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Math 332 Winter 2023, Lecture 16: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.14. An introduction to divisibility theory

Elementary number theory is the study of integers and their various features
and properties. Divisibility is among the most important of these features, and
various notions downstream of it (prime numbers, congruences, etc.) form the
stem of classical number theory.

Divisibility theory is about generalizing these notions and properties from
integers to elements of other commutative rings. Some things generalize easily,
some less so, and some don’t generalize at all. Often, properties only hold if
the ring satisfies certain conditions. In this section, we will explore some basics
of divisibility theory without going anywhere deep. See §2.14 and §2.15 in the
text for a slightly deeper treatment (and for more details). Even more can be
found in textbooks such as [Knapp16] or [DumFoo04, Chapter 8].

1.14.1. Principal ideal domains

In Lecture 15, we defined Euclidean rings to be commutative rings that have
a “division with remainder” procedure. The quotient and the remainder need
not be unique, but the remainder must be in some way smaller than the “num-
ber” (= ring element) that we are dividing by. (“Smaller” means “smaller
norm”.)

We also defined Euclidean domains to be integral domains that are Eu-
clidean rings. (Recall: An integral domain is a nontrivial commutative ring
that has no zero-divisors.)

Proposition 1.13.3 says the following:

Proposition 1.14.1. In a Euclidean ring, every ideal is principal.

This motivates the following concept:

Definition 1.14.2. An integral domain R is said to be a principal ideal do-
main (for short, PID) if each ideal of R is principal.

Thus, Proposition 1.14.1 yields the following:

Proposition 1.14.3. Any Euclidean domain is a PID.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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The converse is not true, but counterexamples are rather exotic. One such
counterexample is the ring

Z [α] = {a + bα | a, b ∈ Z} , where α =
1 +

√
−19

2
.

This ring is a PID, but not Euclidean. (This is proved in [DumFoo04, end of
§8.1]. See a textbook on algebraic number theory, specifically on quadratic
number fields – such as [Lehman19] – for much more about these kinds of
rings.)

1.14.2. Divisibility in commutative rings

Let us next generalize (or almost-generalize) some classical concepts of number
theory to commutative rings:

Definition 1.14.4. Let R be a commutative ring.
Let a ∈ R.
(a) A multiple of a means an element of the form ac with c ∈ R. In other

words, it means an element of the principal ideal aR.
(b) A divisor of a means an element d ∈ R such that a is a multiple of d.

We write “d | a” for “d is a divisor of a”.
Now, let a ∈ R and b ∈ R.
(c) A common divisor of a and b means an element of R that is a divisor

of a and a divisor of b at the same time.
(d) A common multiple of a and b means an element of R that is a multiple

of a and a multiple of b at the same time.
(e) A greatest common divisor (short: gcd) of a and b means a common

divisor d of a and b such that every common divisor of a and b is a divisor
of d.

(f) A lowest common multiple (short: lcm) of a and b means a common
multiple m of a and b such that every common multiple of a and b is a
multiple of m.

The notions of “multiple” and “divisor” we just introduced are straight-
forward generalizations of the eponymous classical notions from elementary
number theory. But our new notions of “gcd” and “lcm” are defined somewhat
differently: In contrast to elementary number theory, we cannot take the words
“greatest” and “lowest” literally (since there is no ordering defined on the el-
ements of R in general), and thus we had to resort to characterizing gcds and
lcms in terms of divisibility alone (as opposed to maximality or minimality).
As a consequence:

• It is not guaranteed that a gcd and an lcm of a and b in a given commuta-
tive ring R exist in the first place. And indeed, we will see some examples
where they don’t.
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• Our new definitions of gcds and lcms are slightly more lax than the clas-
sical ones. In fact, in classical elementary number theory, the gcd of 4 and
6 is 2. However, according to our new definition (Definition 1.14.4 (e)), a
gcd of 4 and 6 is 2, but another gcd of 4 and 6 is −2. As far as divisibility
is concerned, the sign of an integer is irrelevant (if a | b, then −a | b and
a | −b), so a gcd and an lcm (as we just defined them) are unique only up
to sign. This is why we say “a gcd” rather than “the gcd” in Definition
1.14.4 (and likewise for lcms). Nevertheless, gcds and lcms are usually
unique in a certain sense (think of it as “unique up to sign”, but again
slightly generalized). We will see this soon.

