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Math 332 Winter 2023, Lecture 19: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

2. Modules

2.2. A couple generalities

Let us now show a few general properties of modules. Again, we fix a ring R.

2.2.1. Negation and subtraction

We begin with a study of negation (i.e., additive inverses).

Proposition 2.2.1. Let R be a ring. Let M be a left R-module. Then, (−1) a =
−a for each a ∈ M. (Here, −1 denotes −1R.)

Proof. Let a ∈ M. Then, 1a = a (by one of the module axioms). Thus,

(−1) a + a︸︷︷︸
=1a

= (−1) a + 1a

= ((−1) + 1)︸ ︷︷ ︸
=0R

a (by the right distributivity axiom)

= 0Ra = 0M (by one of the module axioms) .

In other words, (−1) a is an additive inverse of a. But the additive inverse of a
is −a. Thus, we conclude that (−1) a = −a. This proves Proposition 2.2.1.

Further properties of negation and scaling can easily be derived from this.
For example:

Proposition 2.2.2. Let R be a ring. Let M be a left R-module. Let r ∈ R and
m ∈ M. Then,

(−r)m = − (rm) = r (−m) (1)

and
(−r) (−m) = rm. (2)

Proof. Left to the reader. (Just as in the proof of Proposition 2.2.1, argue that
both (−r)m and r (−m) are additive inverses of rm. This proves (1). To get (2),
apply (1) to −m instead of m.)

Proposition 2.2.3. Let R be a ring. Let M be a left R-module. Then, any
R-submodule of M is a subgroup of the additive group (M,+, 0).

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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Proof of Proposition 2.2.3. Let N be an R-submodule of M. Then, N is closed
under addition and under scaling and contains the zero vector. Each a ∈ N
satisfies

−a = (−1) a (by Proposition 2.2.1)
∈ N (since N is closed under scaling) .

In other words, N is closed under negation (= taking additive inverses). Thus,
N is a subgroup of (M,+, 0).

Proposition 2.2.4. Let R be a ring. Let M be a left R-module. Then, an R-
submodule of M is the same as a subgroup of the additive group (M,+, 0)
that is closed under scaling by every scalar r ∈ R.

Proof. Any R-submodule of M is a subgroup of the additive group (M,+, 0)
(by Proposition 2.2.3) that is closed under scaling by every scalar r ∈ R (by the
definition of a submodule). Conversely, any subgroup of the additive group
(M,+, 0) that is closed under scaling by every scalar r ∈ R is an R-submodule
of M (since it satisfies all the axioms for a submodule). Thus, Proposition
2.2.4.

Proposition 2.2.5. Let R be a ring. Let M be a left R-module. Then, any R-
submodule of M becomes a left R-module in its own right (just like a subring
of a ring becomes a ring).

Proof. Let N be an R-submodule of M. Then, Proposition 2.2.3 shows that N
is a subgroup of the additive group (M,+, 0). Hence, (N,+, 0) is a group.
Since N is closed under scaling, we can also define an action of R on N in the
obvious way (viz., inheriting it from M). This makes N into a left R-module.
This proves Proposition 2.2.5.

We also have “distributivity laws for subtraction”:

Proposition 2.2.6. Let R be a ring. Let M be a left R-module. Then:
(a) We have (r − s)m = rm − sm for all r, s ∈ R and m ∈ M.
(b) We have r (m − n) = rm − rn for all r ∈ R and m, n ∈ M.

Proof. LTTR. (The fastest way is to derive these properties from the distributiv-
ity laws by strategic application of (1).)

2.2.2. Finite sums

Finite sums ∑
s∈S

as of elements of an R-module are defined just as they are in a

ring. Finite products, of course, cannot be defined, since an R-module does not
have any internal multiplication.
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The generalized distributivity laws

(r1 + r2 + · · ·+ rn) a = r1a + r2a + · · ·+ rna and
r (a1 + a2 + · · ·+ an) = ra1 + ra2 + · · ·+ ran

hold in every left R-module A (for any r, r1, r2, . . . , rn ∈ R and any a, a1, a2, . . . , an ∈
A).

Convention 2.2.7. Let R be a ring. Let M be a left R-module. Let r, s ∈ R and
m ∈ M. Since (rs)m and r (sm) are the same element of M (by associativity),
we will just denote them by rsm without parentheses.

2.2.3. Principal submodules

Here is a particularly easy way to construct submodules:

Proposition 2.2.8. Let R be a ring. Let a be a central element of R (that is,
an element of R that commutes with all elements of R). Let M be a left
R-module. Then,

aM := {am | m ∈ M}
is an R-submodule of M.

In particular, 0M = {0M} and 1M = M are R-submodules of M.

Proof. LTTR. (Note that this generalizes the construction of principal ideals in
R.)

Clearly, any R-submodule N of M lies between 0M and 1M (that is, satisfies
0M ⊆ N ⊆ 1M).

