
Lecture 13, version February 10, 2023 page 1

Math 332 Winter 2023, Lecture 13: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.12. The Chinese Remainder Theorem

1.12.1. Introduction

In §1.10.3 (Lecture 12), we saw some examples of direct products. These ex-
amples were rather transparent: The direct product structure of each ring was
obvious from how the ring was defined (usually signalled by the fact that its
elements are pairs or tuples, and by a word like “entrywise” or “pointwise”).

However, this is not always the case! The ring Z/6 does not look like a direct
product at all (its elements are 0, 1, 2, 3, 4, 5; these don’t look like tuples in any
nontrivial way), and yet it is isomorphic to a direct product: I claim that

Z/6 ∼= (Z/2)× (Z/3) .

Specifically, there is a ring isomorphism

Z/6 → (Z/2)× (Z/3) that sends

0 7→
(
0, 0

)
(that is, 0 + 6Z 7→ (0 + 2Z, 0 + 3Z)) ,

1 7→
(
1, 1

)
,

2 7→
(
2, 2

)
=

(
0, 2

)
,

3 7→
(
3, 3

)
=

(
1, 0

)
,

4 7→
(
4, 4

)
=

(
0, 1

)
,

5 7→
(
5, 5

)
=

(
1, 2

)
.

Of course, you can check this by hand, but this is not an isolated incident.
The reason why this isomorphism exists is that 2 and 3 are coprime (i.e., that
gcd (2, 3) = 1). More generally, the following holds:

Theorem 1.12.1 (The Chinese Remainder Theorem for two integers). Let n
and m be two coprime integers. Then,

Z/ (nm) ∼= (Z/n)× (Z/m) as rings.

More concretely, there is a ring isomorphism

Z/ (nm) → (Z/n)× (Z/m) ,
r 7→ (r, r) (that is, r + nmZ 7→ (r + nZ, r + mZ)) .

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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(As usual, the notation r is intuitive and confusing at the same time. It stands
for the residue class of r modulo an ideal, but what ideal that is depends on
the context. In the above context of a map from Z/ (nm) to (Z/n)× (Z/m), it
should be clear that the first r has to be a residue class modulo nm (since it is
an element of Z/ (nm)), whereas the other two r’s are residue classes modulo
n and modulo m, respectively (since they form the pair (r, r), which belongs to
(Z/n) × (Z/m)). In general, I will rely on the context to disambiguate such
notations.)

Rather than prove Theorem 1.12.1 directly, I will generalize it and then prove
the generalization. Specifically, I will replace Z by an arbitrary commutative
ring R, and replace the integers n and m by two ideals I and J of R. The
assumption “n and m are coprime” will be replaced by the condition “I + J =
R”.

1.12.2. The Chinese Remainder Theorem for two ideals

The latter condition actually has a standard name:

Definition 1.12.2. Let I and J be two ideals of a ring R. We say that I and J
are comaximal if I + J = R.

Now we can generalize Theorem 1.12.1 to ideals:

Theorem 1.12.3 (The Chinese Remainder Theorem for two ideals). Let I and
J be two comaximal ideals of a commutative ring R. Then:

(a) We have I ∩ J = I J.
(b) We have R/ (I J) ∼= (R/I)× (R/J).
(c) More concretely, there is a ring isomorphism

R/ (I J) → (R/I)× (R/J) ,
r 7→ (r, r) (that is, r + I J 7→ (r + I, r + J)) .

As we will soon see, parts (b) and (c) of this theorem generalize Theorem
1.12.1 (while part (a) generalizes the fact that lcm (n, m) = ±nm for any two
coprime integers n and m).

Let us now prove Theorem 1.12.3. We agree to understand the notation R/I ×
R/J as (R/I)× (R/J), so that we need to write fewer parentheses. Also, the
notation R/I J will mean R/ (I J). Thus, we can restate Theorem 1.12.3 (b) as
R/I J ∼= R/I × R/J.

Proof of Theorem 1.12.3. We have 1 ∈ R = I + J (since I and J are comaximal).
In other words, we can write 1 as

1 = i + j for some i ∈ I and some j ∈ J.
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Consider these i and j.

(a) Recall that the ideal I J consists of all finite sums of (I, J)-products. But
any (I, J)-product lies in both I and J (since it has a factor in I and a factor in J,
but both I and J are ideals and thus satisfy the second ideal axiom). Thus, any
(I, J)-product lies in I ∩ J. Hence, any finite sum of (I, J)-products also lies in
I ∩ J. In other words, I J ⊆ I ∩ J.

Let us now prove that I ∩ J ⊆ I J.
So let a ∈ I ∩ J. Then, a ∈ I and a ∈ J. Now,

a = a · 1︸︷︷︸
=i+j

= a · (i + j) = ai︸︷︷︸
=ia

+aj = ia + aj.

This is a sum of two (I, J)-products (indeed, ia is an (I, J)-product since i ∈ I
and a ∈ J; moreover, aj is an (I, J)-product since a ∈ I and j ∈ J). Hence, this
belongs to I J (by the definition of I J). In other words, a ∈ I J.

