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Math 332 Winter 2023, Lecture 17: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.14. An introduction to divisibility theory (cont’d)

1.14.7. Irreducible and prime elements (cont’d)

Recall one of the definitions from Lecture 16:

Definition 1.14.13. Let R be a commutative ring. Let r ∈ R be nonzero and
not a unit.

(a) We say that r is irreducible (in R) if it has the following property:
Whenever a, b ∈ R satisfy ab = r, at least one of a and b is a unit.

(b) We say that r is prime (in R) if it has the following property: Whenever
a, b ∈ R satisfy r | ab, we have r | a or r | b.

Both of these notions “irreducible” and “prime” generalize prime numbers
(up to sign).

The following connection between “irreducible” and “prime” has already
been noticed in Lecture 16:

Proposition 1.14.15. Let R be an integral domain. Then, any prime element
of R is irreducible.

In a PID (= integral domain where each ideal is principal), this goes both
ways:

Proposition 1.14.16. Let R be a PID (for example, a Euclidean domain). Let
r ∈ R. Then, r is prime if and only if r is irreducible.

One proof of this proposition is given in the text (Proposition 2.15.4); we shall
give another. This latter proof will rely on the following two general lemmas:

Lemma 1.14.17. Let R be an integral domain. Let a, b, c ∈ R be such that
a ̸= 0. If ab | ac, then b | c.

Proof. Assume that ab | ac. In other words, ac = abr for some r ∈ R. Consider
this r. We have a (c − br) = ac − abr = 0 (since ac = abr). Since R is an integral
domain, we thus conclude that c − br = 0 (since a ̸= 0). In other words, c = br.
This entails that b | c. Thus, Lemma 1.14.17.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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Lemma 1.14.18. Let R be an integral domain. Let a, b, c ∈ R be such that
a ̸= 0. Assume that the elements ab and ac have a gcd g. Then, the elements
b and c have a gcd h such that g = ah.

Proof. The element a is a common divisor of ab and ac (obviously), and thus
must divide g (by the definition of a gcd, since g is a gcd of ab and ac). In other
words, there exists some r ∈ R such that g = ar. Consider this r.

Since g is a gcd of ab and ac, we have g | ab and g | ac. From ar = g | ab, we
obtain r | b (by Lemma 1.14.17, applied to r and b instead of b and c). Similarly,
r | c. Thus, r is a common divisor of b and c.

Now, let s be any common divisor of b and c. Then, s | b, so that b = sb′ for
some b′ ∈ R. This b′ then satisfies a b︸︷︷︸

=sb′
= asb′, so that as | ab. Similarly, as | ac.

Hence, as is a common divisor of ab and ac. Therefore, as divides g (since g is
a gcd of ab and ac). In other words, as | g = ar. Hence, Lemma 1.14.17 (applied
to s and r instead of b and c) yields s | r.

Forget that we fixed s. We thus have shown that any common divisor s of b
and c satisfies s | r. In other words, any common divisor of b and c divides r.
Since we also know that r is a common divisor of b and c, we thus conclude
that r is a gcd of b and c (by the definition of a gcd). Hence, the elements b and
c have a gcd h such that g = ah (namely, h = r), since we know that g = ar.
This proves Lemma 1.14.18.

Proof of Proposition 1.14.16. =⇒: This follows from Proposition 1.14.15.
⇐=: Assume that r is irreducible. We must prove that r is prime.
So let a, b ∈ R be such that r | ab. We must show that r | a or r | b.
If a = 0, then this is obvious (since r | 0). Thus, we WLOG assume that a ̸= 0.
Theorem 1.14.11 in Lecture 16 shows that ab and ar have a gcd in R. Let g be

this gcd. Then, g | ab and g | ar.
We have r | ab (by assumption) and r | ar (obviously). Hence, r is a common

divisor of ab and ar. Thus, r divides g (by the definition of a gcd, since g is a
gcd of ab and ar). That is, r | g.

Lemma 1.14.18 (applied to c = r) yields that the elements b and r have a gcd
h such that g = ah. Consider this h. Since h is a gcd of b and r, we have h | b
and h | r.

In particular, h | r. In other words, there exists some k ∈ R such that r = kh.
Consider this k.