1.14.3. Gcds and lcms

Let us pin down how the above general notions of gcd and lcm relate to the
corresponding notions in elementary number theory:

Proposition 1.14.5. Let a and b be two integers. Let g = gcd (a, b) and ℓ =
lcm (a, b) in the sense of elementary number theory. Then:

(a) The gcds of a and b in our new sense (i.e., in the sense of Definition
1.14.4 (e)) are g and −g.

(b) The lcms of a and b in our new sense (i.e., in the sense of Definition
1.14.4 (f)) are ℓ and −ℓ.

Proof. Easy if you remember your number theory. (For details, see Proposition
2.14.5 in the text.)

Let us look at arbitrary commutative rings R now. In this generality, two
elements might not even have a gcd. For example, if R is the ring

Z
[√

−3
]
=

{
a + b

√
−3 | a, b ∈ Z

}
,

then the elements a = 4 and b = 2
(
1 +

√
−3

)
have neither a gcd nor an lcm.

So the existence of gcds and lcms is not god-given. What about uniqueness?

1.14.4. Associate elements

We need to generalize “uniqueness up to sign” for integers. The appropriate
generalization is the following:

Definition 1.14.6. Let R be a commutative ring. Let a, b ∈ R. We say that a
is associate to b (and we write a ∼ b) if there exists a unit u of R such that
a = bu.

The relation “associate” is easily seen to be symmetric (because if u is a unit,
then u−1 is a unit), so we can just as well say “a and b are associate” for a ∼ b.

Here are a few examples:
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• Two integers a and b are associate in Z if and only if a = ±b.

• Two nonzero elements a and b of a field are always associate, since a =

b · a
b

. The element 0 is associate only to itself.

• Let F be a field. In the polynomial ring F [x], any nonzero polynomial
f ∈ F [x] is associate to a monic polynomial (since its leading coefficient is
a unit, and dividing f by this coefficient results in a monic polynomial).

• It is not hard to show1 that the only units of the ring Z [i] are the four
Gaussian integers 1, i, −1, −i. So two Gaussian integers α and β are
associate if and only if α is one of β, iβ, −β and −iβ. (This can be nicely
visualized on the Argand diagram: The points corresponding to β, iβ, −β
and −iβ are the images of β under rotations around the origin by 0◦, 90◦,
180◦ and 270◦.)

Here are some general properties of associateness:

Proposition 1.14.7. Let R be a commutative ring. The relation ∼ is an equiv-
alence relation.

Proposition 1.14.8. Let R be an integral domain. Let a, b ∈ R be such that
a | b and b | a. Then, a ∼ b.

For the proofs (which are fairly easy), see the text (§2.14.4).
Proposition 1.14.8 becomes false if we drop the “integral domain” part. How-

ever, the counterexamples are rather sophisticated.
Associate elements “look the same” to divisibility, by which I mean that a

divisibility relation of the form a | b remains equivalent if we replace a by an
element associate to a or replace b by an element associate to b. In other words:

Proposition 1.14.9. Let R be a commutative ring. Let a, b, a′, b′ ∈ R be such
that a ∼ a′ and b ∼ b′. Then, a | b if and only if a′ | b′.

1.14.5. Uniqueness of gcds and lcms in an integral domain

We can now state the uniqueness of gcds and lcms in the form in which it does
hold:

Proposition 1.14.10. Let R be an integral domain. Let a, b ∈ R. Then:
(a) Any two gcds of a and b are associate (i.e., associate to each other).
(b) Any two lcms of a and b are associate (i.e., associate to each other).

