition of f ′ in picture form.

2.5. Spanning, linear independence, bases and free modules

Again, we fix a ring R.
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2.5.1. Definitions

We shall now define some classical notions of linear algebra (spanning, linear
independence and bases) but in the generality of arbitrary R-modules.

Definition 2.5.1. Let M be a left R-module. Let m1, m2, . . . , mn be finitely
many vectors in M. Then:

(a) A linear combination of m1, m2, . . . , mn means a vector of the form

r1m1 + r2m2 + · · ·+ rnmn with r1, r2, . . . , rn ∈ R.

(b) The set of all linear combinations of m1, m2, . . . , mn is called the span of
(m1, m2, . . . , mn), and is denoted by span (m1, m2, . . . , mn).

(c) If the span of (m1, m2, . . . , mn) is M, then we say that the vectors
m1, m2, . . . , mn span M (or generate M).

(d) We say that the vectors m1, m2, . . . , mn are linearly independent if the
following holds: If r1, r2, . . . , rn ∈ R satisfy

r1m1 + r2m2 + · · ·+ rnmn = 0,

then r1 = r2 = · · · = rn = 0.
(e) We say that the n-tuple (m1, m2, . . . , mn) is a basis of the R-module M

if m1, m2, . . . , mn are linearly independent and span M.
(f) All of this terminology depends on R. If R is not clear from the context,

then we will say “R-linear combination”, “R-span”, etc.

These features can be defined not just for a finite list (m1, m2, . . . , mn) of vec-
tors, but for any family (mi)i∈I of vectors. There is just one extra complication:
We don’t allow “truly infinite” linear combinations like 1m0 + 1m1 + 1m2 + · · ·
(because infinite sums are not defined in a general R-module). Thus, a linear
combination of a family (mi)i∈I has to be defined as a vector of the form ∑

i∈I
rimi,

where all but finitely many i ∈ I satisfy ri = 0. This latter condition (“all but
finitely many i ∈ I satisfy ri = 0”) ensures that the sum ∑

i∈I
rimi has only finitely

many nonzero addends, and thus is well-defined (because it is just a finite sum
inflated with a possibly infinite supply of zeroes). Of course, if the set I itself is
finite, then this extra condition is automatically satisfied.

For example, for an infinite family (mi)i∈N = (m0, m1, m2, . . .) of vectors, the
infinite sum m0 + m1 + m2 + · · · does not count as a linear combination (even
if this sum is defined to begin with3), but only finite sums like m1 + m3 or
m0 + 17m2 − 19m3 + m8 do.

Likewise, linear independence for a family (mi)i∈I is also defined in terms
of finite sums only. Thus, the extension of Definition 2.5.1 to arbitrary families
(mi)i∈I looks as follows:

3In some modules, infinite sums like m0 + m1 + m2 + · · · are sometimes defined, but we
cannot count on this (this is not part of the structure of a module).
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Definition 2.5.2. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set).

(a) A linear combination of (mi)i∈I means a vector of the form

∑
i∈I

rimi

for some family (ri)i∈I of scalars (i.e., for some choice of ri ∈ R for each i ∈ I)
with the property that

all but finitely many i ∈ I satisfy ri = 0. (1)

Here, the sum ∑
i∈I

rimi is an infinite sum, but all but finitely many of its

addends are zero (thanks to the condition (1)). Such a sum is simply defined
to be the sum of the nonzero addends. For example, 3+ 2+ 0+ 0+ 0+ · · · =
3 + 2 = 5.

(b) The set of all linear combinations of (mi)i∈I is called the span of (mi)i∈I ,
and is denoted by span (mi)i∈I .

(c) If the span of (mi)i∈I is M, then we say that the family (mi)i∈I spans M
(or generates M).

(d) We say that the family (mi)i∈I is linearly independent if the following
holds: If some family (ri)i∈I of scalars ri ∈ R has the properties that

all but finitely many i ∈ I satisfy ri = 0 (2)

and that
∑
i∈I

rimi = 0,

then ri = 0 for all i ∈ I.
(e) We say that the family (mi)i∈I is a basis of the R-module M if (mi)i∈I

is linearly independent and spans M.
(f) All of this terminology depends on R. Thus, if R is not clear from the

context, then we will say “R-linear combination”, “R-span”, etc.