So we have kh = r. Since r is irreducible, this entails that at least one of the
elements k and h is a unit (by the definition of “irreducible”). Thus, we are in
one of the following cases:

Case 1: The element k is a unit.
Case 2: The element h is a unit.1

1Cases 1 and 2 cannot overlap, because if k and h were both units, then their product kh = r
would be a unit as well, but r is irreducible and thus not a unit. But we don’t care about
this, since cases in a proof can overlap.
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Let us first consider Case 1. In this case, the element k is a unit. Hence, k has
an inverse k−1. From r = kh, we thus obtain h = rk−1, so that r | h | b. Thus,
r | a or r | b. So we are done in Case 1.

Let us next consider Case 2. In this case, the element h is a unit. Hence, h
has an inverse h−1. From g = ah, we thus obtain a = gh−1. Thus, g | a. Hence,
r | g | a. Thus, r | a or r | b. So we are done in Case 2.

Hence, in both cases, we have shown that r | a or r | b. As we explained, this
completes the proof of the “⇐=” direction of Proposition 1.14.16.

1.14.8. Irreducible factorizations and UFDs

The following theorem generalizes the classical “Fundamental Theorem of Arith-
metic” (i.e., the fact that each positive integer has a prime factorization, which
is unique up to reordering the factors):

Theorem 1.14.19. Let R be a PID. Then, any nonzero element r ∈ R can be
decomposed (up to associates) into a product of irreducible (i.e., prime) ele-
ments of R. Moreover, this product is unique up to order and associateness.

In detail: Let r ∈ R be a nonzero element. Then, there is a tuple
(p1, p2, . . . , pn) of irreducible (i.e., prime) elements of R such that

r ∼ p1p2 · · · pn.

If (p1, p2, . . . , pn) and (q1, q2, . . . , qm) are two such tuples, then (p1, p2, . . . , pn)
can be obtained from (q1, q2, . . . , qm) by reordering the entries and replacing
them by associate entries.

Proof. See a textbook, e.g., [DumFoo04, §8.3, Theorem 14] or [Knapp16, Theo-
rem 8.15]. Just a few words about the proof:

Uniqueness is proved just as for integers.
Existence is tricky: Just as for integers, you start with r and keep factoring

it further and further (avoiding unit factors) until no more divisors remain.
But you have to argue that this factoring process won’t go on forever, and this
is no longer as easy as for integers. (It is easy when R has a “multiplicative
norm”, i.e., a map N : R → N such that N (a) < N (ab) whenever a, b ∈ R are
nonzero and b is not a unit. For example, if R = Z [i], then the Euclidean norm
N : Z [i] → N defined by N (a + bi) = a2 + b2 has this property.)

Integral domains R in which the claim of Theorem 1.14.19 holds are called
UFDs (short for unique factorization domains). This class is wider than the
PIDs. For instance, the polynomial rings Z [x] (the ring of all univariate poly-
nomials in x with integer coefficients) and Q [x, y] (the ring of all polynomials
in two variables x and y with rational coefficients) are UFDs but not PIDs.

We will not focus on UFDs in this course, but we briefly note that they have
some (but not all) of the nice properties of PIDs. In particular, in a UFD, any
two elements have a gcd and an lcm. (But we shall not prove this.)
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1.14.9. A synopsis

The following corollary combines several results we have seen above in a con-
venient hierarchy:

Corollary 1.14.20. We have

{fields} ⊆ {Euclidean domains} ⊆ {PIDs} ⊆ {UFDs}
⊆ {integral domains} ⊆ {commutative rings} ⊆ {rings} .

Let us illustrate this hierarchy in a symbolic picture:

rings
commutative rings

integral domains

UFDs
PIDs

Euclidean domains
fields

All the “⊆” signs in Corollary 1.14.20 are strict inclusions; let us briefly recall
some examples showing this:

• The rings Z and Z [i] and Z
[√

−2
]

and Z
[√

2
]

and the polynomial ring
Q [x] are Euclidean domains, but not fields.

• The ring Z [α] for α =
1 +

√
−19

2
is a PID, but not a Euclidean domain.

• The polynomial rings Q [x, y] and Z [x] are UFDs, but not PIDs.

• The rings Z [2i] and Z
[√

−3
]

are integral domains, but not UFDs.