1See Corollary 1.15.7 in Lecture 17.
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Proof. (a) Let g and h be two gcds of a and b. We must prove that g ∼ h.
Since h is a gcd of a and b, we know that h is a common divisor of a and b.
Since g is a gcd of a and b, we know that every common divisor of a and b is

a divisor of g. Since h is a common divisor of a and b, we thus conclude that
h | g.

Similarly, g | h. Thus, g | h and h | g, so that Proposition 1.14.8 yields g ∼ h.
This proves part (a). (Note that this argument is a common trope in algebra.)

(b) Analogous to part (a).

So much for the uniqueness of gcds and lcms. Their existence is a subtler
question.

1.14.6. Existence of gcds and lcms in a PID

At least in PIDs (and thus in Euclidean domains), gcds and lcms always exist:

Theorem 1.14.11. Let R be a PID (for example, a Euclidean domain). Let
a, b ∈ R. Then, there exist a gcd and an lcm of a and b.

Somewhat more concretely:

Proposition 1.14.12. Let R be a commutative ring. Let a, b, c ∈ R. Then:
(a) If aR + bR = cR, then c is a gcd of a and b.
(b) If aR ∩ bR = cR, then c is an lcm of a and b.

Note that the aR, bR and cR here are principal ideals of R. Thus, the equality
aR + bR = cR is an equality of ideals, not of elements. In particular, it has
nothing to do with the equality a + b = c. Translated into the language of
elements, the equality aR + bR = cR is saying “every sum of a multiple of a
with a multiple of b is a multiple of c, and conversely”.

Proof of Proposition 1.14.12. (a) Assume that aR + bR = cR. Thus, c = c · 1 ∈
cR = aR+ bR, so that we can write c as c = ax + by for some x, y ∈ R. Consider
these x, y. Also, a = a · 0 + b · 1 ∈ aR + bR = cR, so that a is a multiple of c.
Similarly, b is a multiple of c. These two sentences show that c is a common
divisor of a and b.

Moreover, any common divisor d of a and b satisfies d | a | ax and d | b | by
and therefore d | ax + by = c. In other words, any common divisor d of a and b
is a divisor of c. Since c is a common divisor of a and b, we thus conclude that
c is a gcd of a and b. This proves Proposition 1.14.12 (a).

(b) The condition aR ∩ bR = cR is just saying that the multiples of a that
happen to be multiples of b at the same time are precisely the multiples of c. If
you think about this, this is saying precisely that c is an lcm of a and b. Thus,
Proposition 1.14.12 (b) follows.
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Note that the converse of Proposition 1.14.12 (a) is false (two elements a and b
can have a gcd even if the ideal aR + bR is not principal!), whereas the converse
of Proposition 1.14.12 (b) is true (for the same reason as Proposition 1.14.12 (b)
itself).

Proof of Theorem 1.14.11. The ideal aR + bR is principal (since R is a PID, so that
every ideal of R is principal), and thus can be written as cR for some c ∈ R.
This c must then be a gcd of a and b (by Proposition 1.14.12 (a)). Thus, a and b
have a gcd. Similarly, a and b have an lcm. This proves Theorem 1.14.11.

Theorem 1.14.11 gives no actual algorithm for finding gcds and lcms. How-
ever, if R is a Euclidean ring, then such an algorithm for gcds can be given, and
in fact is a straightforward generalization of the classical Euclidean algorithm.
An lcm can then be obtained by the formula

gcd (a, b) · lcm (a, b) ∼ ab,

which holds for any two elements a, b of an integral domain R that have a gcd
and an lcm. The proof of this formula can be found in Winter 2021 homework
set #2 Exercise 3.

Last time, we saw a bunch of Euclidean domains (the most important one
being Z [i], the Gaussian integers). Thus, in each of these domains, there are
well-defined concepts of gcds and lcms, which satisfy the same rules as for
integers except for not being unique on-the-nose (but only unique up to asso-
ciateness).

