Math 332 Winter 2023, Lecture 13: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont'd)

1.12. The Chinese Remainder Theorem

1.12.1. Introduction

In §1.10.3 (Lecture 12), we saw some examples of direct products. These examples were rather transparent: The direct product structure of each ring was obvious from how the ring was defined (usually signalled by the fact that its elements are pairs or tuples, and by a word like "entrywise" or "pointwise").

However, this is not always the case! The ring $\mathbb{Z}/6$ does not look like a direct product at all (its elements are $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}$; these don't look like tuples in any nontrivial way), and yet it is isomorphic to a direct product: I claim that

$$\mathbb{Z}/6 \cong (\mathbb{Z}/2) \times (\mathbb{Z}/3)$$

Specifically, there is a ring isomorphism

$$\begin{split} \mathbb{Z}/6 &\to (\mathbb{Z}/2) \times (\mathbb{Z}/3) & \text{that sends} \\ \overline{0} &\mapsto (\overline{0}, \overline{0}) & (\text{that is, } 0 + 6\mathbb{Z} \mapsto (0 + 2\mathbb{Z}, \ 0 + 3\mathbb{Z})) \,, \\ \overline{1} &\mapsto (\overline{1}, \overline{1}) \,, \\ \overline{2} &\mapsto (\overline{2}, \overline{2}) = (\overline{0}, \overline{2}) \,, \\ \overline{3} &\mapsto (\overline{3}, \overline{3}) = (\overline{1}, \overline{0}) \,, \\ \overline{4} &\mapsto (\overline{4}, \overline{4}) = (\overline{0}, \overline{1}) \,, \\ \overline{5} &\mapsto (\overline{5}, \overline{5}) = (\overline{1}, \overline{2}) \,. \end{split}$$

Of course, you can check this by hand, but this is not an isolated incident. The reason why this isomorphism exists is that 2 and 3 are coprime (i.e., that gcd (2,3) = 1). More generally, the following holds:

Theorem 1.12.1 (The Chinese Remainder Theorem for two integers). Let n and m be two coprime integers. Then,

$$\mathbb{Z}/(nm) \cong (\mathbb{Z}/n) \times (\mathbb{Z}/m)$$
 as rings.

More concretely, there is a ring isomorphism

$$\mathbb{Z}/(nm) \to (\mathbb{Z}/n) \times (\mathbb{Z}/m),$$

$$\overline{r} \mapsto (\overline{r}, \overline{r}) \qquad (\text{that is, } r + nm\mathbb{Z} \mapsto (r + n\mathbb{Z}, r + m\mathbb{Z})).$$

(As usual, the notation \overline{r} is intuitive and confusing at the same time. It stands for the residue class of r modulo an ideal, but what ideal that is depends on the context. In the above context of a map from $\mathbb{Z}/(nm)$ to $(\mathbb{Z}/n) \times (\mathbb{Z}/m)$, it should be clear that the first \overline{r} has to be a residue class modulo nm (since it is an element of $\mathbb{Z}/(nm)$), whereas the other two \overline{r} 's are residue classes modulo n and modulo m, respectively (since they form the pair $(\overline{r}, \overline{r})$, which belongs to $(\mathbb{Z}/n) \times (\mathbb{Z}/m)$). In general, I will rely on the context to disambiguate such notations.)

Rather than prove Theorem 1.12.1 directly, I will generalize it and then prove the generalization. Specifically, I will replace \mathbb{Z} by an arbitrary commutative ring *R*, and replace the integers *n* and *m* by two ideals *I* and *J* of *R*. The assumption "*n* and *m* are coprime" will be replaced by the condition "I + J = R".

1.12.2. The Chinese Remainder Theorem for two ideals

The latter condition actually has a standard name:

Definition 1.12.2. Let *I* and *J* be two ideals of a ring *R*. We say that *I* and *J* are **comaximal** if I + J = R.

Now we can generalize Theorem 1.12.1 to ideals:

Theorem 1.12.3 (The Chinese Remainder Theorem for two ideals). Let *I* and *J* be two comaximal ideals of a commutative ring *R*. Then:

(a) We have $I \cap J = IJ$. (b) We have $R/(IJ) \cong (R/I) \times (R/J)$. (c) More concretely, there is a ring isomorphism

$$R/(IJ) \to (R/I) \times (R/J),$$

$$\bar{r} \mapsto (\bar{r}, \bar{r}) \qquad \text{(that is, } r+IJ \mapsto (r+I, r+J)).$$

As we will soon see, parts (b) and (c) of this theorem generalize Theorem 1.12.1 (while part (a) generalizes the fact that $lcm(n,m) = \pm nm$ for any two coprime integers *n* and *m*).