• The ring Z/6 ∼= Z/2 × Z/3 is a commutative ring, but not an integral
domain.

• The matrix ring Q2×2 and the ring of quaternions H are not commutative.
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1.15. Application: Fermat’s p = x2 + y2 theorem

As an application of some of the above, we will show a result of Fermat:

Theorem 1.15.1 (Fermat’s two-squares theorem). Let p be a prime number2

such that p ≡ 1 mod 4. Then, p can be written as a sum of two perfect
squares.

For example,

5 = 12 + 22;

13 = 22 + 32;

17 = 12 + 42;

29 = 22 + 52.

I will prove Theorem 1.15.1 using rings (specifically, the ring Z/p of residue
classes and the ring Z [i] of Gaussian integers). The first ingredient of the proof
is a curious fact about primes, known as Wilson’s theorem:

Theorem 1.15.2 (Wilson’s theorem). Let p be a prime. Then, (p − 1)! ≡
−1 mod p.

Proof. We must show that (p − 1)! = −1 in Z/p.
In Z/p, we have

(p − 1)! = 1 · 2 · · · · · (p − 1) = 1 · 2 · · · · · p − 1. (1)

Recall that every ring R has a group of units, which is denoted by R×. (Its
elements are the units of R, and its operation is multiplication.) Since the ring
Z/p is a field (because p is prime), its group of units (Z/p)× consists of all
nonzero elements of Z/p. Thus,

(Z/p)× =
{

1, 2, . . . , p − 1
}

,

with all the p − 1 elements 1, 2, . . . , p − 1 being distinct. Hence, the product of
all units of Z/p is

∏
a∈(Z/p)×

a = 1 · 2 · · · · · p − 1.

Comparing this with (1), we find

(p − 1)! = ∏
a∈(Z/p)×

a. (2)

2in the sense of classical number theory, i.e., an integer p > 1 with no positive divisors other
than 1 and p
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Now, recall that any unit a of Z/p (or of any other ring) has an inverse a−1,
which is also a unit and satisfies

(
a−1)−1

= a. Thus, the units of Z/p can be
paired up in pairs

{
a, a−1} consisting of a unit a and its inverse a−1. The only

units left unpaired will be the units that are their own inverses. These units
are the elements a ∈ Z/p that satisfy a2 = 1, and a moment of thought reveals
that they are 1 and −1 (because a2 = 1 entails 0 = a2 − 1 =

(
a − 1

) (
a + 1

)
,

and since Z/p is an integral domain, this equality can only hold if either a − 1
or a + 1 is 0). Thus, all units other than 1 and −1 are paired. Hence, in the
product of all units of Z/p, we can pair up each factor other than 1 and −1
with its inverse:

∏
a∈(Z/p)×

a =
(

a1 · a−1
1

)
︸ ︷︷ ︸

=1

·
(

a2 · a−1
2

)
︸ ︷︷ ︸

=1

· · · · ·
(

ak · a−1
k

)
︸ ︷︷ ︸

=1

· 1 · −1 = −1.

Hence, (2) can be rewritten as (p − 1)! = −1, which means precisely that
(p − 1)! ≡ −1 mod p. This proves Theorem 1.15.2.

(Caution: The above argument breaks down a bit for p = 2, but this case is
trivial anyway.)

Corollary 1.15.3. Let p be an odd prime (i.e., a prime distinct from 2). Let

u =
p − 1

2
∈ N. Then, u!2 ≡ − (−1)u mod p.

Proof. Theorem 1.15.2 yields

(p − 1)! ≡ −1 mod p.
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However,

(p − 1)! = 1 · 2 · · · · · (p − 1)

=

(
1 · 2 · · · · · p − 1

2

)
·


(

p − 1
2

+ 1
)

︸ ︷︷ ︸
≡−

p − 1
2

mod p

· · · · · (p − 2)︸ ︷︷ ︸
≡−2 mod p

· (p − 1)︸ ︷︷ ︸
≡−1 mod p


≡

(
1 · 2 · · · · · p − 1

2

)
·
((

− p − 1
2

)
· · · · · (−2) · (−1)

)
= (1 · 2 · · · · · u) · ((−u) · · · · · (−2) · (−1))︸ ︷︷ ︸

=(−1)u·(u·····2·1)
=(−1)u·(1·2·····u)

(
since

p − 1
2

= u
)

= (1 · 2 · · · · · u) · (−1)u · (1 · 2 · · · · · u)

= (−1)u ·

1 · 2 · · · · · u︸ ︷︷ ︸
=u!