2.5.2. Spans are submodules

As in linear algebra, we can generate submodules of a given module M by
taking spans of (families of) vectors in M:

Proposition 2.5.3. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M. Then, the span of this family is an R-submodule of M.

Proof. We must prove that this span is closed under addition, closed under
scaling, and contains 0.
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Let’s only check “closed under addition”: This means proving that any sum
of two linear combinations of (mi)i∈I is again a linear combination of (mi)i∈I .

Let’s prove this: Consider two arbitrary linear combinations ∑
i∈I

aimi and

∑
i∈I

bimi of (mi)i∈I . We have to prove that ∑
i∈I

aimi + ∑
i∈I

bimi is again a linear

combination of (mi)i∈I .
This is almost trivial:

∑
i∈I

aimi + ∑
i∈I

bimi = ∑
i∈I

(aimi + bimi) = ∑
i∈I

(ai + bi)mi.

But wait: We still need to check that the right hand side here is a legit linear
combination, i.e., that all but finitely many i ∈ I satisfy ai + bi = 0. In other
words, we need to check that only finitely many i ∈ I satisfy ai + bi ̸= 0.

However, by the definition of a linear combination, we know that

• only finitely many i ∈ I satisfy ai ̸= 0 (since ∑
i∈I

aimi is a linear combina-

tion);

• only finitely many i ∈ I satisfy bi ̸= 0 (since ∑
i∈I

bimi is a linear combina-

tion).

Since the union of two finite sets is always finite, we thus conclude that only
finitely many i ∈ I have the property that at least one of ai and bi is nonzero.
Therefore, only finitely many i ∈ I satisfy ai + bi ̸= 0 (because for ai + bi to
be ̸= 0, it must hold that at least one of ai and bi is nonzero). Therefore,
∑
i∈I

(ai + bi)mi is a legit linear combination.

This completes the proof of “closed under addition” for the span of (mi)i∈I .
As we said, the other axioms are similar or easier. Thus, Proposition 2.5.3 is
proved.

2.5.3. Coordinates

The notions of linear independence and spanning can be described in a slightly
different (but equivalent) form:

Proposition 2.5.4. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set). Then:

(a) The family (mi)i∈I spans M if and only if each vector v ∈ M can be
written as an R-linear combination of (mi)i∈I in at least one way.

(b) The family (mi)i∈I is linearly independent if and only if each vector
v ∈ M can be written as an R-linear combination of (mi)i∈I in at most one
way (i.e., there is at most one family (ri)i∈I of scalars such that v = ∑

i∈I
rimi

and such that all but finitely many i ∈ I satisfy ri = 0).
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(c) The family (mi)i∈I is a basis of M if and only if each vector v ∈ M
can be written as an R-linear combination of (mi)i∈I in exactly one way (i.e.,
there is exactly one family (ri)i∈I of scalars such that v = ∑

i∈I
rimi and such

that all but finitely many i ∈ I satisfy ri = 0).

Proposition 2.5.4 (c) shows that a basis of an R-module M can be used as a
“coordinate system” on M, allowing to identify each vector v ∈ M by a family
of scalars (ri)i∈I (which are the “coordinates” of v with respect to this basis).

Proof of Proposition 2.5.4. (a) This is a trivial consequence of the definitions of
span and spanning.

(b) =⇒: Assume that the family (mi)i∈I is linearly independent. We must
prove that each vector v ∈ M can be written as an R-linear combination of
(mi)i∈I in at most one way.

So let v ∈ M be a vector. Let v = ∑
i∈I

aimi and v = ∑
i∈I

bimi be two ways to

write v as an R-linear combination of (mi)i∈I (where ai and bi are scalars such
that all but finitely many i ∈ I satisfy ai = 0, and such that all but finitely many
i ∈ I satisfy bi = 0). We must prove that these two ways are actually identical,
i.e., that we have (ai)i∈I = (bi)i∈I .