Let us now prove Theorem 1.12.3. We agree to understand the notation $R/I \times R/J$ as $(R/I) \times (R/J)$, so that we need to write fewer parentheses. Also, the notation R/IJ will mean R/(IJ). Thus, we can restate Theorem 1.12.3 (b) as $R/IJ \cong R/I \times R/J$.

Proof of Theorem 1.12.3. We have $1 \in R = I + J$ (since *I* and *J* are comaximal). In other words, we can write 1 as

$$1 = i + j$$
 for some $i \in I$ and some $j \in J$.

Consider these *i* and *j*.

(a) Recall that the ideal IJ consists of all finite sums of (I, J)-products. But any (I, J)-product lies in both I and J (since it has a factor in I and a factor in J, but both I and J are ideals and thus satisfy the second ideal axiom). Thus, any (I, J)-product lies in $I \cap J$. Hence, any finite sum of (I, J)-products also lies in $I \cap J$. In other words, $IJ \subseteq I \cap J$.

Let us now prove that $I \cap J \subseteq IJ$. So let $a \in I \cap J$. Then, $a \in I$ and $a \in J$. Now,

$$a = a \cdot \underbrace{1}_{=i+j} = a \cdot (i+j) = \underbrace{ai}_{=ia} + aj = ia + aj.$$

This is a sum of two (I, J)-products (indeed, *ia* is an (I, J)-product since $i \in I$ and $a \in J$; moreover, *aj* is an (I, J)-product since $a \in I$ and $j \in J$). Hence, this belongs to IJ (by the definition of IJ). In other words, $a \in IJ$.

So we have shown that $a \in IJ$ for each $a \in I \cap J$. Hence, $I \cap J \subseteq IJ$. Combined with $IJ \subseteq I \cap J$ (which was proved above), this results in $IJ = I \cap J$. This proves part (a) of Theorem 1.12.3.

(c) First, we define a map

$$f: R \to (R/I) \times (R/J),$$

$$r \mapsto (\overline{r}, \overline{r})$$

(where the (\bar{r}, \bar{r}) means (r + I, r + J), as explained above). It is straightforward to see that this map *f* is a ring morphism. Its kernel is

$$\operatorname{Ker} f = \left\{ r \in R \mid (\overline{r}, \overline{r}) = 0_{(R/I) \times (R/J)} \right\}$$

= $\{ r \in R \mid (r + I, r + J) = (0 + I, 0 + J) \}$
 $\left(\operatorname{since} (\overline{r}, \overline{r}) = (r + I, r + J) \text{ and } 0_{(R/I) \times (R/J)} = (0 + I, 0 + J) \right)$
= $\{ r \in R \mid r + I = 0 + I \text{ and } r + J = 0 + J \}$
= $\{ r \in R \mid r \in I \text{ and } r \in J \}$
= $I \cap J = IJ$ (by Theorem 1.12.3 (a)).

Now I claim that the image of *f* is the whole ring $(R/I) \times (R/J)$ (that is, the map *f* is surjective).

Indeed, recall that 1 = i + j. Hence, $1 - i = j \in J$. Therefore, $\overline{1} = \overline{i}$ in R/J (because two elements $u, v \in R$ satisfy $\overline{u} = \overline{v}$ in R/J if and only if $u - v \in J$). In other words, $\overline{i} = \overline{1}$ in R/J. Similarly, $\overline{j} = \overline{1}$ in R/I.

On the other hand, $\overline{i} = \overline{0}$ in R/I (since $i \in I$), and $\overline{j} = \overline{0}$ in R/J (since $j \in J$).

Now, for every $x \in R$ and $y \in R$, we have¹

$$f(yi + xj) = f(y) f(i) + f(x) f(j) \qquad (\text{since } f \text{ is a ring morphism})$$

$$= (\overline{y}, \overline{y}) \left(\underbrace{\overline{i}}_{=\overline{0}} \underbrace{\overline{i}}_{=\overline{1}}\right) + (\overline{x}, \overline{x}) \left(\underbrace{\overline{j}}_{=\overline{1}}, \underbrace{\overline{j}}_{=\overline{0}}\right)$$

$$(\text{by the definition of } f)$$

$$= (\overline{y}, \overline{y}) (\overline{0}, \overline{1}) + (\overline{x}, \overline{x}) (\overline{1}, \overline{0})$$

$$= (\overline{y} \cdot \overline{0}, \ \overline{y} \cdot \overline{1}) + (\overline{x} \cdot \overline{1}, \ \overline{x} \cdot \overline{0}) \qquad \left(\begin{array}{c} \text{since multiplication in a} \\ \text{direct product is entrywise} \end{array}\right)$$