2.3. Abelian groups as Z-modules

We shall now try to understand Z-modules in particular.
Let us recall one of the most basic definitions in elementary mathematics: the

definition of multiplication of integers.
Multiplication of nonnegative integers was defined by repeated addition:

If n, m ∈ N, then nm means m + m + · · ·+ m︸ ︷︷ ︸
n times

. This same formula nm =

m + m + · · ·+ m︸ ︷︷ ︸
n times

can be applied to negative integers m as well, but not to neg-

ative integers n, since there is no such thing as m + m + · · ·+ m︸ ︷︷ ︸
−5 times

. Thus, the

product nm for negative n had to be defined differently; one way to define it is

by setting nm = −

m + m + · · ·+ m︸ ︷︷ ︸
−n times

. Thus, for arbitrary integers n and m,
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the product nm is defined by

nm =


m + m + · · ·+ m︸ ︷︷ ︸

n times

, if n ≥ 0;

−

m + m + · · ·+ m︸ ︷︷ ︸
−n times

 , if n < 0.

The same definition can be adapted to any abelian group:

Proposition 2.3.1. Let A be an abelian group, written additively (i.e., the
operation of A is denoted by +, and the neutral element by 0). For any
n ∈ Z and a ∈ A, define

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0.
(3)

Thus, we have defined a map

Z × A → A,
(n, a) 7→ na.

We shall refer to this map as the action of Z by repeated addition (due to
the way na was defined in (3)).

(a) The group A becomes a Z-module, where we take this map as the
action of Z on A.

(b) This is the only Z-module structure on A. That is, if A is any Z-
module, then the action of Z on A is given by the formula (3) (and therefore
is uniquely determined by the abelian group structure on A).

(c) The Z-submodules of A are precisely the subgroups of A.

Proof. See the text (§3.4).

Proposition 2.3.1 reveals what Z-modules really are: They are just abelian
groups with a more convenient “user interface”. The “scaling by repeated ad-
dition” structure is inherent in the group, and by making the group into a
Z-module, you are “exposing” it for easy use.

In contrast, for a typical ring R, the R-modules have much more structure
than the underlying abelian groups. In particular, two R-modules can often
be isomorphic (or even identical) as abelian groups yet non-isomorphic as R-
modules. To put it differently, the action of a ring R on an R-module M is not
usually uniquely determined by the addition of M. That it is so determined for
R = Z is an exception.
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But Z is not the only exception! Another case where the R-module structure
is uniquely determined by the addition is the case when R = Q. The Q-modules
are also known as Q-vector spaces (since Q is a field), and again the action of Q

on such a Q-module is uniquely determined by its addition: If a is a vector in a
Q-module M, and if q =

n
m

is a rational number (where n and m are integers),
then qa is the unique b ∈ M that satisfies mb = na (and the multiples mb and na
here can be computed by the formula (3) using repeated addition)1. Thus, any
abelian group becomes a Q-module in at most one way. However, not every
abelian group can be made into a Q-module in the first place! For instance,
Z/2 does not become a Q-module, because if it did, then the vector

1
2
·
(
2 · 1

)
=

(
1
2
· 2

)
︸ ︷︷ ︸

=1

· 1 = 1 · 1 = 1

would be equal to
1
2
·
(
2 · 1

)︸ ︷︷ ︸
=2=0

=
1
2
· 0 = 0,

which it is not.
Thus, we see that turning an abelian group into a Q-module is not always

possible, but the result is always unique if it exists.
What about R-modules? Again, not every abelian group can be made into an

R-module (for instance, Q is not an R-module). But this time, uniqueness is not
a given either: In an R-module, the action of R is never uniquely determined by
the addition, unless the R-module is trivial (i.e., just contains a single vector).
Likewise, the action of the ring Z [i] on a Z [i]-module is usually not uniquely
determined by the addition (see, e.g., the two different Z [i]-modules Z/5 we
constructed in §2.1.5).

2.4. Module morphisms

2.4.1. Definition

Ring morphisms are maps between rings that respect the defining features of a
ring (addition, multiplication, zero and unity).

Module morphisms play a similar role for modules instead of rings. But they
are also known under a different name: linear maps. Here is their definition.

Definition 2.4.1. Let R be a ring. Let M and N be two left R-modules.
(a) A left R-module morphism (or, for short, a left R-linear map) from M

to N means a map f : M → N that

1This isn’t really obvious, but it is not hard to prove. (This is essentially Winter 2021 Home-
work set #3 Exercise 3.)
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• respects addition (i.e., satisfies f (a + b) = f (a)+ f (b) for all a, b ∈ M);

• respects scaling (i.e., satisfies f (ra) = r f (a) for all a ∈ M and r ∈ R);

• respects the zero (i.e., satisfies f (0M) = 0N).

You can drop the word “left” and just say “R-linear map” or “R-module
morphism” if there is no confusion to fear.

(b) A left R-module isomorphism from M to N means an invertible left
R-module morphism f : M → N whose inverse f−1 : N → M is also a left
R-module morphism.

(c) The left R-modules M and N are said to be isomorphic if there is a left
R-module isomorphism from M to N. In this case, we write “M ∼= N”.

(d) Right R-module morphisms (and isomorphisms) are defined similarly.

2.4.2. Simple examples

Here are some examples of R-module morphisms:

• When F is a field, the F-module morphisms are precisely the F-linear
maps you know from linear algebra.