So we have shown that a ∈ I J for each a ∈ I ∩ J. Hence, I ∩ J ⊆ I J. Combined
with I J ⊆ I ∩ J (which was proved above), this results in I J = I ∩ J. This proves
part (a) of Theorem 1.12.3.

(c) First, we define a map

f : R → (R/I)× (R/J) ,
r 7→ (r, r)

(where the (r, r) means (r + I, r + J), as explained above). It is straightforward
to see that this map f is a ring morphism. Its kernel is

Ker f =
{

r ∈ R | (r, r) = 0(R/I)×(R/J)

}
= {r ∈ R | (r + I, r + J) = (0 + I, 0 + J)}(

since (r, r) = (r + I, r + J) and 0(R/I)×(R/J) = (0 + I, 0 + J)
)

= {r ∈ R | r + I = 0 + I and r + J = 0 + J}
= {r ∈ R | r ∈ I and r ∈ J}
= I ∩ J = I J (by Theorem 1.12.3 (a)) .

Now I claim that the image of f is the whole ring (R/I)× (R/J) (that is, the
map f is surjective).

Indeed, recall that 1 = i + j. Hence, 1 − i = j ∈ J. Therefore, 1 = i in R/J
(because two elements u, v ∈ R satisfy u = v in R/J if and only if u − v ∈ J). In
other words, i = 1 in R/J. Similarly, j = 1 in R/I.

On the other hand, i = 0 in R/I (since i ∈ I), and j = 0 in R/J (since j ∈ J).
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Now, for every x ∈ R and y ∈ R, we have1

f (yi + xj) = f (y) f (i) + f (x) f (j) (since f is a ring morphism)

= (y, y)

 i︸︷︷︸
=0

, i︸︷︷︸
=1

+ (x, x)

 j︸︷︷︸
=1

, j︸︷︷︸
=0


(by the definition of f )

= (y, y)
(
0, 1

)
+ (x, x)

(
1, 0

)
=

(
y · 0, y · 1

)
+

(
x · 1, x · 0

) (
since multiplication in a

direct product is entrywise

)
=

(
0, y

)
+

(
x, 0

)
=

(
0 + x, y + 0

) (
since addition in a

direct product is entrywise

)
= (x, y) . (1)

However, any element of (R/I)× (R/J) can be written as (x, y) for some x, y ∈
R. Using (1), we can rewrite this as follows: Any element of (R/I)× (R/J) can
be written as f (yi + xj) for some x, y ∈ R. In particular, this means that any
element of (R/I)× (R/J) is a value of the map f . In other words, the map f is
surjective. Hence, its image is

f (R) = (R/I)× (R/J) .

So we know that f is a ring morphism with kernel Ker f = I J and image
f (R) = (R/I)× (R/J). But the first isomorphism theorem for rings (Theorem
1.9.10 (c) in Lecture 11) says that the map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and is a ring isomorphism.
Since Ker f = I J and f (R) = (R/I)× (R/J) and f (r) = (r, r) for all r ∈ R,

we can rewrite this as follows: The map

f ′ : R/I J → (R/I)× (R/J) ,
r 7→ (r, r)

is well-defined and is a ring isomorphism. This proves part (c) of Theorem
1.12.3. Thus, part (b) follows.

1In the following, the notation r (for a given r ∈ R) means the residue class of r modulo I if it
stands in the first entry of a pair, and means the residue class of r modulo J if it stands in
the second entry of a pair.
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1.12.3. Application to integers

Now, we can get Theorem 1.12.1 (the Chinese Remainder Theorem for two
integers) as a corollary of Theorem 1.12.3 (the Chinese Remainder Theorem for
two ideals):

Proof of Theorem 1.12.1. Let R = Z and I = nZ and J = mZ. Then, Proposition
1.11.3 (a) in Lecture 12 yields I J = nmZ.

Also, Proposition 1.11.3 (c) in Lecture 12 yields

I + J = gcd (n, m)︸ ︷︷ ︸
=1

(since n and m are coprime)

Z = 1Z = Z.

In other words, the ideals I and J are comaximal. Hence, we can apply Theorem
1.12.3. In particular, Theorem 1.12.3 (b) yields that

R/I J ∼= (R/I)× (R/J) , that is,
Z/nm ∼= (Z/n)× (Z/m)

(since I J = nmZ and I = nZ and J = mZ). Likewise, Theorem 1.12.3 (c) yields
the specific isomorphism we are looking for.

Exercise 1. Apply this to n = 6 and m = 5 to obtain a ring isomorphism

Z/30 → (Z/6)× (Z/5) .

Find the preimage of
(
2, 3

)
under this isomorphism. (The first step is to write

1 as i + j where i ∈ 6Z and j ∈ 5Z.)

More generally, if n and m are two coprime integers, then the extended Eu-
clidean algorithm is a fairly efficient algorithm for writing 1 as i+ j with i ∈ nZ

and j ∈ mZ (that is, for writing 1 as a sum of a multiple of n and a multiple
of m). For this algorithm, see, e.g., the Wikipedia page or any textbook on ele-
mentary number theory (e.g., [LeLeMe18, §9.2.2] explains the algorithm on an
example, and [Stein09, Algorithm 2.3.7] gives a simple recursive implementa-
tion).
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