$$= (\overline{0}, \overline{y}) + (\overline{x}, \overline{0})$$

$$= (\overline{0} + \overline{x}, \ \overline{y} + \overline{0}) \qquad \left(\begin{array}{c} \text{since addition in a} \\ \text{direct product is entrywise} \end{array}\right)$$

$$= (\overline{x}, \overline{y}). \qquad (1)$$

However, **any** element of $(R/I) \times (R/J)$ can be written as $(\overline{x}, \overline{y})$ for some $x, y \in R$. Using (1), we can rewrite this as follows: Any element of $(R/I) \times (R/J)$ can be written as f(yi + xj) for some $x, y \in R$. In particular, this means that any element of $(R/I) \times (R/J)$ is a value of the map f. In other words, the map f is surjective. Hence, its image is

$$f(R) = (R/I) \times (R/J).$$

So we know that f is a ring morphism with kernel Ker f = IJ and image $f(R) = (R/I) \times (R/J)$. But the first isomorphism theorem for rings (Theorem 1.9.10 (c) in Lecture 11) says that the map

$$f': R / \operatorname{Ker} f \to f(R),$$
$$\overline{r} \mapsto f(r)$$

is well-defined and is a ring isomorphism.

Since Ker f = IJ and $f(R) = (R/I) \times (R/J)$ and $f(r) = (\bar{r}, \bar{r})$ for all $r \in R$, we can rewrite this as follows: The map

$$f': R/IJ \to (R/I) \times (R/J),$$

$$\overline{r} \mapsto (\overline{r}, \overline{r})$$

is well-defined and is a ring isomorphism. This proves part (c) of Theorem 1.12.3. Thus, part (b) follows. $\hfill \Box$

¹In the following, the notation \overline{r} (for a given $r \in R$) means the residue class of r modulo I if it stands in the first entry of a pair, and means the residue class of r modulo J if it stands in the second entry of a pair.

1.12.3. Application to integers

Now, we can get Theorem 1.12.1 (the Chinese Remainder Theorem for two integers) as a corollary of Theorem 1.12.3 (the Chinese Remainder Theorem for two ideals):

Proof of Theorem 1.12.1. Let $R = \mathbb{Z}$ and $I = n\mathbb{Z}$ and $J = m\mathbb{Z}$. Then, Proposition 1.11.3 (a) in Lecture 12 yields $IJ = nm\mathbb{Z}$.

Also, Proposition 1.11.3 (c) in Lecture 12 yields

$$I + J = \underbrace{\gcd(n, m)}_{\text{(since } n \text{ and } m \text{ are coprime})} \mathbb{Z} = 1\mathbb{Z} = \mathbb{Z}.$$

In other words, the ideals *I* and *J* are comaximal. Hence, we can apply Theorem 1.12.3. In particular, Theorem 1.12.3 (b) yields that

$$R/IJ \cong (R/I) \times (R/J)$$
, that is,
 $\mathbb{Z}/nm \cong (\mathbb{Z}/n) \times (\mathbb{Z}/m)$

(since $IJ = nm\mathbb{Z}$ and $I = n\mathbb{Z}$ and $J = m\mathbb{Z}$). Likewise, Theorem 1.12.3 (c) yields the specific isomorphism we are looking for.

Exercise 1. Apply this to n = 6 and m = 5 to obtain a ring isomorphism

$$\mathbb{Z}/30 \to (\mathbb{Z}/6) \times (\mathbb{Z}/5) \,.$$

Find the preimage of $(\overline{2},\overline{3})$ under this isomorphism. (The first step is to write 1 as i + j where $i \in 6\mathbb{Z}$ and $j \in 5\mathbb{Z}$.)

More generally, if *n* and *m* are two coprime integers, then the **extended Euclidean algorithm** is a fairly efficient algorithm for writing 1 as i + j with $i \in n\mathbb{Z}$ and $j \in m\mathbb{Z}$ (that is, for writing 1 as a sum of a multiple of *n* and a multiple of *m*). For this algorithm, see, e.g., the Wikipedia page or any textbook on elementary number theory (e.g., [LeLeMe18, §9.2.2] explains the algorithm on an example, and [Stein09, Algorithm 2.3.7] gives a simple recursive implementation).

References

- [LeLeMe18] Eric Lehman, F. Thomson Leighton, Albert R. Meyer, Mathematics for Computer Science, revised Tuesday 6th June 2018. https://courses.csail.mit.edu/6.042/spring18/mcs.pdf.
- [Stein09] William Stein, *Elementary Number Theory: Primes, Congruences, and Secrets,* Springer 2009.