2

= (−1)u · u!2 mod p,

so that
(−1)u · u!2 ≡ (p − 1)! ≡ −1 mod p.

Multiplying both sides of this congruence by (−1)u, we obtain

u!2 ≡ − (−1)u mod p.

This proves Corollary 1.15.3.

Corollary 1.15.4. Let p be a prime such that p ≡ 1 mod 4. Let u =
p − 1

2
∈ N.

Then, u!2 ≡ −1 mod p.

Proof. Apply Corollary 1.15.3, and observe that (−1)u = 1 (since p ≡ 1 mod 4,
so that u is even). Corollary 1.15.4 follows.

Corollary 1.15.4 brings us somewhat closer to our goal: Its claim u!2 ≡
−1 mod p can be rewritten as p | u!2 + 1 = u!2 + 12. Now, if we could somehow
turn this divisibility into an equality...

Of course, we cannot do this directly. But let us recall the Gaussian integers
and their ring Z [i]. In this ring, the equality p = u!2 + 12 can be rewritten as
p = (u! + i) (u! − i), which is promising.
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To get any mileage out of this, we recall our favorite Euclidean norm N on
Z [i]. This is the map

N : Z [i] → N,

a + bi 7→ a2 + b2 = |a + bi|2 (for a, b ∈ Z) .

It has a further nice property (which is not part of its Euclideanness):

Proposition 1.15.5. We have

N (αβ) = N (α) N (β) for any α, β ∈ Z [i] .

Proof. Straightforward computation (write α as α = a + bi and write β as β =
c + di, and multiply).

Corollary 1.15.6. Let α and β be two Gaussian integers such that α | β in
Z [i]. Then, N (α) | N (β) in Z.

Proof. We have β = αγ for some γ ∈ Z [i] (since α | β). This γ then satisfies
N (β) = N (αγ) = N (α) N (γ) (by Proposition 1.15.5). Profit.

Corollary 1.15.7. The units of Z [i] are exactly the elements α ∈ Z [i] satisfy-
ing N (α) = 1, and these elements are precisely 1, i, −1, −i.

Proof. Easy exercise (specifically, [21w, homework set #2, Exercise 6 (d)]). The
fact that the Gaussian integers 1, i, −1, −i are the only elements α ∈ Z [i]
satisfying N (α) = 1 is easily checked (what are the integer solutions of the
equations x2 + y2 = 1) ? Clearly, these elements are units. Conversely, any unit
α of Z [i] satisfies α | 1 in Z [i] and therefore N (α) | N (1) in Z (by Corollary
1.15.6), which means N (α) | N (1) = 1 and therefore N (α) = 1.

Lemma 1.15.8. Let α and β be Gaussian integers such that α ̸= 0. Then, α | β

in Z [i] if and only if
β

α
∈ Z [i].

Proof. Trivial.

We are now ready to prove Fermat’s two-squares theorem:

Proof of Theorem 1.15.1. Let u =
p − 1

2
. This u ∈ N since p is odd. Furthermore,

Corollary 1.15.4 yields u!2 ≡ −1 mod p. Thus, p | u!2 + 1 in Z, so that p |
u!2 + 1 = (u! + i) (u! − i) in Z [i].

However, p ∤ u! + i (by Lemma 1.15.8), since
u! + i

p
=

u!
p
+

1
p

i /∈ Z [i]. Simi-

larly, p ∤ u! − i.
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Thus, p divides a product of two elements of Z [i] (namely, the product of
u! + i and u! − i), but does not divide any of the two factors. This shows that p
is not prime in Z [i]. But Z [i] is a PID, and thus the prime elements of Z [i] are
precisely the irreducible elements of Z [i] (by Proposition 1.14.16). Therefore, p
is not irreducible in Z [i]. In other words, p can be written as p = ab for two
non-units a and b of Z [i]. Consider these non-units a and b.

From p = ab, we obtain

N (p) = N (ab) = N (a) N (b) (by Proposition 1.15.5) ,

so that
N (a) N (b) = N (p) = p2 + 02 = p2.