1.14.7. Irreducible and prime elements

Next, let us generalize prime numbers from the ring Z to an arbitrary commu-
tative ring R. There are two ways to do so, and both are useful. In fact, recall
that prime numbers in Z can be characterized in two ways:

1. They are the integers p > 1 that have no positive divisors besides 1 and
p. In other words, they are the integers p > 1 such that whenever two
integers a, b ∈ Z satisfy ab = p, at least one of a and b is ±1.

2. They are the integers p > 1 with the property that if p | ab (for two
integers a and b), then p | a or p | b.

These two characterizations are equivalent, as you should know from high
school(?). However, if we try to generalize them to arbitrary commutative rings,
their equivalence breaks down. Both characterizations are important, so they
both have standard names. Characterization 1 defines “irreducible elements”,
and characterization 2 defines “prime elements”. More precisely, we define
these concepts as follows:
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Definition 1.14.13. Let R be a commutative ring. Let r ∈ R be nonzero and
not a unit.

(a) We say that r is irreducible (in R) if it has the following property:
Whenever a, b ∈ R satisfy ab = r, at least one of a and b is a unit.

(b) We say that r is prime (in R) if it has the following property: Whenever
a, b ∈ R satisfy r | ab, we have r | a or r | b.

Note that we have replaced the condition “p > 1” in both characterizations
of prime numbers by “r is nonzero and not a unit” in the general setting, in
order for it to make sense in an arbitrary ring. As a consequence, our notions
of “irreducible” and “prime” are somewhat laxer than the classical concept of
a prime number, since they allow negative integers in the case of R = Z. (This
is the same situation that we encountered when generalizing gcds and lcms.)

Except for this pedantic point, our notions of “irreducible” and “primes” do
generalize prime numbers:

Proposition 1.14.14. Let r ∈ Z. Then, we have the following equivalence:

(r is prime in Z) ⇐⇒ (r is irreducible in Z) ⇐⇒ (|r| is a prime number) .

Proof. Left to the reader.

In particular, the prime elements of Z are not just the prime numbers 2, 3, 5, 7, 11, . . .
but also their negatives −2, −3, −5, −7, −11, . . .. The irreducible elements of
Z are the same.

Thus, in the ring Z, being prime and being irreducible are the same thing. In
an arbitrary integral domain, this is not always the case, as the following two
examples show:

• In the ring Z
[√

−5
]
, the element 3 is irreducible but not prime. (See

[DumFoo04, §8.3] for the proof.)

• Here is an example using polynomials. Consider the univariate polyno-
mial ring

Q [x] =
{

a0 + a1x + a2x2 + · · ·+ anxn | a0, a1, . . . , an ∈ Q
}

.

This ring Q [x] has a subring

R =
{

a0 + a2x2 + a3x3 + · · ·+ anxn | a0, a2, a3, . . . , an ∈ Q
}

=
{

all polynomials f ∈ Q [x] whose x1-coefficient is 0
}

=
{

all polynomials f ∈ Q [x] with f ′ (0) = 0
}

.

Yes, this is a subring; check this!
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The element x3 of R is irreducible (because if x3 = ab for two non-constant
polynomials2 a and b, then either a or b (or both) has a nonzero x1-
coefficient), but not prime (since x3 | x2x2 but x3 ∤ x2 and x3 ∤ x2).

In each of these two examples, we found an element that is irreducible but
not prime. Can the converse happen? No:

Proposition 1.14.15. Let R be an integral domain. Then, any prime element
of R is irreducible.

Proof. Easy. (See Proposition 2.15.3 in the text.)

In a PID, this goes both ways:

Proposition 1.14.16. Let R be a PID (for example, a Euclidean domain). Let
r ∈ R. Then, r is prime if and only if r is irreducible.

Proof. Less easy, and I will say a few words about it next time. In a way,
this proof is just an adaptation of the classical proof of Euclid’s lemma from
elementary number theory, which says that if a prime number p divides a
product ab, then it divides a or b.
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