Indeed, subtracting the equalities v = ∑
i∈I

aimi and v = ∑
i∈I

bimi from one

another, we find

0 = ∑
i∈I

aimi − ∑
i∈I

bimi = ∑
i∈I

(aimi − bimi) = ∑
i∈I

(ai − bi)mi.

Moreover, it is easy to see that all but finitely many i ∈ I satisfy ai − bi = 0.
Thus, from ∑

i∈I
(ai − bi)mi = 0, we conclude that ai − bi = 0 for each i ∈ I (since

(mi)i∈I is linearly independent). In other words, ai = bi for each i ∈ I. In other
words, (ai)i∈I = (bi)i∈I .

This completes our proof of the “=⇒” direction of part (b).
⇐=: Assume that each vector v ∈ M can be written as an R-linear combi-

nation of (mi)i∈I in at most one way. Applying this assumption to v = 0, we
conclude that 0 can be written as an R-linear combination of (mi)i∈I in at most
one way. But clearly, one way to write 0 as an R-linear combination of (mi)i∈I
is 0 = ∑

i∈I
0mi. Hence, this must be the only way to write 0 as an R-linear com-

bination of (mi)i∈I (since there is at most one way). In other words, if (ri)i∈I
is a family of scalars satisfying 0 = ∑

i∈I
rimi (and having the property that all

but finitely many i ∈ I satisfy ri = 0), then we must have ri = 0 for all i ∈ I.
But this is saying precisely that the family (mi)i∈I is linearly independent. This
proves the “⇐=” direction of part (b).

(c) This follows by combining parts (a) and (b).
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2.5.4. Free modules

Thanks partly to Proposition 2.5.4 (c), modules that have bases are the nicest
and simplest modules around. They have a name:

Definition 2.5.5. (a) A left R-module M is said to be free if it has a basis.
(b) Let n ∈ N. A left R-module M is said to be free of rank n if it has a

basis of size n (that is, a basis consisting of n vectors).

Note that not every free R-module has a rank in this sense, since its basis
could be infinite. (Also, a free R-module can have several ranks at the same
time, although this doesn’t happen very often.)

For vector spaces (i.e., modules over a field), freeness comes for free:

Theorem 2.5.6. If F is a field, then every F-module (= F-vector space) has a
basis.

Proof. I will not prove this. Proofs for the finitely generated case (i.e., for F-
modules that are spanned by a finite list of vectors) are easy to find (e.g., Keith
Conrad’s https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.
pdf , or [Treil21, Chapter 1, Proposition 2.8], or all sorts of textbooks). Proofs
for the general case involve some set theory (including the Axiom of Choice),
and can be found in more advanced literature (e.g., Keith Conrad’s note https:
//kconrad.math.uconn.edu/blurbs/zorn1.pdf on Zorn’s lemma).

For example, Theorem 2.5.6 shows that the Q-vector space R is free. In other
words (restated using Proposition 2.5.4 (c)), this is saying that there is a family
(bi)i∈I of real numbers such that every real number can be uniquely written as
a Q-linear combination of this family (i.e., as a sum ∑

i∈I
ribi where ri ∈ Q are

rational and all but finitely many of them are zero). No one can actually find
such a family, because the proof of its existence is not constructive. Such bases
are called Hamel bases.

To find more interesting examples, we have to consider rings that are not
fields. We’ll discuss this next time.

References

[Treil21] Serge Treil, Linear Algebra Done Wrong, 11 January 2021.
https://sites.google.com/a/brown.edu/
sergei-treil-homepage/linear-algebra-done-wrong

https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
https://kconrad.math.uconn.edu/blurbs/zorn1.pdf
https://kconrad.math.uconn.edu/blurbs/zorn1.pdf
https://sites.google.com/a/brown.edu/sergei-treil-homepage/linear-algebra-done-wrong
https://sites.google.com/a/brown.edu/sergei-treil-homepage/linear-algebra-done-wrong

	Modules
	Module morphisms (cont'd)
	General properties of linearity
	Kernels and images
	Quotient modules

	Spanning, linear independence, bases and free modules
	Definitions
	Spans are submodules
	Coordinates
	Free modules