Since N (a) and N (b) are nonnegative integers, this entails that we have

either
(

N (a) = 1 and N (b) = p2
)

or (N (a) = p and N (b) = p)

or
(

N (a) = p2 and N (b) = 1
)

(because the Fundamental Theorem of Arithmetic shows that the only ways to
decompose p2 as a product of two nonnegative integers are 1 · p2 and p · p and
p2 · 1). However, the first of these three options is impossible (because N (a) = 1
would force a to be a unit3, contradicting the fact that a is a non-unit). Similarly,
the third option is impossible. Hence, the second option must hold. In other
words, we have N (a) = p and N (b) = p.

Now, write the Gaussian integer a as a = x + yi for x, y ∈ Z. Then, the
definition of N yields N (a) = x2 + y2, so that x2 + y2 = N (a) = p. Thus,
Theorem 1.15.1 is proved!

Theorem 1.15.1 is the tip of a deep iceberg, which took several centuries to
explore (and still appears to be less than fully mapped). The most obvious next
step is extending it to non-primes:

Theorem 1.15.9. Let n be a positive integer with prime factorization n =

2a pb1
1 pb2

2 · · · pbk
k , where p1, p2, . . . , pk are distinct primes larger than 2, and

where a, b1, b2, . . . , bk are nonnegative integers. (In particular, if n is odd,
then a = 0.)

Then:
(a) The number n can be written as a sum of two perfect squares if and

only if the following condition holds: For each i ∈ {1, 2, . . . , k} satisfying
pi ≡ 3 mod 4, the exponent bi is even.

3by Corollary 1.15.7
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(b) If this condition holds, then the number of ways to write n as a sum of
two perfect squares (to be more precise: the number of pairs (x, y) ∈ Z × Z

satisfying n = x2 + y2) is 4 · ∏
i∈{1,2,...,k};
pi≡1 mod 4

(bi + 1).

For a proof of this theorem, see [Grinbe19, Theorem 4.2.62] or [DumFoo04,
§8.1, Corollary 19]. (The proof again uses Gaussian integers in a rather neat
way. Actually, proving the “if” part of Theorem 1.15.9 (a) is a neat exercise4.)

More about decompositions of integers into sums of perfect squares can be
found

• in [DumFoo04, §8.3];

• in Keith Conrad’s https://kconrad.math.uconn.edu/math5230f12/handouts/
Zinotes.pdf ;

• in [Grinbe19, §4.2].

Instead of writing integers n in the form n = x2 + y2, we can try to write
them in the form x2 + 2y2 or x2 + 3y2 or x2 + 4y2 or x2 + 5y2 or x2 + xy + y2 or∣∣x2 − 2y2

∣∣ or many other such forms. Each time, we can ask when this is pos-
sible, and how many ways there are. These questions vary widely in difficulty,
and even their most basic variants (which prime numbers can be written in a
given form?) can be extremely hard. A whole book [Cox22] has been written
entirely about the question of writing prime(!) numbers in the form x2 + ny2

for positive integers n; just answering these questions for different n requires
rather advanced mathematics. Here is a summary of answers for certain values
of n (see [Cox22] for proofs of these and many more results):

Theorem 1.15.10. Let p be a prime number.
(a) We can write p in the form p = x2 + y2 with x, y ∈ Z if and only if

p = 2 or p ≡ 1 mod 4.
(b) We can write p in the form p = x2 + 2y2 with x, y ∈ Z if and only

if p ≡ 1, 3 mod 8. (The notation “p ≡ 1, 3 mod 8” is shorthand for “p is
congruent to 1 or to 3 modulo 8”. Similar shorthands will be used in the
following parts.)

(c) We can write p in the form p = x2 + 3y2 with x, y ∈ Z if and only if
p = 3 or p ≡ 1 mod 3.

(d) We can write p in the form p = x2 + 4y2 with x, y ∈ Z if and only if
p ≡ 1 mod 4.

(e) We can write p in the form p = x2 + 5y2 with x, y ∈ Z if and only if
p ≡ 1, 9 mod 20.

4Keep in mind that 0 is a perfect square.

https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
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(f) We can write p in the form p = x2 + 6y2 with x, y ∈ Z if and only if
p ≡ 1, 7 mod 24.