• Let k ∈ Z. The map Z → Z, a 7→ ka is always a Z-module morphism.

• More generally: Let R be a ring. Let k be a central element of R. Let M
be any left R-module. Then, the map

M → M,
a 7→ ka

is a left R-module morphism. (Check this – and make sure you see where
the “central” condition is being used!)

• Let R be a ring. Let n ∈ N. For any i ∈ {1, 2, . . . , n}, the map

πi : Rn → R,
(a1, a2, . . . , an) 7→ ai

(which sends each n-tuple to its i-th entry) is a left R-module morphism.

Similar things hold for direct products of the form M1 × M2 × · · · ×
Mn: Let M1, M2, . . . , Mn be any n left R-modules. Then, for any i ∈
{1, 2, . . . , n}, the map

πi : M1 × M2 × · · · × Mn → Mi,
(a1, a2, . . . , an) 7→ ai

is a left R-module morphism.
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• If M and N are two left R-modules, then the map

M × N → N × M,
(m, n) 7→ (n, m)

is an R-module isomorphism.

The Z-module morphisms (i.e., the Z-linear maps) are just the group mor-
phisms of the additive groups:

Proposition 2.4.2. Let M and N be two Z-modules. Then, the Z-module
morphisms from M to N are precisely the group morphisms from (M,+, 0)
to (N,+, 0).

Proof. Easy exercise.

2.4.3. Ring morphisms as module morphisms

Here is one more source of R-module morphisms:

• Let R and S be two rings. Let f : R → S be a ring morphism.

As we discussed in §2.1.5 (Lecture 18), this morphism f makes S into a
left R-module by the rule

rs = f (r) · s for all r ∈ R and s ∈ S.

This action is called the action on S induced by f .

It is now easy to see that f is a left R-module morphism from R to S. For
instance, it respects scaling because

f (ra) = r f (a) for all r ∈ R and a ∈ R

(since f is a ring morphism, and thus we have f (ra) = f (r) · f (a) = r f (a)
by the definition of the action of R on S).

Here is a specific example: There is a ring morphism

f : C → C,
a + bi 7→ a − bi (for all a, b ∈ R) .

This morphism f is called complex conjugation (and geometrically can
be viewed as reflection across the real axis); the image f (z) of a complex
number z is commonly denoted by z.

Obviously, C is a C-module, with the action being given by multiplica-
tion. However, we can define a second C-module structure on C, which is
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induced by the morphism f (as explained in §2.1.5). This second structure
has the same addition as the first, but its action is given by

r ⇀ s = f (r)︸︷︷︸
=r

· s = r · s for any r, s ∈ C,

where r ⇀ s means the result of scaling s by r using this second C-module
structure (i.e., the image of (r, s) under the action of C on this second C-
module). (I would normally denote this result by r · s, but here I cannot,
since r · s already means the usual product of r with s.)

Thus, we have found two ways of scaling a complex number s by a com-
plex number r: The first way yields the usual product r · s, while the
second way yields r · s. These two ways provide two C-modules which
both are identical to C as sets and have the same addition, but have differ-
ent actions. Let me keep denoting the first of them by C, but denote the
second by C. Then, the map f (i.e., complex conjugation) is not C-linear
as a map from C to C, but it is C-linear as a map from C to C.

More generally, if M is any C-module, then we can define a second C-
module structure on M by restricting the C-module M via the complex
conjugation map f . This second C-module will be called M; it agrees with
M in its addition, but its action is given by

r ⇀ m = r · m for any r ∈ C and m ∈ M,

where r ⇀ m means the result of scaling m by r using this second C-
module structure, whereas r · m means the result of scaling m by r using
the original C-module structure on M. You can think of M as a “mirror
image” of the C-module M, which has the same vectors as M but “sees
the scalars through a looking glass”.

If M and N are two C-modules, then a map g : M → N is said to be anti-
linear (or conjugate-linear) if it is a C-linear map from M to N. Explicitly,
this means that g has the following properties:

g (a + b) = g (a) + g (b) for all a, b ∈ M;
g (ra) = rg (a) for all r ∈ C and a ∈ M;
g (0) = 0.

Thus, in particular, the complex conjugation map f is an antilinear map
from C to C (or a linear map from C to C).

Antilinear maps appear frequently in complex linear algebra. For exam-

https://en.wikipedia.org/wiki/Antilinear_map
https://en.wikipedia.org/wiki/Antilinear_map
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ple, the standard dot product

Rn × Rn → R,


v1
v2
...

vn

 ,


w1
w2
...

wn


 7→ v1w1 + v2w2 + · · ·+ vnwn

is linear in both of its arguments, whereas the Hermitian dot product

Cn × Cn → C,


v1
v2
...

vn

 ,


w1
w2
...

wn


 7→ v1w1 + v2w2 + · · ·+ vnwn

is antilinear in its first argument and linear in its second (which means
that it becomes linear in both arguments if we view it as a map from
Cn × Cn to C). Maps with the latter property are called sesquilinear, and
in particular all Hermitian forms are sesquilinear.

https://en.wikipedia.org/wiki/Sesquilinear_form
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