(g) We can write p in the form p = x2 + 14y2 with x, y ∈ Z if and only if we
have p ≡ 1, 9, 15, 23, 25, 39 mod 56 and there exists some integer z satisfying(
z2 + 1

)2 ≡ 8 mod p.
(h) We can write p in the form p = x2 + 27y2 with x, y ∈ Z if and only if

we have p ≡ 1 mod 3 and there exists some integer z satisfying z3 ≡ 2 mod p.

Part (a) of Theorem 1.15.10 follows from Theorem 1.15.1 and its fairly easy
converse. Parts (b) and (d) are exercises in the text, so can be done with fairly
elementary methods. (Actually, you can prove part (d) right now, using noth-
ing but part (a) and a bit of thought.) Part (c) looks superficially similar, but
is significantly harder to prove since Z

[√
−3

]
is not a PID (or even a UFD);

nevertheless, fairly elementary proofs exist5. Part (e) is proved using genus
theory of quadratic forms in [Cox22, (2.22)]. Part (f) requires class field theory
([Cox22, Theorem 5.33]). Parts (g) and (h) can be proved using elliptic func-
tions from complex analysis ([Cox22, Chapters 2 and 3]). Note the additional
“there exists some integer z” conditions in parts (g) and (h); such conditions
can be avoided for x2 + ny2 when n is small, but eventually become necessary.
See https://mathoverflow.net/questions/79342/ for more about the need for
such conditions, and see [Cox22, Chapters 2 and 3] for their exact nature.

We can also ask about sums of more than two squares. Lagrange proved that
every nonnegative integer can be written as a sum of four squares (that is, each
n ∈ N can be written as n = x2 + y2 + z2 + w2 for some x, y, z, w ∈ Z). These
days, one of the shortest proofs of this fact uses the so-called Hurwitz quaternions
– a quaternion analogue of Gaussian integers. See https://en.wikipedia.org/
wiki/Lagrange’s_four-square_theorem or [Haensc16] or [Schwar14] for the
proof.

References

[21w] Darij Grinberg, Math 533: Abstract Algebra I, Winter 2021.
https://www.cip.ifi.lmu.de/~grinberg/t/21w/

[Cox22] David A. Cox, Primes of the form x2 + ny2, AMS Chelsea Publishing
387, 3rd edition, AMS 2022.

[DumFoo04] David S. Dummit, Richard M. Foote, Abstract Algebra, 3rd edition,
Wiley 2004.
See https://site.uvm.edu/rfoote/files/2022/06/errata_3rd_
edition.pdf for errata.

5See, e.g., https://math.stackexchange.com/a/76917/ for one such proof.

https://mathoverflow.net/questions/79342/
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
https://www.cip.ifi.lmu.de/~grinberg/t/21w/
https://site.uvm.edu/rfoote/files/2022/06/errata_3rd_edition.pdf
https://site.uvm.edu/rfoote/files/2022/06/errata_3rd_edition.pdf
https://math.stackexchange.com/a/76917/


Lecture 17, version February 3, 2025 page 12

[Grinbe19] Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019
Math 4281 notes), 29 June 2019.
http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf

[Haensc16] Anna Haensch, Quaternions and the four-square theorem, 2016.
https://www.mathcs.duq.edu/~haensch/411Materials/
Quaternions.pdf

[Knapp16] Anthony W. Knapp, Basic Algebra, Digital 2nd edition 2016.
http://www.math.stonybrook.edu/~aknapp/download.html

[Schwar14] Rich Schwartz, Math 153: The Four Square Theorem, April 12, 2014.
https://www.math.brown.edu/reschwar/M153/lagrange.pdf

http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf
https://www.mathcs.duq.edu/~haensch/411Materials/Quaternions.pdf
https://www.mathcs.duq.edu/~haensch/411Materials/Quaternions.pdf
http://www.math.stonybrook.edu/~aknapp/download.html
https://www.math.brown.edu/reschwar/M153/lagrange.pdf

	Rings and ideals (cont'd)
	An introduction to divisibility theory (cont'd)
	Irreducible and prime elements (cont'd)
	Irreducible factorizations and UFDs
	A synopsis

	Application: Fermat's p=x2+y2 theorem


